
Real-Time Definition of Non-Randomness in the
Distribution of Genomic Events
Ulrich Abel1,2, Annette Deichmann1, Cynthia Bartholomae1, Kerstin Schwarzwaelder1, Hanno Glimm1, Steven Howe2, Adrian Thrasher3,4,
Alexandrine Garrigue5, Salima Hacein-Bey-Abina5,6, Marina Cavazzana-Calvo5,6, Alain Fischer5,7, Dirk Jaeger1, Christof von Kalle1,8*,
Manfred Schmidt1*

1 Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany, 2 Department of Medical Biostatistics, Tumor
Center Heidelberg-Mannheim, Heidelberg, Germany, 3 Molecular Immunology Unit, Institute of Child Health, University College London, London,
United Kingdom, 4 Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom, 5 INSERM Unit 768,
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Features such as mutations or structural characteristics can be non-randomly or non-uniformly distributed within a genome. So
far, computer simulations were required for statistical inferences on the distribution of sequence motifs. Here, we show that
these analyses are possible using an analytical, mathematical approach. For the assessment of non-randomness, our
calculations only require information including genome size, number of (sampled) sequence motifs and distance parameters.
We have developed computer programs evaluating our analytical formulas for the real-time determination of expected values
and p-values. This approach permits a flexible cluster definition that can be applied to most effectively identify non-random or
non-uniform sequence motif distribution. As an example, we show the effectivity and reliability of our mathematical approach
in clinical retroviral vector integration site distribution.
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INTRODUCTION
With the sequences of complete genomes available [1–4], and

accelerating technologies for high-throughput sequencing [5]

genome wide sequence analyses of individual samples will soon

become reality. Comparative analyses of sequence composition

and sequence motif distribution have become central parts of

genome and transcriptome research, providing new insights on

evolution, physiology and medical diagnosis [6–15]. Our un-

derstanding of integrating viruses and related vectors in gene

therapy trials is an interesting example of such approaches. Since

the completion of the human and murine genome sequencing

projects the location of the vector in the cellular genome can be

defined precisely, allowing the determination of possible vector

integration induced effects on the surrounding genomic DNA

regions at the molecular level. Integration site analyses have

gained increasing interest with the dramatic development of

a retroviral vector-induced lymphoproliferative disease in 3

patients cured of X-linked severe combined immunodeficiency

(X-SCID) that was triggered by insertional activation of the proto-

oncogene LMO2 [16,17]. Meanwhile, insertion induced side

effects have been identified ranging from immortalization [18] to

clonal dominance [19–22] and even oncogenesis [23–25] in

a variety of gene therapy studies. These studies have in common

that a clustering of integration sites (IS) in certain genomic loci was

detectable, and likely provided a selective advantage for the

affected cell clone.

The clustering of integrations, termed common integration sites

(CIS), as an indicator for clone selection has already been used in

concerted retrovirus insertional mutagenesis studies that aimed to

identify new cancer genes by determining the gene configuration

near frequently affected integration site loci [26–28]. For CIS

determination, computer simulations were performed to assess

non-randomness of IS distribution in tumors [28]. To validate the

correctness of our mathematical approach defining non-random-

ness and non-uniform sequence motif distribution, we analyzed

the IS distribution and presence of CIS in 2 successful clinical

SCID-X1 studies [29,30, unpublished data]. We considered 2, 3

or 4 insertions as CIS of 2nd, of 3rd or 4th order if they fell within

a 30 kb, 50 kb or 100 kb window of genomic sequence from each

other, respectively. Simultaneously, we performed computer

simulations written in open source ‘R’-language (http://cran.r-

project.org) for which a window of size dn (dn = the maximum

distance defining a CIS of order n) was shifted through the ordered

sequence of the IS. For each window W(j) = [IS(j),IS(j)+dn] it was

then counted how many CIS of order n including IS(j) as first

element were contained in W(j). We show that our mathematical

approach for defining biased IS distribution is comparable to the

output of computational simulations. It may have advantages in

performance of large quantities of individual analyses. Even if the

null hypothesis of random uniform allocation is not adequate, as it

is known from retroviral vector integration [31], our calculations

can address segments of the genome located between sites of

predilection for virus integration and can be extended to address

non-uniform sequence motif distributions.
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RESULTS AND DISCUSSION

Part 1: Random uniform allocation of IS
For the purpose of this discussion, the unit of observation (location

and distance) is kilobasepair (kb). We assume that a number nis of

IS is randomly allocated (with a uniform distribution) to the

locations of a genome consisting of g kb. A CIS of order n is an n-

tuple of IS such that the maximum distance between the lowest

and highest position is no greater than a fixed bound.

Further terminology

dn, defining ‘‘size’’ or distance of a CIS of order n, i.e.

maximum permissible distance between any two mem-

bers of a CIS of order n.;

Pn, probability that a given (sub)set of n IS that are randomly

allocated form a CIS of order n

P(m,d), probability that a given subset of m randomly allocated

IS has a span ( = maximum distance between any two

elements) of exactly d.

En, expected value of the number of CIS of order n

We start with the elementary observation that En equals Pn times

the number of subsets of IS consisting of n elements:

En~
nis

n

� �
:Pn ð1Þ

Clearly,

Pn~
Xdn

d~0

P(n,d) ð2Þ

It remains to determine P(n,d). First note that P(1,d) = 0 for d.0.

Furthermore, for all m$1:

P(m,0)~
1

gm{1
ð3Þ

A recursive formula for P(m,d), d.0, can be derived by breaking

down the potential CIS of order m into subsets of m–1 elements

having a span of d’#d, to which an m-th IS is added such that the

maximum span is exactly d:

P(m,d)~
1

g
f
Xd{1

d 0~0

2:P(m{1,d 0)½ �z(dz1)P(m{1,d)gzr ð4Þ

where r is a negligible correction term that arises because the

uncorrected recursion formula is strictly valid only for subsets of IS

that have a distance $d from the telomeres.

By mounting the recursive ladder (m = 1,...,n), these formulas

successively yield P(n,d), Pn, and En. In particular, one easily

obtains (d.0):

P(2,d)&
2

g

P(3,d)&
6d

g2

P(4,d)&
12d2z2

g3

Plugging this into equations (2) and (1) yields for the expected

value En:

E2&
nis

2

� �
(2d2z1)

g

E3&
nis

3

� �
f3d3(d3z1)z1g

g2

E4&
nis

4

� �
1z2d4f1z(d4z1)(2d4z1)g

g3

As shown in Table 1, our mathematical approximation

corresponds extremely well to the mean values found in 50000

simulation runs.

Statistical inferences, such as the calculation of p-values, can be

based on the observation that, under the null hypothesis (H0) of

random uniform allocation of the IS, the number of CIS of order n

is (approximately) Poisson distributed with parameter l= En.

Thus, if the random variable X denotes the number of CIS of

order n, and X = k is observed in a trial, then the p-value P(X$k) of

this observation calculated under H0, i.e. from the Poisson

distribution Po(En), is given by

P(X§kjHo)~1{
Xk{1

i~0

li

i!
e{l~P(x2

ƒ2En),

where the random variable x2 has a chi-square distribution with

2 k degrees of freedom [32,33].

The Poisson approximation to the true random distribution of

CIS is exceedingly close. In fact, if the number of simulation runs

is sufficiently high, the simulated distribution is virtually

undistinguishable from Po(En). In particular, both the expected

values and the p-values derived from Po(En) are nearly identical to

those obtained in computer simulations. The latter point is

apparent from Table 2, where for a final proof of principle of our

mathematical calculations, results of the analysis of our integration

data set retrieved from two clinical SCID-X1 therapy trials

[unpublished data] are given.

The p-value can be calculated by means of either of the

following commands (‘R’ code): 1–ppois(lambda = En, q = k–1) or

pchisq(df = 2k, q = 2En). Using the data of Table 2 (first line) 1–

ppois(lambda = 0.19, q = 2) or pchisq(df = 6, q = 0.38). In both

Table 1 Mean values for random CIS formation (1000 IS)
determined either with computer simulations or
mathematically.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Order of CIS Mean Value Mathematical Formula

Mean Value
Computer
Simulations

2nd

E2&
1000

2

� �
61

3:12:106
~9:77

9.75

3rd

E3&
1000

3

� �
7651

(3:12:106)2
~0:13

0.13

4th

E4&
1000

4

� �
4:06:106

(3:12:106)3
~0:01

0.01

Simulations were performed with 50000 runs each. g, haploid size of the human
genome: 3.12 x 106 kb; dn, genomic window size [kb] for CIS of nth order:
d2 = 30, d3 = 50, and d4 = 100; nis, number of (assumed) sampled integration
sites: 1000.
doi:10.1371/journal.pone.0000570.t001..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

Sequence Motif Distribution

PLoS ONE | www.plosone.org 2 June 2007 | Issue 6 | e570



instances, the result is 0.00099. Alternatively, the table of the

chisquare distribution with 6 degrees of freedom can be used to

look up the probability P(X#0.38). One should note that, for low

En, the p-value of a single observed CIS is virtually identical to En.

This implies that, for n.5, no p-values need to be calculated (and

hence no formulas are required for En, n.5), because even with an

extremely liberal definition of the CIS (d5 = 500) and a fairly high

number of IS (nis = 1000) a single CIS of order 5 will be statistically

significant (p = 0.027).

Part 2: Non-uniform allocation of IS
Defining non-randomness in the clustering of genomic events often

requires additional precautions as sequence structures of interest may

already have known specific distribution biases. In the case of our

clinical example (unpublished data), it is known that retroviral vectors

based on the murine leukaemia virus (MLV) tend to integrate into

gene coding regions preferentially near the transcriptional start site

(TSS) [34-36]. It is also proposed that additional factors, indeed

mostly unknown, may influence the accessibility of vectors to certain

genomic DNA regions [37]. Thus, the null hypothesis of random

uniform allocation of MLV IS distribution may not be adequate

according to the current ‘state of the art’, as has recently been argued

[31]. In line with this study, we portioned the genome into 2 adequate

areas that differ in the likelihood of getting targeted by vectors.

Further terminology

nTSS, number of TSS;

T5, an interval of +/-5kb around a TSS;

GT5, union of all T5

nis,Mix, nis,Comp, number of IS occuring in GT5 and in

the complement of GT5, respectively

ncis,GT5, ncis,Mix, ncis,Comp, number of CIS occurring in GT5, both

in GT5 and in the complement of GT5

and in the complement of GT5 only,

respectively.

Clearly, the expected value En of the number CIS of order n is

given by the following sum:

En~E(ncis,GT5)zE(ncis,Mix)zE(ncis,Comp) ð5Þ

In the following it will be shown how to calculate the terms on the

right side of (5). We start with the expected value of ncis,GT5 fore

what we assume that vector integration into any T5 occurs with

the same probability. Then

E(ncis,GT5)~nTSS
:E(X ), ð6Þ

where X is the number of CIS (among those occurring in GT5)

that occur in a fixed T5. Observing that i IS in a fixed T5 yield

i

n

� �
CIS of order n in this T5 one easily obtains the expected

value of X

E(X )~P(X~n):1zP(X~nz1)
nz1

n

 !
z

P(X~nz2)
nz2

n

 !
z:::

ð7Þ

Since X is binomially distributed as , B(nis,GT5,1/nTSS),

P(X~i)~
nis,GU5

i

� �
(

1

nTSS

)i(
nTSS{1

nTSS

)nis,GU5 ð8Þ

Merging equations (6)–(8) yields the desired formula for E(ncis,GT5):

E(ncis,GU5)~nTSS

Xnis,GU5

i~n

nis,GU5

i

� �
i

n

� �
(

1

nTSS

)i(
nTSS{1

nTSS

)nis,GU5ð9Þ

If nis,GT5 is small compared to nTSS (undoubtedly, this is mostly

the case), terms of higher order can be neglected so that, because

(nTSS–1)/nTSS<1, formula (9) simplifies to

E(ncis,GU5)&nTSS

nis,GU5

n

� �
(

1

nTSS

)n~
nis,GU5

n

� �
(

1

nTSS

)n{1 ð10Þ

Notice that formulas (6)–(10) do not depend on the spatial

distribution of the IS within the T5. (It is unnecessary to account

for the closeness of IS within T5 because any pair – or triple,

quadruple etc., for that matter – of IS within a T5 yields a CIS.)

Clearly, the expected value of ncis,Mix E(ncis,Mix) is not

independent of the distance between the IS and the TSS. Thus,

inevitably, assumptions regarding the spatial distribution for the IS

will influence its value. In the sequel, a formula for E(ncis,Mix) shall

be derived for the case n = 2. As before, CIS of order 2 are defined

by a maximum distance d2 of 30kb between the IS.

If the TSS are indistiguishable with respect to the probability

distribution of the integrations, then

E(ncis,Mix)~nis,GT5
:nis,Comp

:nTSS
:pMix, ð11Þ

where pMix denotes the probability that an arbitrary pair of IS

(with one element in GT5 and one element in the complement of

GT5) forms a CIS of order 2 around a fixed TSS.

We will assume that the distributions of IS within a T5 and

within +/-35 kb around a TSS are symmetric. Then, again using

kb as unit of distance,

pMix~2

ð10

x~0

f (x)

ð0
y~x{30

g(y)dydx: ð12Þ

In formula (12) the points x = 0 and y = 0 correspond to the

TSS-5; f(x) designates the probability density function of vector

Table 2 Comparative analysis of mean values and p-values
obtained computationally (‘Simulation’) or mathematically
(‘Formula’).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CIS IS MV Simulation MV Formula
p-Value
Simulation

p-Value
Formula

3 140 0.188 0.190 0.0009 0.001

1 134 0.175 0.174 0.16 0.16

4 102 0.100 0.101 0 3.961026

15 304 0.899 0.900 0 6.8610214

102 572 3.200 3.193 0 ,10216

The results refer to the presence of CIS detected in 2 clinical X-SCID gene
therapy studies [unpublished data]. Simulations were performed with 50000
runs on the haploid size of the human genome (3.126106 kb). P-values
estimated from simulations equal the proportion per 50000 runs in which the
number of CIS was at least as high as the number observed in the trials. The
genomic window size chosen for CIS of 2nd order was 30kb. CIS, number of
identified CIS of 2nd order in patient and control samples pre- and post-
transplant; IS, number of all unique identified integration sites in patient and
control samples pre- and post-transplant; MV, mean value.
doi:10.1371/journal.pone.0000570.t002..
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integrations in T5; and g(y) designates the corresponding density

function in [TSS-35, TSS-5].

Formula (12) shall be evaluated for two special cases:

Case 1: Vector integrations are uniformly distributed in GT5

and in the complement of GT5, respectively. I.e.,

f (x):1=(nTSS
:10)

g(x):1=(g�nTSS
:10):

Solving the integrals in formula (12) we have

pMix~
400

10nTSS(g{10nTSS)
ð13Þ

Case 2: As above, vector integrations in the complement of

GT5 are assumed to be uniformly distributed. However, a tri-

angular distribution is assumed for f(x). The corresponding formula

is easily calculated:

f (x)~
x=(25nTSS) if xƒ5

(2=5{x=25)=nTSS if x§5

�

By plugging this into (12) we get

pMix~
170

3nTSS(g{10nTSS)
ð14Þ

It may be surprising that a triangular distribution in T5 results

in a higher expected value for ncis,Mix than a uniform distribution.

However, this becomes more plausible if one notes that a higher

value is also obtained if the IS are concentrated in an extreme

manner within the T5, viz. in a one-point distribution with total

mass in the TSS. In this special case (which is particularly easy to

evaluate), pMix = 50/(nTSS(g–nTSS)).

If, with respect to the formation of CIS, the complement of GT5

could be regarded as a continuum, the expected value of ncis,Comp

would be given by the formulas developed in Part 1 of this

contribution. In the case of retroviral (MLV) vectors, however, the

complement of GT5 has rather to be viewed as a partitioned set

consisting of approximately TSS disjoint intervals. It follows that

that the residual term on the right-hand side of equation (4) (Part
1) may no longer be negligible. Note however, the assumption of

a continuum clearly tends to lead to an overestimation of the

number of CIS, because the boundaries of the components reduce

the number of CIS occurring in their neighborhood. It follows that

the formulas derived in Part 1 form an upper bound for

E(ncis,Comp). In particular, the true p-values are less or equal to the

values calculated by means of the formulas derived in Part 1.

Therefore, any positive statements regarding statistical significance

remain valid. Moreover, the overestimation is probably fairly small

given that the sections of GT5 located between the TSS are mostly

rather wide compared to the length defining a CIS.

Indeed, the null hypothesis of non-uniform allocation for IS

distribution does not substantially change the results we have

obtained based on the hypothesis of a random uniform allocation

for CIS formation in our clinical samples (Table 2), as is shown in

Table 3.

Our mathematical formulas allow a reliable, straightforward

calculation of non-randomness in CIS and other genomic event

distributions under the null hypothesis of uniform and non-

uniform allocation. Using formula based workspaces (available on

request), expected values and p-values can be calculated with ease

in real-time. They may be preferable to computer simulations

when (routine) high-speed processing of large quantities of analyses

is needed. Our approach enables a closely problem-oriented,

highly exact evaluation of non-randomness that is useful for

assessing IS distribution in clinical trials and for assessing the

distribution of any sequence motif of interest in a natural or

artificial genome.
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