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INTRODUCTION

Dementia is a clinical syndrome characterized by chronic 
and progressive cognitive decline, behavior disturbance, and 
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loss of daily functioning.1 The prevalence of dementia increased 
rapidly with the rise of aging population. Globally, around 50 
million people have dementia, and nearly 10 million new cases 
are confirmed every year. More than 70 causes of dementia are 
known, and Alzheimer’s disease (AD) is the most common type 
of dementia accounting more for than 50–70% of all cases.2 

AD can be definitively diagnosed only after death, by link-
ing clinical measures with histopathological evidence of am-
yloid plaques and hyperphosphorylated tau tangles in post-
mortem brain.3 Thus, diagnosis of AD still resides primarily 
on clinical decision, which is based on evaluating a patient’s 
cognitive dysfunction, behavior and psychological symptom, 
and functional impairment.4 However, studies showed that de-
position of cerebral β-amyloid (Aβ), hyperphosphorylation 
of tau protein, and neurodegeneration of cerebral cortex begin 
decades before the onset of clinical symptoms of dementia.5 
Recent advance in diagnostic technologies have enabled us to 
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assess or measure such AD pathologies using in vivo biomark-
ers, which could play an important role as diagnostic tools of 
AD by corresponding with post-mortem histopathological 
findings.6 In these regards, the National Institute of Aging and 
Alzheimer’s Disease Association (NIA-AA) recently proposed 
a newer biomarker-based definition of AD and staging of the 
disease labeled as ATN system.7 For a more accurate charac-
terization of AD trajectory, the ATN staging system is designed 
with quantification of three core biomarkers including Aβ de-
position (A), pathologic tau (T), and neurodegeneration (N). 
Since, cerebral accumulation of pathologic proteins may result 
in neurodegenerative change before clinical symptom presen-
tations, several neurodegeneration biomarkers using structural 
MRI such as lowered hippocampal formation and medial tem-
poral lobe volume, and decreased cortical thickness are increas-
ingly suggested to be effective in classifying patient with AD 
trajectory.7-11 In addition, recent development of neuroimag-
ing initiatives, which contain larger number of databases freely 
accessible to researchers and clinicians, enabled the develop-
ment of and urged for the application of automated whole brain 
degenerative pattern recognition for early detection of AD.12

Machine learning (ML) is a technique which is useful in rec-
ognizing and extracting meaningful patterns from medical 
images.13 Previous ML studies using structural MRI showed 
that it can efficiently classify subjects within AD continuum 
including cognitive normal adults, mild cognitive impairment 
(MCI), and AD.14-19 Previous ML studies in neuroimaging data 
mostly relied on a single classifier such as support vector ma-
chine and linear discriminant analysis.20,21 However, recently 
developed ensemble ML algorithms such as Random Forest 
(RF) showed better performance than single ML classifier al-
gorithms in diagnosis of various neurological diseases.22 In ad-
dition, RF is known to have additional advantages when com-
pared to other ML methods.23 First, it has less risk of overfitting. 
Second, it is considered to be more stable even in the presence 
of outliers and in the very high dimensional parameter spac-
es. An intrinsic feature selection step, which gives important 
values to each feature to reduce the variables space, is anoth-
er important characteristic of RF.22,23 Previous studies using 
structural MRI from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database showed that ML with RF model 
showed mean accuracies for the binary classifications of AD 
vs. healthy controls (HC) and MCI vs. HC were 90.3% and 
81.3%, respectively.22,24 However, the structural images used 
in the study were collected from 1.5T MRI machine. Thus, rep-
lication of RF algorithm to a more variety of structural imag-
es acquired from 3T MRI is needed to improve its diagnostic 
validity and test-retest reliability. Lastly, most of the previous 
studies used brain segmentation algorithm from the Freesurfer 
program which requires 6–10 hours per subject. This long seg-

mentation time hindered application of RF based classifying 
algorithm for AD to real clinical settings.23

In this study, we first developed a fast processing automated 
segmentation method based on deep learning algorithm and 
then compared accuracy of our segmentation results with that 
of the segmentation done using Freesurfer in subjects with AD, 
MCI, and HC. In addition, we compared diagnostic accuracy 
of RF based classification model of AD using our newly devel-
oped brain segmentation methods with that of Freesurfer’s. 

METHODS

Subjects
A total 647 subjects (AD=100, MCI=86, and NC=461) were 

included in this study. They were recruited from volunteers 
of the Catholic Aging Brain Imaging (CABI) database, which 
holds brain MRI scans of outpatients at the Catholic Brain 
Health Center, Yeouido St Mary’s Hospital, the Catholic Uni-
versity of Korea from 2017 to 2019. Each participant provided 
written informed consent. Study procedures were approved by 
an Institutional Review Board (IRB Number: SC18RNDI0070) 
of Yeouido St Mary’s Hospital, the Catholic University of Ko-
rea. The inclusion criteria of the NC group were as follows: 1) 
subjects aged ≥60 years; 2) Mini-Mental Status Examination 
score ≥27; and 3) Overall clinical Dementia Rating score=0. 
Following subjects meeting Petersen’s criteria of MCI were 
included: 1) objective cognitive impairment for age, education, 
and gender; 2) memory complaint, preferably provided by an 
informant; 3) essentially conserved general cognitive function; 
4) largely intact activities of daily living; and 5) not demented.25 
All MCI patients had an overall CDR score of 0.5. Objective 
cognitive impairment was defined as a performance score of 
1.5 standard deviation (SD) below the each age-, education- 
and gender-specific normative means in at least one of the nine 
cognitive tests included in the Korean version of Consortium 
to Establish a Registry for Alzheimer’s disease (CERAD-K) 
neuropsychological battery.26 In addition, the inclusion criteria 
of the AD group were as follows: 1) subjects aged ≥60 years; 
2) the National Institute of Neurological and Communication 
Disorders and Stroke/Alzheimer Disease and Related Disor-
ders Association (NINCDS-ADRDA) diagnosis of probable 
AD; and 3) overall CDR score of more than 1.0.7 Subjects with 
any neurological, psychiatric and unstable medical conditions 
were excluded. Table 1 shows the baseline demographic data 
for the three groups.

 
Sub-sampling

Number of subjects included among three groups (NC: 461, 
MCI: 86, AD: 100) were not equally balanced. Thus, when 
performing 3-fold cross validation, among the data number 
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of binary classes to classify the validation set, we first divided 
the group containing the smallest sample size by 3 (and the 
number of samples for the comparison groups was matched 
accordingly [i.e for MCI: 86 vs. AD: 100; 86/3=rounded up to 
28 yielding MCI (28) vs. AD (28), HC (29) vs. MCI (29), and 
HC (33) vs. AD (33)].

MR image acquisition 
Imaging data were collected at the Department of Radiol-

ogy, Yeouido St Mary’s Hospital, The Catholic University of 
Korea, using a 3T Siemens MAGETOM Skyra machine and 
eight channel Siemens head coil (Siemens Medical Solutions, 
Erlangen, Germany). The parameters used for the T1-weight-
ed volumetric magnetization-prepared rapid gradient echo 
scan sequences were TE=2.6 ms, TR=1,940 ms, inversion time= 
979 ms, FOV=230 mm, matrix=256×256, and voxel size= 
1.0×1.0×1.0 mm3. 

Preprocessing and features extraction 
T1-weighted MRIs were processed for an automated clas-

sification of HC, MCI and AD. MRIs were preprocessed by 
the Freesurfer (version 6) and U-Net++ deep learning-based 
segmentation processing.27 We used the Freesurfer and our 
deep learning method for extracting numerical data into a 
table format (Figure 1). The detailed algorithm for our deep 
learning-based segmentation methods are described in the sup-
plemental materials. The set of 106 layer sub-volume-based 
features used for the training procedure are also described in 
the Table 2. 

Problem formulation 
Our classification model was based on the RF method and 

its operational capabilities. In terms of the model, we performed 
feature importance using the Gini impurity index, which is a 
type of feature importance measurement mainly used in RF. 
The background information of the concerned methodologies 
and description of each classification model that we employed 
are described in detail elsewhere.22,28

Random forest 
RF is a popular machine learning approach used in regres-

sion, classification and other tasks.28 The method involves con-
struction of the decision trees, and randomness is utilized in 
the following ways (Figure 2). First, respective decision tree 
is built using a different bootstrap sample. Second, during the 
building of respective decision tree, node split involves the ran-
dom selection of a subset of variables based on which the best 
split is determined and used. For the prediction of unknown 
cases, the decisions of the constructed trees are aggregated by 
utilizing majority voting for classification and averaging for 
regression tasks. Operational feature of RF is its natural ability 
to supply a ranking of the importance of variables in a regres-
sion or classification task. This can be achieved in two ways. 
The first one is based on statistical permutation tests, while the 
second, which is used in this study, is based on Gini impurity 
index. The Gini impurity is calculated at all node split during 
the building of a decision tree in an RF model and is employed 
for measuring the quality of the split in terms of dividing the 
samples of the different classes in the considered node. For a 
variable, the Gini impurity index is calculated as in the follow-

Table 1. Demographic and clinical characteristics of the study participants

NC (N=461) MCI (N=86) AD (N=100) p value
Age (years±SD) 70.36±8.66 78.29±6.53 80.02±8.10 <0.001
Education (years±SD) 11.05±4.92 8.98±5.34 8.75±5.41 <0.001
Gender (M:F) 147:314 15:71 29:71 -
CDR (SD) 0.21±0.33 0.51±0.06 1.40±0.58 <0.001
CERAD-K battery (SD)

VF 14.40±4.32 9.67±3.13 6.15±4.29 <0.001
BNT 11.97±2.25 9.29±2.88 6.06±3.66 <0.001
MMSE 27.21±2.39 22.86±3.47 15.57±5.20 <0.001
WLM 18.08±4.01 12.65±3.47 6.84±3.90 <0.001
CP 10.44±1.15 9.43±1.85 7.61±2.90 <0.001
WLR 5.58±2.23 2.16±1.70 0.63±0.92 <0.001
WLRc 8.84±1.58 6.45±2.68 2.76±2.54 <0.001
CR 6.49±3.25 2.06±1.98 0.84±1.38 <0.001

SD: standard deviation, NS: not significant, CDR: Clinical Dementia Rating, CERAD-K: the Korean version of Consortium to Establish a 
Registry for Alzheimer’s Disease, VF: verbal fluency, BNT: 15-item Boston Naming Test, MMSE: Mini Mental Status Examination, WLM: 
word list memory, CP: constructional praxis, WLR: word list recall, WLRc: word list recognition, CR: constructional recall
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Table 2. Summary of brain sub-volumes

Left Right Center
Left-Cerebral-White-Matter Right-Cerebral-White-Matter Posterior-Corpus-Callosum
Left-Lateral-Ventricle Right-Lateral-Ventricle Mid-Posterior-Corpus-Callosum
Left-Inferior-Lateral-Ventricle Right-Inferior-Lateral-Ventricle Central-Corpus-Callosum
Left-Cerebellum-White-Matter Right-Cerebellum-White-Matter Mid-Anterior-Corpus-Callosum
Left-Cerebellum-Cortex Right-Cerebellum-Cortex Anterior-Corpus-Callosum
Left-Thalamus Right-Thalamus 3rd-Ventricle
Left-Caudate Right-Caudate 4th-Ventricle
Left-Putamen Right-Putamen
Left-Pallidum Right-Pallidum
Left-Hippocampus Right-Hippocampus
Left-Amygdala Right-Amygdala
Left-Accumbens-area Right-Accumbens-area
Left-VentralDC Right-VentralDC
Left-choroid-plexus Right-choroid-plexus
Left WM-hypointensities Right WM-hypointensities
ctx-Left-bankssts ctx-Right-bankssts
ctx-Left-caudal-anterior-cingulate ctx-Right-caudal-anterior-cingulate
ctx-Left-caudal-middle-frontal ctx-Right-caudal-middle-frontal
ctx-Left-cuneus ctx-Right-cuneus
ctx-Left-entorhinal ctx-Right-entorhinal
ctx-Left-fusiform ctx-Right-fusiform
ctx-Left-inferior-parietal ctx-Right-inferior-parietal
ctx-Left-inferior-temporal ctx-Right-inferior-temporal
ctx-Left-isthmus-cingulate ctx-Right-isthmus-cingulate
ctx-Left-lateral-occipital ctx-Right-lateral-occipital
ctx-Left-lateral-orbito-frontal ctx-Right-lateral-orbito-frontal
ctx-Left-lingual ctx-Right-lingual
ctx-Left-medial-orbito-frontal ctx-Right-medial-orbito-frontal
ctx-Left-middle-temporal ctx-Right-middle-temporal
ctx-Left-parahippocampal ctx-Right-parahippocampal
ctx-Left-paracentral ctx-Right-paracentral
ctx-Left-pars-opercularis ctx-Right-pars-opercularis
ctx-Left-pars-orbitalis ctx-Right-pars-orbitalis
ctx-Left-pars-triangularis ctx-Right-pars-triangularis
ctx-Left-pericalcarine ctx-Right-pericalcarine
ctx-Left-postcentral ctx-Right-postcentral
ctx-Left-posterior-cingulate ctx-Right-posterior-cingulate
ctx-Left-precentral ctx-Right-precentral
ctx-Left-precuneus ctx-Right-precuneus
ctx-Left-rostral-anterior-cingulate ctx-Right-rostral-anterior-cingulate
ctx-Left-rostral-middle-frontal ctx-Right-rostral-middle-frontal
ctx-Left-superior-frontal ctx-Right-superior-frontal
ctx-Left-superior-parietal ctx-Right-superior-parietal
ctx-Left-superior-temporal ctx-Right-superior-temporal
ctx-Left-supramarginal ctx-Right-supramarginal
ctx-Left-frontal-pole ctx-Right-frontal-pole
ctx-Left-temporal-pole ctx-Right-temporal-pole
ctx-Left-transverse-temporal ctx-Right-transverse-temporal
ctx-Left-insula ctx-Right-insula
ctx: cortex
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ing equation: 

IG(n)=1-∑
J

i=1

(pi)2

Where the node n is 1 minus the sum over all the classes J 
(for a binary classification task this is two) of the fraction of 
examples in each class pi squared. For a given node split, the 
values of the Gini impurity index for the two resulting nodes 
are less than the value for the parent node. If we sum the Gini 
impurity decreases for 3 each variable in a dataset over all trees 
in a RF model, we get the corresponding Gini importance val-
ue for each variable, which be used for the feature selection 

as a result.

Modes description 
In terms of the features of the classification model, it involved 

the training of a RF classifier on the whole feature set, as well 
as feature selection by means of the Gini importance measure, 
which provided the final feature subset that was utilized for re-
training the RF model. Finally, for the prediction of unknown 
data based on the outputs of the RF model. In the case of ties, 
the class with the highest probability estimate was selected as 
the final prediction. RF model is developed using the Random-
ForestClassifier of Python-based scikit-learn library package.29 

Figure 1. 106-layer brain segmentation results.

Final prediction: not MCI

Prediction: not MCIPrediction: MCI

Tree 1 Tree 2 Tree n

Prediction: not MCI

Figure 2. A flowchart that describes the RF classifier mode. MCI: mild cognitive impairment.
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RESULTS 

Baseline demographic and clinical data
Table 1 shows the baseline demographic data for the three 

groups. All variables were normally distributed. There were no 
significant differences in age, gender and education among the 
groups other than the neuropsychological data. 

Performance of the classification
With regard to the RF parameters that we utilized, the num-

ber of trees for each RF model was set empirically, while for 
each RF model and for each node split during the growing of 
a tree, the number k of the subset of variables used to decide 
the best split was set based on repeated 3 fold cross-validation 
that was performed using the Python package.29 Thus, the fol-
lowing parameter values were used for the RF model. 

RF Model: Number of trees=1,000, k=3

Regarding the threshold values for the Gini importance mea-
sure during the feature selection task in the RF model, the fol-
lowing values were used: 0.5 for RF Model. We evaluated the 
following step; HC vs. MCI, HC vs. A, DMCI vs. AD

We used two types of features (with the use of the Gini im-
portance measure) for RF model. One included cortical and 
subcortical volume information and basic patient character-
istics including age and gender (sub-features), while another 
included cognitive functioning in addition to cerebral volume 
information and basic patient characteristics (all-features). The 
performance of binary classification is shown in Table 3. 

The performance for diagnosis prediction is shown in Table 
3 and Figure 3. The matrix summarizes a total of 180 test sam-
ples in the cross-validation set with fold-3. Our segmentation 
method showed average accuracy for predicting diagnoses of 
HC vs. MCI was 71.5% (AUC=0.81) in sub-features is and 
80.8% (AUC=0.88) in all-features, for diagnoses of HC vs. AD 

the accuracy was 84.4% (AUC=0.92) in sub-features and 93.5% 
(AUC=0.99) in all-features, and for diagnoses of MCI vs. AD 
the accuracy was 64.5% (AUC=0.71) in sub-features and 80.8% 
(AUC=0.88) in all-features. Diagnostic accuracy using Freeu-
surfer for HC vs. MCI diagnoses was 72.0% (AUC=0.81) in 
sub-features and 80.3% (AUC=0.89) in all-features, for HC 
vs. AD it was 82.4% (AUC=0.911) in sub features, and for MCI 
vs. AD it was 63.9% (AUC=0.70) in sub-features and 79.1% 
(AUC=0.87) in all-features. The classifier identified HC vs. AD 
diagnoses accurately, but relatively higher inaccuracy was not-
ed for MCI versus AD diagnoses. Thus, the AUC value is cal-
culated to micro-average for 3 cross validation set. Figure 4 
shows the confusion matrix of third fold validation set (max-
imum accuracy).

Feature importance
In the feature importance, the feature values of the cognitive 

test were ranked high for all-features. In terms of the features 
of cortical and subcortical volume information, inferior later-
al ventricle, lateral ventricle, hippocampus, amygdala, lingual, 
inferior parietal, fusiform were ranked high. The performance 
of feature importance is shown in Figure 5.

DISCUSSION

In the contemporary model of AD, it is regarded as a disease 
continuum involving preclinical stage to severe dementia rath-
er than as disease with three or four distinct entities.7,30,31 Thus, 
quantification index which could reflect structural change of 
brain in a continuous measurement is needed to correctly as-
sess a patient’s severity of neurodegeneration. Cortical volume 
or thickness measurement of structural MRI has been com-
monly used as an objective indicator of disease progression in 
AD research.32-34 In terms of technological evolution, automat-
ic segmentation methods such as Freesurfer and Statistical 
Parametric Mapping (SPM) became widely available. Howev-
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er, the role of automatic segmentation-based diagnosis assist-
ing algorithms in clinical practice was limited because such 
automatic segmentation methods required a long processing 
time. Low inter-method reproducibility was another impor-
tant limitation hindering previous methods to be widely ap-
plied in clinical practice.35 

In this study, we developed a quick cerebral cortical and sub-
cortical volume analysis method using deep learning-based al-
gorithm. We also evaluated newly developed algorithm’s seg-
mentation performance by comparing it with segmentation 
conducted with Freesurfer. Compared with Freesurfer, segmen-
tation processing time of our algorithm was much shorter (less 
than 5 minutes for our method and around 6–8 hours for Free-
surfer). Despite much faster time for segmentation, there was 
a high correlation between our methods and Freesurfer’s with 
the average Dice coefficients of 106 labelling area of 0.840± 
0.083 (Supplementary Materials in the online-only Data Sup-
plement). Thus, our method might be an effective automatic 
brain segmentation tool which can be easily applied in real 

Table 3. The performance of binary classification (continued)

SW Feature Fold 1 Fold 2 Fold 3 Average

MCI vs. AD

Neuro-phet Sub features

Acc’ 0.589 0.655 0.690 0.645

Prec’ 0.589 0.655 0.693 0.646

Sens’ 0.571 0.655 0.621 0.616

Spec’ 0.607 0.655 0.759 0.674

All features

Acc’ 0.839 0.776 0.810 0.808

Prec’ 0.843 0.779 0.820 0.814

Sens’ 0.893 0.828 0.724 0.815

Spec’ 0.786 0.724 0.897 0.802

Free-surfer Sub features

Acc’ 0.589 0.672 0.655 0.639

Prec’ 0.590 0.674 0.656 0.640

Sens’ 0.536 0.724 0.621 0.627

Spec’ 0.643 0.621 0.690 0.651

All features

Acc’ 0.821 0.759 0.793 0.791

Prec’ 0.823 0.760 0.795 0.792

Sens’ 0.857 0.793 0.759 0.803
Spec’ 0.786 0.724 0.828 0.779

Sub-features: patient information and sub-volume feature infor-
mation extracted from deep learning-based segmentation method. 
Inc., All features: sub-volume, patient and cognitive test feature in-
formation. Acc’: accuracy, Prec’: precision, Sens’: sensitivity, Spec’: 
specificity

Table 3. The performance of binary classification

SW Feature Fold 1 Fold 2 Fold 3 Average

HC vs. AD

Neuro-phet Sub features

Acc’ 0.788 0.833 0.912 0.844

Prec’ 0.792 0.849 0.913 0.851

Sens’ 0.849 0.939 0.941 0.910

Spec’ 0.727 0.727 0.882 0.779

All features

Acc’ 0.909 0.924 0.971 0.935

Prec’ 0.911 0.928 0.972 0.937

Sens’ 0.939 0.970 1.000 0.970

Spec’ 0.879 0.879 0.941 0.900

Free-surfer Sub features

Acc’ 0.758 0.833 0.882 0.824

Prec’ 0.766 0.849 0.895 0.837

Sens’ 0.849 0.939 0.971 0.920

Spec’ 0.667 0.727 0.794 0.729

All features

Acc’ 0.894 0.894 0.971 0.919

Prec’ 0.897 0903 0972 0.924

Sens’ 0.939 0.970 1.000 0.941

Spec’ 0.849 0.818 0.941 0.869

HC vs. MCI

Neuro-phet Sub features

Acc’ 0.759 0.696 0.690 0.715

Prec’ 0.764 0.703 0.698 0.722

Sens’ 0.828 0.786 0.793 0.802

Spec’ 0.690 0.607 0.586 0.628

All features

Acc’ 0.879 0.839 0.707 0.808

Prec’ 0.883 0.850 0.720 0.818

Sens’ 0.931 0.929 0.828 0.896

Spec’ 0.828 0.750 0.586 0.721

Free-surfer Sub features

Acc’ 0.741 0.661 0.759 0.720

Prec’ 0.749 0.671 0.780 0.733

Sens’ 0.828 0.786 0.897 0.837

Spec’ 0.655 0.536 0.621 0.604

All features

Acc’ 0.828 0.839 0.741 0.803

Prec’ 0.834 0.850 0.767 0.817

Sens’ 0.897 0.929 0.897 0.907
Spec’ 0.759 0.750 0.586 0.698
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clinical practice.
ML can identify distinctive images and clinical features, which 

is considered as a promising technique for differential diagno-
sis of AD.15 Thus, increasing studies in the field of neuroimag-
ing have focused on the use of advanced ML algorithm in as-
sisting differential diagnosis among patients with AD, MCI, 
and normal cognition.16,18,23,36-38 However, besides longer pro-
cess time and low inter-method reproducibility, low reliability 

of previous ML models was another important limitation. To 
fill in this important gap, we developed a more advanced RF 
model for prediction of AD which primarily used cortical and 
subcortical volumes as important predictive factors and also 
used additional information by combining cognitive function 
and patient characteristics. This model showed stable perfor-
mance in testing process and acceptable accuracy for predic-
tion of AD. Besides being faster than Freesurfer, our model 

Figure 4. The confusion matrix of third fold validation set. DL: deep learning-based segmentation, FreeSurfer: FreeSurfer-based segmenta-
tion, All features: sub-volume, patient and cognitive test feature information, Sub features: patient information and sub-volume feature infor-
mation extracted from deep learning-based segmentation method.
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also showed high accuracy in differentiating HC from AD with 
93.5% (AUC 0.99), which was higher than that of the previous 
model which used Freesurfer 91.9% (AUC 0.98). In addition, 
the accuracy of our model for differentiating MCI from HC 
and MCI from AD were 80.8% and 80.8%, respectively, which 
was similar to a previous RF model showing accuracy of 81.3% 
(AUC) in differentiating MCI from HC using the cortical thick-
ness and subcortical volumes and MMSE total scores.24 In 

another study, accuracy of differentiating MCI from AD was 
in ML mode was 60–90%.17 In line with previous researches, 
the accuracy was higher in differentiating AD from HC than 
in differentiating MCI from HC or MCI from AD.17,24 MCI is 
an intermediate stage between the expected cognitive decline 
of normal aging or HC and the more serious decline of de-
mentia, so patients with MCI inevitably contains overlapping 
clinical and neurodegenerative features with both AD and 

Figure 5. Feature importance of third fold validation set. Left side is HC vs. MCI, Center is HC vs. AD, and right side is MCI vs. AD. All fea-
tures: sub-volume, patient and cognitive test feature information, Sub features: patient information and sub-volume feature information ex-
tracted from deep learning-based segmentation method, HC: healthy controls, MCI: mild cognitive impairment, AD: Alzheimer’s disease.
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HC.39 Thus, both our and previous model had a more difficulty 
in classifying this grey area, MCI, than more distinctive stage 
including AD and HC. Nevertheless, the accuracy of our RF 
model for differentiating MCI from HC or MCI from AD was 
a relatively higher than that of previous literature reporting 
60–90%.18,38,40,41 Moreover, the diagnostic accuracy of our RF 
model was higher when the model used all-features including 
cortical and subcortical cortical volume, patient characteris-
tics, and cognitive information rather than using sub-features 
which did not include cognitive function. Thus, both multi pa-
rameters and our RF model have contributed to the improve-
ment in accuracy.34

The feature importance of our RF model for differentiating 
HC from AD was similar with previously known cortical at-
rophy patterns of AD, such as inferior lateral ventricle (tem-
poral horn of lateral ventricle), hippocampus, and amygdala, 
but some regions were such as cerebral white matter, fusiform 
gyrus, insular cortex were considered important only in our 
model.42 The difference could be due to the RF model itself or 
different patient characteristics, and further studies containing 
larger sample size are needed to clarify this issue. Additional 
issues should also be resolved before a computer-based brain 
imaging diagnostics or ML-based diagnostics can be readily 
applied in clinical practice. First, the stable diagnosis results 
should be produced despite variety of the images were collect-
ed from different MRI scanner, magnetic field strength and 
image resolution, and pulse sequence. Second, reliable results 
should be provided under various ages, gender, and race. There-
fore, more studies containing diverse age, sex, and race collected 
from diverse MRI scanners including classical 1.5T MRI and 
more recent 3T MRIs are needed to enhance clinically utility of 
automatic segmentation-based diagnosis assisting algorithms. 

There are several limitations in this study. First, our study 
only involved single center data with small sample size. Sec-
ond, we did not have pathological diagnosis and amyloid PET 
for inclusion of AD subjects, although we carefully included 
patients with probable AD and possible AD based on the 
NINCDS-ADRDA Alzheimer’s Criteria.2,42 Third, we used 
only cortical and subcortical volume features from structural 
MRI and did not include other important MRI modalities re-
flecting white matter hyperintensity or cerebral bleeding. 

Our results had relatively lower accuracy for MCI vs. AD. 
A larger dataset is required for the study to improve the cor-
responding measures’ accuracy on those specific populations 
of interests; the inclusion of larger pool into the segmentation 
development cycle may help to improve segmentation perfor-
mance. We attempted to address the above-mentioned lower 
accuracy issue, we incorporated demographic information, 
cognitive test results, and specific ROI volumes into our mod-
el. We expect a better performance of MCI vs. AD diagnosis 

with advanced imaging techniques, such as deep learning-
based methods utilizing multi-modal imaging features and 
feature fusion in the future.

In conclusion, we showed that our RF model showed ac-
ceptable clinical feasibility and accuracy for differentiating 
HC from MCI and AD using structural MRI, patient informa-
tion and cognitive function. This RF model not only may help 
clinicians to predict patients with AD continuum but may also 
aid to recognize patient having higher risk of AD in routine 
clinical practices. 
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The online-only Data Supplement is available with this ar-
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SUPPLEMENTARY MATERIALS

Deep learning-based segmentation method
We performed the Desikan-Killiany atlas-based freesurfer segmentation on 388 patients of Yeouido St. Mary’s Hospital dataset 

as well as public datasets such as HCP, ADNI, PPMI, AIBL, and IXI, and two expert performed manual correction to produced 
fine-turned ground truth dataset. In addition, hypo-intensity region was added. The dataset was separated into three sets: training, 
validation, and testing. We first randomly shuffled the dataset and separated 49 patients for testing. The remaining patient’s data 
were used for training and validation (9.5:0.5). The training data was constructed by extracting the three-dimension patch image 
using uniform sampling (96×96×96) for the individual ground truth data (Figure 1).

Figure 1. Three-dimension patch-based training.

3-dimensional voxel image (input) 3-dimensional segmentation result

Grid-based 3-dimensional voxel patches

Segmentation architecture

Downsampling
block

Upsampling
block

Classification
block

Segmentation results of multiple patches

We improved the UNet++ deep learning architecture with a three-dimension methodology to train about 104 labels. This algo-
rithm has a convolutional layer in the skip path, which bridges the semantic gap between the encoder and decoder characteristic 
maps. There is a dense skip-connection in the skip path, which improves the gradient flow, has a deep supervision, which enables 
model pruning, improves performance, or at worst compares to using only one lossy layer. Performance can be achieved (Figure 2).

Because the voxel by voxel segmentation learning method is used, the CrossEntropy loss function is used, and the learning rate 
for Adam optimizer is 0.0001. The total number of iterations is 300,000. Segmentation results are obtained by merging inference 
data using a three-dimension patch sliding aggregator. Figure 3 shows the segmentation result of brain sub-volumes.

We perform the Dice overlap with the extra-validation set and, the average Dice coefficient is 0.840±0.083. Table 1 shows the 
whole Dice coefficients with the test set.

Figure 2. U-Net++ deep learning architecture.

Backbone
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Down-sampling

Up-sampling

Skip connection
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Figure 3. Deep learning-based segmentation result.



Table 1. Dice overlap result with the test set (49 case)

Case Average dice 106 labels
0 0.706±0.262
1 0.791±0.186
2 0.866±0.085
3 0.873±0.067
4 0.857±0.068
5 0.877±0.066
6 0.822±0.100
7 0.857±0.070
8 0.856±0.072
9 0.765±0.113

10 0.768±0.099
11 0.766±0.108
12 0.779±0.088
13 0.758±0.106
14 0.829±0.098
15 0.886±0.052
16 0.874±0.053
17 0.886±0.057
18 0.853±0.084
19 0.873±0.065
20 0.876±0.063
21 0.875±0.068
22 0.876±0.061
23 0.877±0.060
24 0.872±0.061
25 0.881±0.058
26 0.863±0.102
27 0.871±0.071
28 0.883±0.058
29 0.84±0.075
30 0.861±0.064
31 0.825±0.067
32 0.837±0.097
33 0.851±0.080
34 0.839±0.097
35 0.822±0.103
36 0.867±0.065
37 0.865±0.060
38 0.794±0.101
39 0.758±0.109
40 0.864±0.060
41 0.789±0.089
42 0.878±0.059
43 0.883±0.060
44 0.752±0.102
45 0.855±0.092
46 0.859±0.069
47 0.863±0.064
48 0.854±0.059

Mean±std 0.840±0.083


