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SUMMARY
Conversion of EpiSCs to naive ESCs is a rare event that is driven by the reestablishment of the naive transcription factor network. Inmice,

STAT3 activation is sufficient to drive conversion of EpiSCs to the naive pluripotent stem cell (PSC) state. However, the lack of respon-

siveness of EpiSCs to LIF presents a bottleneck in this conversion process. Here, we demonstrate that local accumulation of BMP-

SMAD1 signaling, in cooperation with GP130 ligands, enhances the recovery of LIF responsiveness by directly controlling transcription

of the LIF receptor (Lif-r). Addition of BMP and LIF to EpiSCs increases both LIF responsiveness and conversion frequencies to naive PSCs.

Mechanistically, we show that the transcriptional cofactor P300 plays a critical role bymediating complex formation between STAT3 and

SMAD1. This demonstration of how the local microenvironment or stem cell niche reactivates dormant signaling responsiveness and

developmental potential may be applicable to other stem cell niche-containing systems.
INTRODUCTION

Mouse embryonic stem cells (mESCs) and epiblast stem

cells (EpiSCs) are stable, pluripotent cells derived from

mouse blastocysts and early postimplantation embryo,

respectively. Embryonic stem cells demonstrate character-

istics of naive pluripotency, while, in contrast, EpiSCs are

in a primed pluripotent state (Nichols and Smith, 2009).

These cells, despite their temporal proximity in vivo,

exhibit marked differences in their response to signals to

maintain their pluripotency; mESC stability is governed

by leukemia inhibitory factor (LIF) and bone morphogenic

protein 4 (BMP4) signaling, while Activin A and basic fibro-

blast growth factor (bFGF) maintain EpiSCs. Conversion of

mESCs to EpiSCs is primarily driven by culture in EpiSC-

supportive conditions, specifically, by addition of the

cytokines Activin A and bFGF (Guo et al., 2009). This con-

version robustly yields culture-derived EpiSCs (CDEs).

Similarly, conversion of EpiSCs to mESCs can be driven

by activation of STAT3 (Bao et al., 2009; Onishi et al.,

2012; van Oosten et al., 2012; Yang et al., 2010), the tran-

scription factor directly downstream of mESC-supportive

LIF signaling. Alternative methods of EpiSC conversion

involve overexpression of transgenes (Festuccia et al.,

2012; Gillich et al., 2012; Guo and Smith, 2010; Guo

et al., 2009; Hall et al., 2009; Hanna et al., 2009; Yang
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et al., 2010) or culture on feeders (Bao et al., 2009; Berne-

mann et al., 2011; Greber et al., 2010; Han et al., 2010a;

Sasaki et al., 2011; Zhou et al., 2010). Frequency of conver-

sion remains low in most cases, with optimal conversion

occurring at �10% efficiency when potent conversion-

driving transcription factors, NANOG or KLF4, are over-

expressed in combination with either optimal STAT3

activation (Yang et al., 2010) or orphan nuclear receptor,

LRH-1 (Guo and Smith, 2010). Not surprisingly, STAT3-

driven conversion of EpiSCs is critically limited by the

inability of EpiSCs to robustly respond to LIF. We have pre-

viously demonstrated that EpiSCs regain LIF responsive-

ness upon control of the cellular microenvironment and

local cell density using micropatterning (mP) (Onishi

et al., 2012). This recovery of LIF responsiveness facilitates

feeder-free conversion of EpiSCs at frequencies comparable

to transgenic systems. We have previously demonstrated

the importance of endogenous GP130 ligands in gaining

LIF responsiveness (Davey et al., 2007). However, the obser-

vation that supplementing exogenous LIF to EpiSCs does

not recover LIF responsiveness suggests the presence of

additional signaling conversion barriers (Onishi et al.,

2012).

BMP signaling in the presence of LIF functions to main-

tainmESCpluripotency.However,whenEpiSCsareexposed

to BMP, SMAD1 activation induces their differentiation to
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both primitive endoderm and trophectoderm (Brons et al.,

2007). Additionally, at higher concentrations (50 to

500 ng/ml), BMP drives the differentiation of EpiSCs to

germ cells (Hayashi and Surani, 2009; Tesar et al., 2007).

This behavior is consistent with that of human embryonic

stem cells (hESCs); an observation further corroborated in

other differentiation protocols involving BMP signaling

(Vallier et al., 2009). The role of BMP in differentiation of

EpiSCs is extensive and well defined. In contrast to its role

in differentiation, here we demonstrate a role for BMP

signaling in the upregulation of LIF signaling responsive-

ness and subsequent enhancement of the reprogramming

efficiency of EpiSCs. The increase in LIF responsiveness of

EpiSCs upon mP (Onishi et al., 2012) can be explained by

an increase in local accumulation of BMP and GP130 (i.e.,

IL-6 family) ligands. Specifically, inhibition of endogenous

BMP and GP130 signaling on mP results in the loss of LIF

responsiveness. Additionally, in standard, nonpatterned

culture, supplementationwith both LIF andBMP4 increases

LIF responsiveness by as much as 3-fold over addition of

either LIF or BMP4 alone. We demonstrate that STAT3 and

SMAD1, the respective downstream targets of LIF and

BMP4, cooperate by directly binding and regulating tran-

scription of the promoter region the gene encoding JAK-

STAT pathway receptor LIF receptor (Lif-r). As is observed

in neural precursors (Nakashima et al., 1999), the interac-

tion between SMAD1 and STAT3 in EpiSCs is bridged by

P300. We demonstrate that manipulation of P300 can

tune the reinitiation of dormant JAK-STAT signaling in

response toLIFandBMP, therebyaffecting frequencyof con-

version. This demonstration of how signaling crosstalk

changes the context and cell fate effects of BMP signaling

may be indicative of conserved mechanisms in other sys-

tems and an important consideration for harnessing the

full potential of pluripotent and multipotent stem cells.
RESULTS

SMAD1 Activation by BMP Signaling Is Enhanced

upon Micropatterning

We have previously demonstrated niche-mediated control

of endogenous BMP signaling in hESC colonies by mP (Peer-

ani et al., 2007).We reasoned that the mP of EpiSCs, in addi-

tion to its effects on JAK-STAT signaling, may impact BMP

signaling and provide insight into how LIF responsiveness

is regained. Upon mP, the transcription of several BMP

ligands and the SMAD1 targets, Id1 and Id3, increased (Fig-

ure 1A; Figure S1A available online). To address whether

SMAD1 was being activated upon mP, we stained for acti-

vated SMAD1 (i.e., phospho-SMAD1 [pSMAD1]). Levels of

pSMAD1 in mP EpiSCs increased significantly over nonpat-

terned (non-mP) EpiSCs, both in the absence or presence of
Ste
exogenous BMP (Figure 1B). Addition of LIF did not signif-

icantly increase SMAD1 activity over mP-AF cells (Figure 1B)

or in non-mP cells (Figure S1B), suggesting that these

pathways act independently with respect to activation of

SMAD1. A time course reveals that mP induced gene ex-

pression changes within 24 hr postseeding (Figure 1C),

whereby Nanog transcript is elevated at 6 hr over the non-

patterned control, suggesting that endogenous signals

begin concentrating locally within a few hours after seed-

ing onto patterns. Taken together, we observe an increase

in overall BMP signaling in EpiSCs upon mP and that these

signals begin to concentrate early into the patterning

process.

Addition of BMP4 Enhances the Conversion

Frequency of EpiSCs

Wenext asked if addition of BMP4 for 1 day prior to reseed-

ing in stringent mESC media (2iL) would increase conver-

sion frequency. We observed a dramatic 8-fold increase in

alkaline phosphatase (ALP)-positive colonies upon BMP4

treatment (Figure 2A) and BMP2 (Figure S2Bi) at both

10 ng/ml and 50 ng/ml (Figure S2Bii). To exclude the pos-

sibility of the existence of ALP-positive EpiSCs in 2iL, we

costained ALP with KLF4 and SOX2 in EpiSCs (CDE),

serum-cultured mESCs (R1), and revertant EpiSCs in 2iL

(rCDEs) (Figure S1A). Cells staining positive for both

KLF4 and SOX2 (double positive [DP]) mark cells in the

naive pluripotent state (Figure S2Ai). Additionally, ALP-

positive cells exist only in the DP subpopulation in both

mESCs and in revertant EpiSCs (Figures S2Aii and S2Aiii),

demonstrating that ALP serves as a faithful reporter of the

naive state. BMP4 signaling is critical during primordial

germ cell (PGC) derivation from EpiSCs (Hayashi and Sur-

ani, 2009; Tesar et al., 2007). These EpiSC-derived PGCs

are then able to form embryonic germ cells (EGCs) that

closely resemble mESCs. To exclude the possibility that

EpiSCs are undergoing differentiation through PGCs in

response to BMP4, we assayed transcript levels of known

PGC markers (Blimp1, Nanos3, Prdm14, Fragilis, Dnd1,

Hoxa1, and Stella) in the presence of BMP2 and BMP4 at

10 ng/ml and 50 ng/ml (Figures S2Ci and S2Cii). All

markers demonstrated no observable increase in the pres-

ence of BMP signaling at the two concentrations. Addition-

ally, immunostaining of BLIMP1, a marker of early PGC

formation, demonstrated no significant increases with

10 ng/ml or 50 ng/ml of BMP4 treatment for 1 day (Fig-

ure S2D). These observations, along with the requirement

for 500 ng/ml of BMP4 exposure for 4–7 days to induce

low-frequency PGC formation from EpiSCs (Hayashi

et al., 2011; Hayashi and Surani, 2009), strongly suggest

that cells are not converting to EGCs. BMP signaling,

both endogenous and exogenous, therefore improves yield

of ALP-positive colonies from EpiSCs by reversion, not by
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Figure 1. BMP Signaling Rapidly Increases in EpiSCs on mP
(A) qRT-PCR on (i) culture-derived EpiSCs (CDEs) and (ii) an embryo-derived EpiSC line (129S2C1a) demonstrates an overall increase in
transcription of BMP-signaling-related genes upon mP. Genes are categorized as follows: pluripotency related (Plurip.), BMP related (BMP),
and JAK-STAT related (JAK-STAT).
(B) Representative images of phosphorylated SMAD1 (pSMAD1) staining on EpiSCs that are cultured in Activin A and FGF media (AF) either
not patterned (non-mP) or patterned (mP) in the presence of exogenous BMP4 (AF +BMP4) or LIF (AF+LIF). Quantification of images is
shown in the right panel.
(C) Time course of gene expression changes upon mP of EpiSCs. All time points were compared to their respective non-mP controls. *p < 0.05
as tested by a two-sided, two-sample t test.
All data are presented as mean ± SD (n = 3, technical replicates, independent wells) except (B) (n = 6, technical replicates, independent
wells). (A) and (C) are representative plots.

Stem Cell Reports
Microenvironment Drives Rare Cell-State Conversion
differentiation to PGCs. The embryo-derived EpiSC line

129S2C1a increased conversion frequency by about 13-

fold upon supplementation with BMP4 (Figure 2Bi). We

next assayed for its ability to form chimeras upon blasto-

cyst injection. As EpiSCs were reverted in the absence of

transgenes, the converted, mESC-like cells were transfected

with a constitutively expressed b-geo (b-galactosidase +

neomycin resistance) transgene to distinguish between

donor and host cells. Importantly, these BMP4-treated, re-

verted cells contribute to all three germ layers of the devel-
158 Stem Cell Reports j Vol. 3 j 156–168 j July 8, 2014 j ª2014 The Authors
oping embryo, as assayed by b-galactosidase staining,

demonstrating full conversion to naive pluripotency

(Figure 2Bii).

With BMP signaling emerging as a potent enhancer of

conversion in EpiSCs, we next asked whether it, along

with JAK-STAT signaling, is a requirement for conversion.

To test this, we first micropatterned EpiSCs in Activin

A/bFGF (AF) media supplemented with LIF (10 ng/ml), a

JAK inhibitor (JAKi; 2 mM), a BMP signaling inhibitor

(targeting the BMP receptors ALK2 and ALK3), or



Figure 2. BMP4 Improves Frequency of Conversion to Naive Pluripotency, while Inhibition of BMP Signaling Decreases Frequency
(A) (i) Addition of BMP4 to AF media in the absence of patterning increases conversion frequency in CDEs as measured by alkaline
phosphatase (ALP)-positive colonies in 2i + LIF (2iL) media, and (ii) quantification of conversion frequency. (n = 3 biological replicates,
independent experiments).
(B) (i) Similar results are observed in embryo-derived 129S2C1a cells upon addition of BMP4. Representative picture: (ii) these revertant
cells (after transfection with a constitutive b-geo construct) generate all three germ layers (endoderm, primordial hepatic biliary;
ectoderm, forebrain; mesoderm, dorsal aorta) after blastocyst aggregation.
(C) Representative image of factorial experiment to determine the role of both STAT3 and SMAD1 activity before and during conversion.
ALP-positive colonies were counted and reported in the lower corner of each panel. mP CDEs were pretreated for 1 day in LIF, JAK inhibitor
(JAKi, 2mM), or LDN-193189 (LD, 3mM) (rows). Cells were then seeded in 2iL media containing either JAKi or LD (columns). *p < 0.05 as
tested by a two-sided, two-sample t test.
All data are presented as mean ± SD (n = 3).
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LDN193189 (LDN) (3 mM) or without any supplementa-

tion. This pretreatment of EpiSCs on mP was performed

for 1 day. Nonpatterned CDEs cultured in AF were used as

controls. Test cells were then dissociated and seeded in

2iL media supplemented with JAKi (2 mM) or LDN (3 mM).

Colonies were stained for ALP and counted after 7 days

(Figure 2C). No colonies were observed in 2iL supple-

mented with either JAKi or LDN, suggesting that con-

tinuous activation of both STAT3 and SMAD1 during
Ste
conversion is essential. CDEs cultured in JAKi or LDN sup-

plemented AF for 15 days maintain OCT4 expression,

demonstrating that cytotoxic effects of the smallmolecules

alone are negligible (Figure S2Ei). Similar results were

observed with mESCs treated with LDN (Figure S2Eii) for

9 days and JAKi for 10 days (Onishi et al., 2012) in 2iL. Pre-

treatment with either JAKi or LDN did not abolish colony

formation in 2iL but resulted in a 13- and 3-fold decrease

in colony number, respectively, suggesting an important,
m Cell Reports j Vol. 3 j 156–168 j July 8, 2014 j ª2014 The Authors 159
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but not critical, role of JAK-STAT and BMP signaling in

priming EpiSCs for conversion. Taken together, the contin-

uous activation of STAT3 and SMAD1 is required during the

onset of conversion (i.e., upon addition of 2iL media) and

for the duration of conversion, but not during the pretreat-

ment phase.

Increase in LIF Responsiveness upon mP Can Be

Explained by Signaling through LIF and BMP4

As JAK-STATand BMP signaling are both present during mP-

mediated priming of EpiSCs prior to conversion, and as

both have beneficial roles in conversion, we next asked

whether these signaling pathways were involved in the

resuscitation of LIF responsiveness seen on patterns. JAK-

STAT signaling is autoregulated in a positive feed-forward

loop (He et al., 2005) and buffers mESCs from undergoing

differentiation in the absence of exogenous LIF (Davey

et al., 2007). Despite this, addition of LIF for 9 days was

able to only subtly resuscitate LIF responsiveness in EpiSCs

(Onishi et al., 2012). The role of BMP signaling in the

context of LIF responsiveness remains undefined. To this

end, EpiSCs (both CDEs and EpiB3s) supplemented with

LIF and BMP4 (both at 10ng/ml) for 1 day prior demon-

strated significantly increased levels of pSTAT3 when

compared to cells supplemented with LIF or BMP4 alone

after a 15 min stimulation with LIF (Figure 3A). Interest-

ingly, addition of BMP4 at concentrations below 10 ng/

ml (i.e., 5 ng/ml, 1 ng/ml, 0.1 ng/ml) did not allow EpiSCs

to recover LIF responsiveness even in the presence of

elevated LIF (10 ng/ml) (Figure S3A), consistent with previ-

ous observations of the lack of responsiveness in EpiSCs

upon addition of LIF alone (Onishi et al., 2012). To address

whether BMP4 signaling is central to mP-mediated recovery

of LIF responsiveness, we treated EpiSCs with NOGGIN (a

BMP receptor antagonist) (Figure 3Bi), LDN (Figure 3Bii),

or small interfering RNA (siRNA) sequences targeting

Smad1 (Figure 3Biii) prior to or during mP. NOGGIN

(300 ng/ml) was added to cells at day 0 (d0) as they were

seeded onto mP, or at day 1 after mP (d1). LDN (100 nM)

was added at d1. Cells were assayed after 2 days (d2)

on mP. Inhibition of BMP signaling by all three methods

prevented EpiSCs from regaining LIF responsiveness

on mP (Figure 3B). Consistent with our observation that

mP leads to transcriptional changes within the span of

1 day (Figure 1C), we observed that addition of NOGGIN

at the time of seeding (i.e., d0) was more effective in pre-

venting recovery of LIF responsiveness than when it was

added at d1 (Figure 3Bi). Inhibition of JAK-STAT signaling

with JAKi also abolishes LIF responsiveness on mP (Onishi

et al., 2012), and similar to NOGGIN, we observed a more

potent effect of JAKi when added at d0 as compared to

JAKi added at d1 (Figure S3B). Importantly, addition of

both LIF and BMP4 increased conversion frequency of non-
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patterned EpiSCs by 5-fold over untreated EpiSCs, 3.25-fold

over LIF only, and 1.5-fold over BMP only (Figure 3C).

These data suggest that accumulation of local GP130 and

BMP ligands soon after mP serves to increase LIF responsive-

ness of EpiSCs and function to promote conversion

frequencies.

LIF and BMP4 Increase LIF Responsiveness by Directly

Targeting and Regulating Lif-r Transcription in EpiSCs

We next asked how LIF and BMP4 synergized to increase

LIF responsiveness in EpiSCs. The respective downstream

transcription factor targets of LIF and BMP4, STAT3 and

SMAD1, are known to form a complex, bridged by P300,

in neural precursors to promote differentiation to astro-

cytes (Nakashima et al., 1999). Additionally, in mESCs,

STAT3 and SMAD1 coimmunoprecipitate (Ying et al.,

2003) and colocalize with P300 to the same regions of the

genome (Chen et al., 2008). We examined chromatin

immunoprecipitation sequencing (ChIP-seq) data gener-

ated by Chen et al. (Chen et al., 2008) and found that

pull downs of SMAD1, P300, and STAT3 all enriched for

DNA fragments mapping upstream of the Lif-r gene. We

therefore hypothesized that STAT3 and SMAD1 form a

complex in EpiSCs and regulate transcription of genes

mediating LIF responsiveness, specifically Lif-r. A time

course of BMP4-treated EpiSCs reveals a steady increase of

Lif-r expression over 24 hr (Figure 4A). With the addition

of LIF and BMP4 in combination, after 3 hr, transcription

of Lif-r reaches the level observed at 24 hr with BMP4 alone.

Furthermore, the peak transcription level of Lif-r in LIF and

BMP4-treated EpiSCs is greater than that observed in

EpiSCs treated with only LIF for 24 hr (Figure S4) and

48 hr (Figure 4A). Oct4 and Nanog levels remain high

throughout the time course, demonstrating that EpiSCs

do not undergo significant differentiation when in the

presence of exogenous BMP4 for 24 hr. Importantly, the

effects of LIF and BMP4 are observed even in the presence

of the translation inhibitor, cycloheximide (chx), added

for 3 hr at 30 ng/ml, demonstrating that this is a direct

effect (Figure 4B). We next asked whether STAT3, SMAD1,

and coregulator, P300, bind to the locus upstream of Lif-r

as identified by Chen and colleagues (Chen et al., 2008)

(Lif-r-enh) or to regions within promoters as defined by

the Database of Transcriptional Start Sites (Lif-r-pro1,

Lif-r-pro2) (Yamashita et al., 2010). We also included the

possibility of binding to the Gp130 promoter (Gp130-

pro), as ChIP-seq from Chen et al. also identified binding

of SMAD1, STAT3, and P300 to this locus. To this end, we

performed ChIP on STAT3, P300, and SMAD1 and ampli-

fied�500 bp regions within the respective sites. No regions

of theGp130 promoter were pulled down (data not shown).

The �500 bp region within Lif-r-enh was determined by

mapping the ChIP-seq data set generated by Chen et al.



Figure 3. LIF and BMP4 Increase LIF Responsiveness in EpiSCs On and Off mP
(A) Immunostaining for pSTAT3 and OCT4 in (i) CDEs and (ii) embryo-derived EpiB3 treated with LIF and/or BMP4 then pulsed with LIF to
assay LIF responsiveness. (iii) Quantification of images seen in (i) and (ii).
(B) Immunostaining for pSTAT3 and OCT4 after inhibition of BMP signaling on mP by (i) NOGGIN (Nog. 300 ng/ml), (ii) LDN-193189 (LDN,
0.1 mM), or (iii) siRNA against Smad1 (Smad1i) followed by a LIF pulse to assay LIF responsiveness.
(C) ALP staining of revertant CDEs after treatment with any combination of LIF and BMP4 (both at 10 ng/ml). Quantification on bottom
panel, *p < 0.05, as tested by a two-sided, two-sample t test.
All data are presented as mean ± SD (A: n = 4 technical replicates, independent wells; B: n = 6 for Bi, n = 4 for Bii, all technical replicates,
independent wells; C: n = 3, biological replicates across independent experiments).
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to the mouse genome (build GRCm38/mm10). To deter-

mine the regions within Lif-r-pro1 and Lif-r-pro2, quan-

titative PCR with primers specific to five regions within

Lif-r-pro1 and four within Lif-r-pro2 (Table S1) was per-

formed (data not shown). Together, we proceeded with
Ste
three specific �500 bp regions, one for each of Lif-r-enh,

Lif-r-pro1, and Lif-r-pro2 (Figure 4C, red boxes). Subse-

quent PCR on these three regions demonstrated enrich-

ment only in the first promoter, Lif-r-pro1 (Figure 4C). To

determine if the region enriched for STAT3, P300, and
m Cell Reports j Vol. 3 j 156–168 j July 8, 2014 j ª2014 The Authors 161



Figure 4. LIF and BMP4 Directly Regulate Transcription of Lif-r and Gp130
(A) Time-course qRT-PCR spanning 48 hr of Lif-r along with pluripotency markers Oct4 and Nanog after addition of either BMP4 alone or LIF
and BMP4. Controls were addition of nothing (AF) or addition of LIF for 48 hr.
(B) Transcription of Oct4, Nanog, and Lif-r was assayed in the presence of LIF and BMP4 and cycloheximide (chx, 30ng/ml) for 3 hr.
(C) Chromatin immunoprecipitation (ChIP) was performed on three regions upstream of the Lif-r gene, Lif-r-enh, Lif-r-pro1, and Lif-r-pro2.
These regions were determined based on data from Chen et al. (Lif-r-enh) and Yamashita et al. (Lif-r-pro1 and 2) (Chen et al., 2008;
Yamashita et al., 2010). The amplified regions are denoted by the red box. Gels were run after ChIP-PCR on DNA samples collected from total
cell input (Input), a negative control with just addition of rabbit immunoglobulin G (IgG), and pull-downs of total STAT3, P300, and
SMAD1. Quantification of band intensities is shown below gel images.
(D) Approximately 2 kb regions flanking the binding sites (yellow boxes) were cloned upstream of a luciferase reporter, assayed for activity
and relative activity quantified.
Error bars represent SD n = 3 technical replicates for (A) and (B), SE n = 4 (two replicates per two independent experiments) for (D).
*p < 0.05, one sample two-tailed t test.
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SMAD1 binding is functional and to confirm that the

regions absent in binding are not functional, we cloned

�2 kb sections encompassing the pulled down regions

into luciferase constructs (pGL3-promoter for Lif-r-enh

and pGL3-basic for Lif-r-pro1, Lif-r-pro2, and Gp130-pro)
162 Stem Cell Reports j Vol. 3 j 156–168 j July 8, 2014 j ª2014 The Authors
(Figure 4D, yellow boxes). CDEs were transfected and

treated with nothing (AF), LIF, BMP4, or LIF and BMP4.

Upon treatment with LIF and BMP4, we observed a signif-

icant increase in luciferase expression in Lif-r-pro1, but not

Lif-r-enh, Lif-r-pro2, or Gp130-pro (Gp130 not shown),
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supporting the ChIP data. Additionally, 24 hr of LIF treat-

ment alone did not increase luciferase activity of the

construct, supporting quantitative RT-PCR (qRT-PCR)

data of Lif-r transcript levels after equivalent treatment.

Taken together, activation of STAT3 and SMAD1 in EpiSCs,

either endogenously or exogenously, recovers dormant LIF

responsiveness by directly regulating transcription of the

JAK-STAT pathway receptor, Lif-r, but not Gp130.

Modulation of P300 Affects LIF Responsiveness in

EpiSCs and Subsequent Conversion Frequencies

We next asked if decreasing P300 protein levels in EpiSCs

would result in a decrease in LIF responsiveness and con-

version frequency. siRNA knockdown of P300 using a

pool of four siRNA results in the decrease of only LIF recep-

tor transcription in standard EpiSC culture relative to non-

transfected controls (Figure 5Ai). On mP, we also observe a

decrease in Lif-r transcription to the baseline nonpatterned

EpiSCs (Figure 5Aii). Gp130 levels decrease but remain

above baseline levels, supporting our earlier observation

that LIF and BMP signaling do not fully contribute to tran-

scription ofGp130, thus mitigating the effects of the loss of

P300 and suggesting a direct effect of P300 on transcription

of Lif-r. Stat3 levels remain higher than baseline levels

when in the presence of LIF. These data suggest themainte-

nance of population-level LIF responsiveness even upon

P300 knockdown and subsequent loss of Lif-r transcription.

We postulated that could arise for two reasons: incomplete

P300 knockdown or the retention of LIF responsiveness in

spite of P300 knockdown. To resolve this, we used high-

content imaging to costain for P300 and LIF responsiveness

(i.e., pSTAT3 after LIF pulse). After P300 knockdown

(P300i), cells demonstrated a marked decrease in LIF

responsiveness even in the presence of LIF and BMP4 (Fig-

ure 5B). Importantly, the cells that retained the capacity to

recover LIF responsiveness were those that still retained

P300 (Figure 5C), suggesting incomplete knockdown was

responsible for cells still remaining LIF responsive. P300-

low cells did not exhibit LIF responsiveness in EpiSCs

regardless of P300 knockdown (Figure 5C). Conversion fre-

quencies as measured by ALP-positive colonies in 2iL re-

flected this loss of LIF responsiveness in P300 knockdown

cells. Even in LIF+BMP4, a condition that robustly drives

conversion, very few colonies emerged (Figure 5D). Taken

together, P300 bridges SMAD1 and STAT3 in EpiSCs and

acts as a gatekeeper for the recovery of dormant LIF

signaling by regulating the transcription of LIF receptor.

Regions of high local cell density experience a higher

local concentration of BMP and GP130 ligands, thereby

increasing LIF responsiveness (Figure 5E). Modulation of

P300 levels tunes the responsiveness of cells to their imme-

diate environment and their subsequent decision to un-

dergo reprogramming.
Ste
DISCUSSION

An important insight provided by this study is the domi-

nant role of signaling pathway reactivation in driving and

stabilizing normally inaccessible transcriptional network

changes inpluripotent cells.WhilemESCs andEpiSCs share

a core transcriptional network (CTN), including OCT4,

NANOG, and SOX2 (Brons et al., 2007; Tesar et al., 2007),

mESCs differ from EpiSCs in their heightened expression

of pluripotency-inducing genes. These genes include Klf4

(Takahashi and Yamanaka, 2006), Klf2, Klf5 (Nakagawa

et al., 2008), Esrrb (Buganim et al., 2012), Gbx2 (Tai and

Ying, 2013), and Tbx3 (Han et al., 2010b), which form com-

ponents of a peripheral naive network. Combined with the

CTN, these transcription factors result in a highly intercon-

nectednetwork robustly stabilizingnaivepluripotency (Fes-

tuccia et al., 2012; Jiang et al., 2008; Loh et al., 2006; Niwa

et al., 2009; van den Berg et al., 2008; Zhang et al., 2008).

Importantly, LIF signaling directly regulatesmanymembers

of the peripheral naive network: Klf4, Tbx3 (Niwa et al.,

2009), Klf5 (Bourillot et al., 2009), and Gbx2 (Tai and Ying,

2013). It follows, then, that reactivation of STAT3 via a

LIF-independent chimeric receptor is sufficient and domi-

nant in driving reversion of EpiSCs to naive pluripotency

(vanOosten et al., 2012; Yang et al., 2010).Wehave demon-

strated that in the absence of genetic modification and in

defined conditions, reestablishment of the peripheral tran-

scriptional network and naive pluripotency is limited by

responsiveness to LIF signaling pathway components. By

engineering the local microenvironment, we have identi-

fieda role forBMPsignaling inprimingLIF signaling respon-

siveness, ultimately reestablishing a naive pluripotency

transcriptional network by exogenous niche engineering.

We observed a role for BMP signaling in increasing

EpiSC-to-ESC conversion frequency. BMPhas been demon-

strated to play a role in somatic cell reprogramming to

induced pluripotent stem cells (iPSCs), primarily during

the initial postinduction stages (Hamasaki et al., 2012;

Samavarchi-Tehrani et al., 2010). Analyses support a role

for BMP in accelerating/enhancing the mesenchymal-to-

epithelial transition (MET) in these studies. Related to

this, EpiSCs are generally thought to be epithelial, as

mesendodermal progenitors are the first cells postimplan-

tation to undergo an epithelial-to-mesenchymal transition

(EMT) event during gastrulation (Thiery et al., 2009). How-

ever, as MET/EMT events involve a gradual cascade of

changes in phenotype, we cannot exclude aspects of an

METevent occurring (i.e., regulation ofMET/EMTmarkers)

in EpiSCs upon treatment with BMP. While it has been

postulated that EpiSCs can undergo an MET event (Zhou

et al., 2010), it remains an open question if specific events

reminiscent of BMP-induced MET play a role in EpiSC

conversion.
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Figure 5. P300 Levels Tune Response to LIF and BMP4 and Adjust LIF Responsiveness and Conversion Frequencies
(A) QRT-PCR on Lif-r, Gp130, and Stat3 after siRNA knockdown with scramble control (Neg.) or a pool of siRNAs specific for P300 (P300i) on
(i) non-mP CDEs and (ii) mP CDEs. Transcript levels normalized to siRNA-free CDEs.
(B) LIF responsiveness in EpiSCs was assayed in the presence of LIF and/or BMP after siRNA knockdown of P300 (P300i). Scrambled siRNA
was used as the control (Neg.)

(legend continued on next page)
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An important observation from this work is the pres-

ence of heterogeneity in signaling responsiveness. Even

in the presence of saturating, exogenous LIF and BMP4,

EpiSCs demonstrate a distributed response to LIF. At best

(i.e., in LIF and BMP4), we observe �15% of the total

EpiSC population responding to LIF. The subsequent

conversion frequency of �0.2% in a population that

does not fully activate STAT3 is consistent with previously

reported conversion frequencies of �1%–2% in EpiSCs

that fully activate STAT3 (Yang et al., 2010). Specifically,

assuming a relatively homogeneous and robust activation

of STAT3 in these cells, we expect to observe �0.3% con-

version in our conditions (i.e., 15% cells responding to

LIF 3 2% of these cells reprogramming). The relatively

small (i.e., �1.2- to 1.5-fold) increase in transcription

and luciferase activity observed in the total population

of EpiSCs is likely due to this heterogeneous response. It

remains unclear if this heterogeneity is a product of the

oscillatory behavior of signaling proteins/transcription

factors or if it is a product of lateral inhibition, whereby

a subset of permissive cells respond to LIF and BMP4 to

increase LIF responsiveness while simultaneously sup-

pressing the responsiveness of neighboring cells. Addi-

tionally, there may exist a threshold of STAT3 activation

that is required for EpiSC to mESC conversion. By uni-

formly increasing LIF responsiveness, the frequency of

cells in the population reaching this threshold would

concomitantly increase, thereby resulting in a higher fre-

quency of conversion.

While we have excluded PGC formation from EpiSCs in

response to BMP induction, suggesting a direct conversion

to ESCs, we cannot exclude the possibility that JAK-STAT

signaling recovery is a conservedmechanism in both EpiSC

conversion and PGC specification from the posterior

epiblast. BMP signaling provided by both the developing

definitive endoderm and primitive ectoderm creates a

niche for emerging PGCs (Ying and Zhao, 2001). Due to

many parallels between PGCs and ESCs (Leitch et al.,

2013), JAK-STAT recovery may play an important role in

PGC specification.We propose that themicroenvironment

for early PGC cell formation is recapitulated in vitro in

EpiSCs; an observation consistent with recent reports of

EpiSCs resembling cells of the anterior primitive streak
(C) (i) Scatterplots of P300i cells versus Neg. cells after treatment wit
assay for LIF responsiveness. (ii) Representative images of P300i and
were costained for pSTAT3 (red) and P300 (green).
(D) ALP colony counts (insets) of knockdown cells in 2iL media follo
(E) Schematic of model. (i) Briefly, EpiSCs residing in an area of low lo
BMP4. (ii) In regions of high local cell density, whether by mP, MEFs, o
accumulate to regulate transcription of Lif-r through binding to P300.
BMP4, and results in increased LIF responsiveness and subsequent in
Error bars represent SDs n = 3 for (A) and n = 4 for (B) (both technic

Ste
(Kojima et al., 2014). More broadly, we propose that upre-

gulation of JAK-STAT signaling potential by LIF and BMP4

may be a parallel mechanism, in addition to the ascribed

role of ID proteins (Ying et al., 2003) and MAPK inhibition

(Qi et al., 2004), in maintenance of naive pluripotency.

This remains an area of active investigation.

Broadly, this study demonstrates two important things.

The first is that downregulation of signaling responsive-

ness, likely via internalization of cell surface receptors, pre-

cedes the formation of normally irreversible (epigenetic)

barriers to cell-fate transitions. The second is that engineer-

ing the local microenvironment, and the provision of

appropriate stem cell niche signals, can lead to conditions

that reactivate downregulated signaling pathways (and

their target transcriptional networks) to revert cell-fate

transitions. Early evidence suggests that these concepts

may be generalizable to stem cell-fate-control mechanisms

in other niche-containing systems (Brawley and Matunis,

2004; Ritsma et al., 2014; Rompolas et al., 2013).
EXPERIMENTAL PROCEDURES

Cell Culture
EpiB3 EpiSCs were a generous gift from Drs. Janet Rossant and

Peter Rugg-Gunn, and 129S2C1a EpiSCs were from Dr. Ludovic

Vallier (Brons et al., 2007). EpiSC and CDE lines were cultured in

X-vivo base media (Lonza) supplemented with 10 mM b-mercap-

toethanol (Sigma), 1 mM minimum essential medium/nonessen-

tial amino acids (Invitrogen), 2 mM Glutamax (Invitrogen),

20 ng/ml Activin A (R&D Systems), and 20 ng/ml bFGF (R&D

Systems) (AFmedia). Cells were passaged every 3 days as single cells

in TrypLE (Invitrogen) in the presence of the Rho-associated kinase

(ROCK) inhibitor (Y27632) (Sigma) and seeded on wells precoated

with Matrigel (BD bioscience). LIF (Millipore) and BMP4 (R&D

Systems) were used at 10 ng/ml unless otherwise stated.

Micropatterninng and Conversion of EpiSCs
mP was performed as described previously (Peerani et al., 2007) on

patterns that were 200 mm in diameter and either 320 or 500 mm in

pitch. LIF responsiveness was assayed as described previously

(Onishi et al., 2012). Briefly, cells were patterned, treated in respec-

tive conditions for 1 or 2 days and starved of cytokines for 4 hr

prior to pulsing with 10 ng/ml of LIF for 15 min. Cells were imme-

diately fixed and stained. NOGGIN (R&D Systems) was used at
h nothing (AF) or LIF and BMP4 followed by a 15 min pulse of LIF to
Neg. cells treated with LIF and BMP4 prior to pulsing with LIF. Cells

wing treatment in nothing (AF), LIF, BMP4, or LIF + BMP4.
cal cell density secrete low levels of endogenous GP130 ligands and
r in high-confluence culture, endogenous GP130 ligands and BMP4
Endogenous signaling may be recapitulated by addition of LIF and
creased conversion frequency.
al replicates, independent wells) all images are representative.
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300 ng/ml, and LDN193189 was used at 3 mM (low solubility) or

0.1 mM (newer, DMSO soluble) (Stemgent).

EpiSCs treated in the various ways were then dissociated using

TrypLE (Invitrogen) and plated in 2i media (N2B27 base media

with 3 mM CHIR99021 and 1 mM PD0325901 [Reagents Direct])

supplemented with 10 ng/ml of LIF at a density of 2 3 105 cells

per one well in a 0.2% gelatin-coated 12-well plate (Corning)

(approx. 1.78 3 103 cells/cm3 for non-12-well plates). Cells were

allowed to form colonies for ALP staining and quantifying and

for picking of clones. Colonies were further dissociated only for

expansion and were not dissociated for quantification of fre-

quencies. JAK signaling was inhibited using 2 mM JAK Inhibitor I

(Calbiochem).
Alkaline Phosphatase
Alkaline phosphatase staining was performed using the instruc-

tions provided in the kit (Vector Laboratories). Cells were fixed in

10% formalin (Sigma) prior to staining.
siRNA Knockdown
SMARTpool siRNA against Smad1 and P300 (Thermo) was trans-

fected into EpiSCs using Dharmafect (Thermo) transfection re-

agent and mixed in OptiMEM basal media (Life Technologies)

(10% dilution of Dharmafect in OptiMEM). Final concentrations

of siRNA exposed to cells ranged from 25 to 100 nM.
Generation of Chimeras
Chimeras were produced through aggregation of cell clumps (8–15

cells) of reverted EpiSCs with diploid 2.5 days postcoitumHsd:ICR

(CD-1) embryos, as described previously (Woltjen et al., 2009).

Aggregations were made with reverted embryo-derived EpiSC

lines, 129S2C1a and EpiB3 cells (129S2C1a-mP and EpiB3-mP)

that were treated with LIF and BMP4 (10 ng/ml each) prior to con-

version. We transfected these cells with a constitutively expressed

b-geo cassette to facilitate visualization of developmental contribu-

tion by Lac-Z staining. Embryonic day 10.5 embryos were fixed

with 0.25% glutaraldehyde for 30 min, washed in permeabilizing

solution (2 mM MgCl2, 0.01% sodium deoxycholate, and 0.02%

Nonidet-P40 in PBS) and then incubated with X-gal staining

solution (20 mM MgCl2, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6 and

1 mg/ml X-gal in PBS) for 4 hr at 37 degrees. The lacZ-stained

embryos were then paraffin embedded and sectioned.
Chromatin Immunoprecipitation
EpiSCs were grown to �85% confluence in a 10 cm cell-culture

dish (�3.5 3 107 cells) and fixed for 10 min in 1% formalin. Cells

were lysed in 1%SDSbuffer supplementedwith protease inhibitors

(Roche). The sample was sonicated using a Branson 450 Sonifier at

50% output, 100% duty cycle, for 10 s intervals to shear genomic

DNA. Antibodies against total STAT3 (Cell Signaling Technology

cat. 4904), total SMAD1 (Cell Signaling Technology, cat. 6944),

and P300 (Santa Cruz Biotechnology, cat. sc-585) or normal rabbit

immunoglobulin G (Cell Signaling Technology, cat. 2729) were

used to pull down DNA. Sheep anti-rabbit immunoglobulin G

Dynabeads (Life Technologies) were used to isolate bound DNA.

Crosslinks were reversed and DNAwas purified using phenol-chlo-
166 Stem Cell Reports j Vol. 3 j 156–168 j July 8, 2014 j ª2014 The Authors
roform extraction. PCR was performed using the primers listed in

Table S1.
Luciferase
Regions of interest were PCR amplified using LongAMP Taq

Polymerase (New England Biolabs) using primers with restric-

tion sites flanking the 50 ends. These were then cloned into

either a pGL3-Basic vector (Promega) or pGL3-promoter vector

(Promega) (only for Lif-r-enh). EpiSCs were transfected with

both pGL3-derived constructs and Renilla luciferase (pRL)

(Promega) using Lipofectamine 2000 (Life Technologies). The

dual-luciferase reporter kit (Promega) was used to assay luciferase

activation and was measured using the PheraStar Plus plate reader

(BMG Technologies). All results were normalized to Renilla lucif-

erase to account for differences in cell number and transfection

efficiencies.
qRT-PCR
qRT-PCR was performed as described before (Onishi et al., 2012).

Briefly, RNA was isolated using the QIAquick Miniprep kit

(QIAGEN) and reverse transcribed with Superscript III (Life Tech-

nologies). PCR was performed on the ABI 7000 using SYBR Master

mix (Roche).
Immunocytochemistry
Cells were fixed and stained and immunofluorescence intensity

was measured as described previously (Onishi et al., 2012) using

the Cellomics HCS platform (Thermo Scientific). Antibodies used

were as follows: P300 (IF) (Santa Cruz, cat. sc-585; or Life Technol-

ogies, cat. 33-7600), pSTAT3 (IF) (Cell Signaling Technology,

#9131), pSMAD1 (IF) (Cell Signaling Technology, #9516), OCT4

(IF) (BD Biosciences, cat. #611203), KLF4 (IF) (R&D Systems,

AF3158), SOX2 (IF) (R&D Systems, MAB2018), Alkaline Phospha-

tase (IF) (R&D Systems MAB29091), STAT3 (ChIP) (Cell Signaling

Technology, cat. #4904), SMAD1 (ChIP) (Cell Signaling Technol-

ogy, #6944), and P300 (ChIP) (Santa Cruz, cat. sc-585).
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