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Adult brains are functionally flexible, a unique characteristic that is
thought to contribute to cognitive flexibility. While tools to assess
cognitive flexibility during early infancy are lacking, we aimed to
assess the spatiotemporal developmental features of “neural flex-
ibility” during the first 2 y of life. Fifty-two typically developing
children 0 to 2 y old were longitudinally imaged up to seven times
during natural sleep using resting-state functional MRI. Using a
sliding window approach, MR-derived neural flexibility, a quanti-
tative measure of the frequency at which brain regions change
their allegiance from one functional module to another during a
given time period, was used to evaluate the temporal emergence
of neural flexibility during early infancy. Results showed that neu-
ral flexibility of whole brain, motor, and high-order brain func-
tional networks/regions increased significantly with age, while
visual regions exhibited a temporally stable pattern, suggesting
spatially and temporally nonuniform developmental features of
neural flexibility. Additionally, the neural flexibility of the primary
visual network at 3 mo of age was significantly and negatively
associated with cognitive ability evaluated at 5/6 y of age. The
“flexible club,” comprising brain regions with neural flexibility sig-
nificantly higher than whole-brain neural flexibility, were consis-
tent with brain regions known to govern cognitive flexibility in
adults and exhibited unique characteristics when compared to the
functional hub and diverse club regions. Thus, MR-derived neural
flexibility has the potential to reveal the underlying neural sub-
strates for developing a cognitively flexible brain during
early infancy.

early brain development | resting functional MRI | neural flexibility |
cognitive functions | cognitive flexibility

Resting-state functional MRI (rsfMRI), an imaging method
characterizing temporal synchrony of blood oxygen level-

dependent (BOLD) contrast signals among different brain re-
gions, has been widely employed to delineate brain functional
network topologies. Because rsfMRI acquires time-series images
when subjects are in a resting condition without any goal-directed
task demands, it is an optimal tool to reveal brain functional net-
works in pediatric subjects who are unable to comply with the re-
quirements of performing tasks for goal-directed fMRI. Extensive
results using rsfMRI have been reported in early brain develop-
ment. The developmental pattern of the widely reported functional
networks in adults follows a temporal sequence from maturation of
the primary sensory networks to higher-order functional networks
(1). The emergence of the default mode network prenatally (2) and
postnatally (3), the presence of a small world topology of the brain
networks in infants (4), and three distinct developmental stages
(i.e., 0 to 1 mo, 2 to 7 mo, and 8 to 24 mo) (5) have been observed.
In addition, the number of functional modules increases throughout
the first year of life, with strengthened intra- and intermodular
connections, thought to support functional segregation and inte-
gration (6). The emergence of functional hub regions in the brain
(i.e., regions critical for efficient communication) has also been

reported from birth to 2 y of age (4). While the aforementioned
studies have offered invaluable insights into early brain functional
developmental processes, they assume that functional network or-
ganization is static across the course of a resting-state scan. How-
ever, there is increasing evidence in adults that functional network
organization is time-varying, and that dynamic network processes
underlie meaningful aspects of cognition and behavior (7). A key
finding from these studies is that functional brain network organi-
zation dynamically changes with learning. For example, using a
sliding window approach to analyze rsfMRI time-series images,
Bassett et al. (8) quantified dynamic modular reconfiguration when
adult participants were learning a new motor skill. Specifically, they
derived a normalized parameter they termed “functional flexibil-
ity,” which quantified the frequency at which nodes (brain regions)
changed their allegiance from one functional module to another.
They reported that functional flexibility first increased and then
decreased while learning a new motor skill. In addition, functional
flexibility in one learning session predicted the amount of learning
in a future session.
In the context of early brain development, measures of func-

tional flexibility during the first years of life could offer the op-
portunity to assess reorganization of brain functional network
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topologies that may result from learning via interaction with the
external environment. In particular, a plethora of studies have
demonstrated that external stimuli and learning shape the mat-
uration processes of early brain functional development (9–13).
Moreover, the definition of functional flexibility, which assesses
the frequency at which a brain region changes its functional role
(i.e., changes its allegiance from one functional module to an-
other), resembles the classic definition of cognitive flexibility, or
the readiness with which one can selectively switch between
mental processes to appropriately respond to environmental
stimuli (14). Cognitive flexibility, one of the three main com-
ponents of the executive functions (15, 16), is a critical feature of
human cognition (17) and has been reported to predict reading
ability (18) and future academic success (19). In addition, higher
cognitive flexibility is associated with higher resilience to stress
and better creativity in adulthood (20–22). In contrast, poor
cognitive flexibility has been used as a biomarker for brain dis-
eases, including autism (17), Parkinson’s disease (23), Alz-
heimer’s disease (24), schizophrenia, and mania (25). Recent
studies suggest that brain variability is an important feature un-
derlying cognitive flexibility (22, 26, 27); thus, understanding how
variability, or flexibility in network organization, matures across
early development could elucidate the development of this crit-
ical cognitive process. To better reflect the neural basis of
functional flexibility and distinguish it from cognitive flexibility,
“neural flexibility” is used hereafter to represent rsfMRI-derived
functional flexibility. The ability to noninvasively measure neural
flexibility is likely to open a window of opportunity to assess
developmental features and the emergence of a functionally
flexible brain during early brain development, an area of re-
search that could yield highly profound insights into the devel-
opment of higher-order brain functions and that could ultimately
be used to predict cognitive outcome.
We leveraged a longitudinal imaging study in typically devel-

oping children, the Multivisit Advanced Pediatric Brain Imaging
Study for Characterizing Structural and Functional Development
(MAP Brain Imaging Study) (1, 5, 6, 28), to uncover the devel-
opmental features of neural flexibility at both the regional and
network levels to characterize the emergence of a functionally
flexible brain during early infancy. Since increased neural flexi-
bility has been reported to be associated with learning new skills
in adults (8), and learning/interaction with the external envi-
ronment plays a vital role in early brain development, we hy-
pothesized that spatial and temporal heterogeneity of neural

flexibility may represent varying maturation patterns of different
brain functional domains. We further hypothesized that the
neural flexibility trajectories of higher-order brain functional
networks would exhibit a faster pace of increasing neural flexi-
bility than that of basic brain functional networks. Finally, we
hypothesized that neural flexibility in early infancy could predict
infants’ behavioral ability at a later age. This study further
reported how quantitative measures of neural flexibility could
shed light on the development of cognitive flexibility through
defining the “flexible club” as brain regions exhibiting signifi-
cantly higher neural flexibility than that of the whole brain.
These regions therefore represent brain regions that may be
critical for state-related transitions, including transitions between
cognitive tasks with different demands (i.e., cognitive flexibility).

Results
Typically developing children (n = 52) were densely and longi-
tudinally MR-imaged (up to seven times) during natural sleep
without sedation over the first 2 y of life (Fig. 1 A and B). The
number of subjects and sex information for each age group is
provided in Table 1. No significant difference was found for the
framewise displacement (FD) of rsfMRI data among age groups
[ANOVA F test, F(6,196) = 1.8, P = 0.1]. In addition to un-
dergoing longitudinal MR imaging sessions, the General Con-
ceptual Ability (GCA) score of the Differential Ability Scales II
(DAS) test was obtained from 31 subjects at 5/6 y of age. The
numbers of subjects whose DAS scores were available for each
age group are also provided in Table 1. Using a sliding window
approach, a multilayer network structure was constructed over
all time windows and the GenLouvain (29) algorithm was used to
evaluate dynamic network reconfigurations (Fig. 1C). Subse-
quently, nodal temporal allegiance to functional modules was
calculated (Fig. 1D), which in turn provided quantitative mea-
sures of regional neural flexibility.

Spatiotemporal Characteristics of Brain Neural Flexibility. As indi-
cated above, increased neural flexibility has been associated with
learning new skills and predicting learning ability in adults (8). In
the context of early brain development when learning and inter-
action with the environment play a vital role, we tested whether
brain neural flexibility increased with age. While a substantial
spatial variability of neural flexibility is present (Fig. 2A), signifi-
cantly elevated global neural flexibility was found from birth to 2 y
of age [linear mixed-effects (LME) model, F test, F(1,201) = 25.13,

BA
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Fig. 1. Illustration of data distribution and multilayer community detection. (A) The distribution of the age information for all subjects. (B) Examples of T1-
weighted and T2-weighted images obtained from a child who underwent longitudinal MRI at birth and 3, 6, 9, 12, 18, and 24 mo of age. (C) Illustration of the
multiplayer networks. Each node was linked to itself one time window before and after. (D) Examples of dynamic module transition for nodes with frequent
module transitions (Top) and few transitions (Bottom).
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P = 1.17 × 10−6; Fig. 2B]. Due to the reported difference in
maturation trajectories of different functional systems (30, 31),
we tested whether there was heterogeneity among the develop-
ment patterns of neural flexibility in different regions and sys-
tems. The brain regional slopes of neural flexibility trajectories
are shown in Fig. 2C. Many of the regions in the frontal lobe
exhibited a higher slope than other brain regions. To further
probe the neural flexibility patterns in the core regions of several
commonly reported brain functional networks, the develop-
mental patterns from two primary brain functional regions
(calcarine fissure for visual and precentral gyrus for motor) and
seven higher-order brain regions (precuneus cortex, inferior
temporal gyrus [ITG], anterior cingulate cortex [ACC], inferior
frontal gyrus [IFG], temporoparietal junction [TPJ], posterior
parietal cortex [PPC], and anterior insula [aI]) over the first 2 y
of life were chosen and are shown in Fig. 2D. The anatomical

locations of these regions are shown in Fig. 2C (white filled
circles). These higher-order brain regions were chosen because
they have been implicated in cognitive flexibility (22) (ACC,
IFG, TPJ, PPC, and aI), the default mode network (precuneus)
(32) and higher-order visual function (ITG) (33).
Distinct temporal patterns were observed between the cal-

carine fissure (primary visual cortex) and precentral gyrus (pri-
mary motor cortex). The calcarine fissure exhibited a slight
decrease [LME model, F test, F(1,201) = 3.63, P = 0.24, false
discovery rate (FDR)-corrected], whereas the precentral gyrus
exhibited an increase [LME model, F test, F(1,201) = 19.82,
P = 0.0004, FDR-corrected] in neural flexibility with age. In
contrast, the temporal patterns of higher-order brain functional
areas were more variable. The precuneus cortex had a marked
decrease from birth to 3 mo [two-sample t test, t (53) = −2.8,
P = 0.007, uncorrected], followed by a steady increase of neural

Table 1. Number of subjects and motion parameters of each age point

Age, mo

<1 3 6 9 12 18 24

No. of subjects 29 26 33 32 32 31 20
Male 15 14 17 17 16 17 8
Female 14 12 16 15 16 14 12

FD (mean ± SE), mm 0.22  ±  0.04 0.16  ±  0.03 0.15  ±  0.02 0.12  ±  0.01 0.15  ±  0.03 0.21  ±  0.05 0.09±0.01
DAS evaluated at 5/6 y 16 16 17 19 19 22 17

A C

B D

Fig. 2. Spatiotemporal development of brain neural flexibility. (A) Spatiotemporal distribution of regional neural flexibility at 0, 3, 6, 9, 12, 18, and 24 mo of
age. (B) The developmental pattern of whole-brain neural flexibility. The red line and shaded area represent the fitted trajectory of whole-brain neural
flexibility and 95% confidence interval (LME model, F test, P = 1.17310−6). The blue boxplots represent the distribution of whole-brain neural flexibility at
each age group. (C) The developmental slope of the neural flexibility at each brain region from birth to 2 y of age is shown on brain surfaces (colored bar
represents the slope values). (D). Regional-specific developmental patterns of brain regions, including calcarine fissure, precentral gyrus, precuneus, ITG, ACC,
IFG, TPJ, PPC, and aI. These chosen brain regions are marked with white filled circles in C. Blue boxplots represent the distribution of neural flexibility of each
region at 0, 3, 6, 9, 12, 18, and 24 mo of age. The P values of the LME fitted trajectories after FDR correction were as follows: PCalcarine = 0.24,
PPrecentral = 0.0004, PPrecuneus = 0.0119, PITG = 1, PACC = 0.0119, PIFG = 0.18, PTPJ = 0.017, PPPC = 0.32, and PaI = 0.022.
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flexibility with age [LME model, F test, F(1,201) = 10.49,
P = 0.0119, FDR-corrected]. The ITG showed persistently high
neural flexibility across all ages without an age effect. For cog-
nitive flexibility-associated regions, neural flexibility increased
substantially in the ACC [LME model, F test, F(1,201) = 10.93,
P = 0.0119,FDR-corrected], TPJ [LME model, F test,
F(1,201) = 9.15, P = 0.017,FDR-corrected], and aI [LME
model, F test, F(1,201) = 8.29, P = 0.022, FDR-corrected], while
a gradual increase, although not significant, was found in the
IFG [LME model, F test, F(1,201) = 4.08, P = 0.18, FDR-
corrected] and PPC [LME model, F test, F(1,201) = 2.72,
P = 0.32, FDR-corrected]. Additional results on neural flexibility
changes between two adjacent age groups are provided in SI
Appendix, section SI-2 and Fig. S1.
We further evaluated network-level developmental trajecto-

ries, including those of representative unimodal functional net-
works (the visual and motor networks) and those implicated in
cognitive flexibility in adults (22) (the salience network, dorsal
attention network, ventral attention network, working memory
network, and inhibition network) using the Shen268 functional
parcellation (34) (Fig. 3A). More information on the use the
Shen268 atlas and the selection of these networks is provided in
SI Appendix, section SI-3. Additional results using other higher-
order brain functional networks are shown in SI Appendix, Fig.
S6. The anatomical locations of these networks are summarized
in Fig. 3A and SI Appendix, Fig. S3.
It has been widely documented that primary visual function

matures early in infancy (1) to enable the visual processing ca-
pability observed in neonates (35) and that these regions are
mostly associated with unimodal functions (36). Consistent with
these findings, we observed that the neural flexibility of visual-
related networks exhibited no age effects, whereas significant age

effects were observed for the developmental trajectories of all
remaining networks [Fig. 3A; LME model, F test, Fmotor(1,201) =
12.18, Fsalience(1,201) = 34.41, FDAN(1,201) = 16.26, FVAN(1,201) =
9.3, FWM(1,201) = 32.67, Finhibition(1,201) = 7.89, P< 0.05, FDR-
corrected]. In addition, the primary visual network showed a
significantly lower slope than that of the dorsal attention, working
memory and salience networks [LME model, F test, FV1_DAN
(1,201) = 11.74, FV1_WM (1,201) = 18.05, FV1_Salience (1,201) =
23.26, P< 0.05, FDR-corrected] (Fig. 3B). Together, these results
suggest that brain regions that mature early may also reach mature
levels of neural flexibility earlier, thus exhibiting a reduced change
in neural flexibility over the first 2 y of life as compared to func-
tional networks that undergo greater maturation.
Although the motor network is typically considered a primary

functional network similar to that of the primary visual network,
the developmental trajectory of the motor network was different
from that of the visual networks. The primary motor network
started with an average neural flexibility immediately after birth,
followed by a significant increase in neural flexibility during the
first 2 y of life (Fig. 3A) [LME model, F test, F(1,201) = 12.18,
P = 0.003, FDR-corrected]. As shown by Bassett et al. (8), in-
creased neural flexibility is associated with greater improvements
in learning a new motor skill. Thus, this continuing increase of
motor network neural flexibility may be indicative of continuing
development of motor skills during early infancy. Motor devel-
opmental milestones during the first years of life have been
widely documented, including the development of gross motor
ability of lying movement (months 2 to 4), sitting (month 6),
standing (month 9), walking (month 12), and running (month
24). Fine motor ability also develops extensively in the first 2 y of
life, including holding and shaking toys (month 4), as well as
drinking from a cup and eating with a spoon (month 18). Thus,

A

B C

Fig. 3. Development of brain neural flexibility at network level and the prediction of brain neural flexibility to later behavioral performance. (A) Devel-
opmental patterns of neural flexibility in visual and motor-related networks (blue shaded area) and networks associated with cognitive flexibility (orange
shaded area). The anatomical features of these brain networks are shown (Upper). For each network, the red line and shaded area represent the fitted
trajectory of neural flexibility and 95% confidence interval, respectively. The P value of the LME-fitted trajectories after FDR correction were as follows:
PVisI = 1, PVisII = 0.48, PVisAssoc. = 0.13, Pmotor = 0.003, PSalience = 8.24310−7, PDAN = 0.0005, PVAN = 0.013, PWM = 8.86310−7, and PInhibition = 0.022. The blue
boxplots represent the distribution of neural flexibility of each brain network at each age group. DAN: dorsal attention network; VAN: ventral attention
network; WM: working memory network. (B) The developmental slopes of the neural flexibility of whole brain and different brain networks, sorted by the
slope values. The $, #, *, ^, and & symbols indicate significantly different in slopes (LME model, F test, P < 0.05, FDR-corrected) with the visual I, visual as-
sociation, whole brain, motor, and inhibition networks, respectively. (C) The prediction of brain neural flexibility measured during early infancy to later
behavioral performance. Neural flexibility of visual I network at month 3 was significantly correlated with GCA score evaluated at 5/6 y of age [Pearson’s
correlation t test, t (14) = −5.15, P = 0.0439, FDR-corrected].
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these results indicate that increases in motor neural flexibility
may underlie the continuing development of motor skills.
The brain networks associated with cognitive flexibility and

other representative higher-order brain functional networks (Fig. 3A
and SI Appendix, Fig. S6A) all exhibited a significant increase in
neural flexibility with age [LME model, F test, Fsalience(1,201) =
34.41, FDAN(1,201) = 16.26, FVAN(1,201) = 9.3, FWM(1,201) = 32.67,
Finhibition(1,201) = 7.89, Fmedialfrontal(1,201) = 22.46, Ffrontoparietal(1,201) =
19.03, Fdefault(1,201) = 20.64, P< 0.05, FDR-corrected]. Fur-
thermore, their slopes were faster than that of the whole brain
(Fig. 3B and SI Appendix, Fig. S6B), particularly the salience
network [LME model, F test, F(1,201) = 14.95, P< 0.05, FDR-
corrected]. Notably, cognitive flexibility-related networks dis-
played the highest slope, suggesting the potential emergence of
rudimentary cognitive flexibility during early infancy and
underscoring the potential significance of assessing neural flex-
ibility during early infancy.
Finally, a direct comparison of the trajectory of each network

derived from neural flexibility to trajectories derived from
functional connectivity strength, a widely used approach to
characterize early brain functional development (1, 28, 37), is
provided in SI Appendix, section SI-6 and Fig. S7. This com-
parison suggests that the trajectories of brain neural flexibility
may be more representative of brain functional maturation
during early brain development.

Early Brain Neural Flexibility Is Associated with Behavioral
Assessments at Later Ages. A large intersubject variability of
neural flexibility was noted within each age group (Figs. 2B and
3A), which suggests differences of maturation rates among sub-
jects. Since neural flexibility has been reported to predict
learning outcome in adults, we tested whether neural flexibility
in early infancy could predict infants’ behavioral ability at a later
age. In addition to undergoing longitudinal MRI sessions, the
GCA score of the DAS test was obtained at 5/6 y of age in 31
subjects. Correlation analyses were performed between network-
level neural flexibility and GCA. A negative correlation was
observed between visual I neural flexibility at 3 (Fig. 3C) and 18
mo (SI Appendix, section SI-7 and Fig. S8A) of age with later
GCA [Pearson’s correlation t test, t03mon (14) = −5.15, t18mon

(20) = −2.08, P03mon = 1.47 × 10−4, P18mon = 0.049]. After mul-
tiple comparison correction, the visual I network at month 3
remained significantly correlated with GCA score (P = 0.0439,
FDR-corrected). No relationships between neural flexibility of
other networks and GCA were significant. Furthermore, con-
sistent with the network-level results, regional analyses revealed
that neural flexibility of multiple regions in the primary visual
areas was negatively associated with GCA at several age points,
whereas some regions associated with cognitive flexibility were
positively associated with GCA scores (SI Appendix, section SI-7
and Fig. S8) (Pearson’s correlation t test, P< 0.05, uncorrected).

Flexible Club. Regions with high neural flexibility actively change
their affiliation among functional modules. Therefore, they may
provide the ability to quickly change functional organization in re-
sponse to external stimuli. There is evidence that multimodal brain
functional areas have a high level of neural flexibility (38), potentially
facilitating task transitions over time. Thus, this set of regions could
be critically important for cognitive flexibility (22, 39, 40).
To identify brain regions with high neural flexibility, we de-

fined the “flexible club” as the group of brain regions with neural
flexibility that is significantly higher than that of the whole brain
(Fig. 4A) (details of the definition of flexible club are provided in
SI Appendix, section SI-4). We hypothesized that the brain
flexible club would include brain regions essential for cognitive
flexibility. To delineate potential differences in the flexible club
in early infancy as compared to those in adolescents and adults,
flexible clubs were identified using the Adolescent Brain Cognitive

Development (ABCD) (41) and the Human Connectome Project
(HCP) datasets (42) (see Fig. 4B for comparisons). The flexible
clubs of the ABCD and HCP cohorts comprised brain regions
critical for cognitive flexibility, including anterior insula, TPJ, dor-
solateral/ventrolateral prefrontal cortex, IFG, frontal eye field, and
subcortical regions (Fig. 4B), supporting our hypothesis that brain
flexible clubs are critical for cognitive flexibility (details of the
ABCD and HCP data are provided in SI Appendix, section SI-8). In
our study cohort, while the memberships of the flexible club varied
with age during early infancy, several patterns were observed. First,
starting from birth, anterior ITG, IFG, orbital frontal cortex, insula,
and TPJ were consistently present in the flexible club in most of the
age groups. Second, most of the regions observed in the adolescent
and adult flexible clubs were included in the flexible club at 2 y,
including ventrolateral prefrontal cortex, dorsolateral prefrontal
cortex, premotor area, aI, and TPJ. As mentioned above, these
regions are core regions underlying cognitive flexibility (22). Al-
though these results cannot conclusively determine that cognitive
flexibility ability is present at 2 y of age, nor do they equate the
flexible club with cognitive flexibility, they indicate that regions
critical for cognitive flexibility in adults are among those that have
statistically higher neural flexibility in the brain during the first 2 y
of life.

Flexible Club, Functional Hub, and Diverse Club. Using graph theory
and network science, brain regions that play distinct roles in

A

B

Fig. 4. Brain flexible club. (A) An example of ranked regional flexibility
from month 0 (red/blue indicate regional neural flexibility significantly
higher/lower that that of whole-brain neural flexibility; orange indicates
regions with no significant difference, paired t test, P < 0.05). Error bars in-
dicate the SEs. (B) Spatial distribution of the brain flexible clubs. The flexible
clubs of adolescents (ABCD) and adults (HCP) were included for comparison.
Color bars represent neural flexibility.
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brain networks have been reported. Specifically, brain functional
hub regions represent brain regions with high betweenness cen-
trality (BC), critical for efficient communication across the whole
brain (4). The notion of the brain diverse club has been recently
proposed, reflecting brain regions playing a critical role in
functional integration (43, 44). Given the reported different
functional roles, it is highly plausible that the flexible club pos-
sesses unique characteristics when compared to brain regions in
the functional hub and diverse club. Here, we examined several
important graph-related characteristics among brain regions that
are functional hubs, as well as those in the diverse club and
flexible club, including anatomical locations, topological roles,
connection strengths, and temporal stability. To make compari-
sons between groups, the number of functional hub and diverse
club regions were set to be identical to that of the flexible club at
each age group.
The topological locations of the flexible club regions were

mostly located in peripheral areas of communities, which is dif-
ferent from functional hub and diverse club regions, which were
located in the topological centers of the graph (Fig. 5A). Starting
from birth, the membership of the flexible club largely did not
overlap (59.64%) with functional hub and diverse club regions
across all age groups (Fig. 5B and SI Appendix, Fig. S12). The
overlap between the flexible club and functional hub regions was
11.31% and between the flexible club and diverse club regions
was 18.93%. Only 10.1% of regions were associated with all
three classes. These findings are consistent across different age

groups, as well as different choices of sparsity (i.e., 5%, 10%,
15%, and 20%) of static connectivity matrices (SI Appendix, Fig.
S12). These results demonstrate that members of the flexible
club are spatially distinct from functional hub and diverse
club regions.
We further employed a simulated lesioning approach to de-

termine resilience of functional hub, diverse club, and flexible
club regions, respectively. Specifically, regions in each category
were removed, and the impacts to whole-brain global efficiency
were estimated after each removal. Consistent with the previ-
ously reported results (4), removing functional hub regions led to
a significant reduction in global efficiency (Fig. 5C) [paired t test,
t (28) = −28.8, P = 5.37 × 10−21, FDR-corrected]. Similar find-
ings were observed when removing diverse club regions [paired
t test, t (28) = −11.21, P = 5.3 × 10−11, FDR-corrected]. In
contrast, global efficiency was not strongly affected after re-
moving flexible club regions [paired t test, t (28) = 1.26, P = 1,
FDR-corrected], suggesting that the flexible club may be more
resilient to brain injury. Similar results are also observed across
different age groups, as well as different choices of sparsity
(i.e., 5%, 10%, 15%, and 20%) of static connectivity matrices (SI
Appendix, Fig. S12).
In addition, brain regions in the flexible club exhibited sig-

nificantly lower dynamic connectivity strength (Fig. 5D) [paired
t test; flexible club vs. functional hub: t (28) = −14.12,
P = 4.4 × 10−13, FDR-corrected; flexible club vs. diverse club: t
(28) = −9.41, P = 3.44 × 10−9, FDR-corrected] and higher

A

B C

D E

Fig. 5. Comparisons among brain flexible club, diverse club, and functional hub. (A) Visualization of brain communities, with the corresponding neural
flexibility, participation coefficient, and BC (red/blue color corresponding to high/low parametric values). (B) The spatial overlapping ratios among brain
flexible club, functional hub, and diverse club at birth. The functional hub and diverse club were generated from 10% connectivity matrices. These findings
were consistent across different age groups, as well as different choices of sparsity (i.e., 5%, 10%, 15%, and 20%) of static connectivity matrices (SI Appendix,
Fig. S12). Statistical comparisons of brain resilience to targeted attacks (C), mean dynamic connectivity strength (D), and mean temporal instability (E) among
brain flexible club, diverse club, and functional hub. The results at birth are shown and additional results across different age groups, as well as different
choices of sparsity (i.e., 5%, 10%, 15%, and 20%) of static connectivity matrices are shown in SI Appendix, Fig. S12. Group comparisons were performed for
flexible club, diverse club and functional hub. Statistical significance levels: *P <0.05, **P < 10−4, ***P < 10−14.
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temporal instability (Fig. 5E) [paired t test; flexible club vs.
functional hub: t (28) = 6.57, P = 2.85 × 10−5, FDR-corrected;
flexible club vs. diverse club: t (28) = 5.19, P = 4.1 × 10−4, FDR-
corrected] when compared to functional hub and diverse club re-
gions. These findings are also consistent across different age groups
and different choices of sparsity (i.e., 5%, 10%, 15%, and 20%) of
static connectivity matrices (SI Appendix, Fig. S12). Although many
factors may explain the observed differences in dynamic connec-
tivity strength and temporal instability among functional hub, di-
verse club, and flexible club regions, it is plausible that the observed
weaker and temporally unstable connections between brain regions
in the flexible club facilitate rapid transitions of their allegiances to
different functional modules.

Discussion
Our study aimed to reveal spatiotemporal processes of the de-
velopment of a functionally flexible brain in typically developing
children during the first 2 y of life. Our results are in support of a
modular and dynamic brain network organization immediately
after birth (3–6, 37). We found that whole-brain neural flexibility
significantly increased with age [LME model, F test, F(1,201) =
25.13, P = 1.17 × 10−6], demonstrating the emergence of more
flexible brain function during the first 2 y of life. Regional var-
iability of brain functional trajectories was also apparent. Spe-
cifically, higher-order brain functional areas largely exhibited a
continuing increase of flexibility with age at the regional and
network levels (LME model, F test, P< 0.05, FDR-corrected). In
contrast, distinctly different trajectories between primary visual
and motor functional areas (both at the regional and at the
network levels) were observed. Similar to the higher-order brain
functional areas, the primary motor network exhibited an in-
crease in flexibility with age [LME model, F test, F(1,201) =
12.18, P = 0.003, FDR-corrected]. In contrast, the primary visual
areas showed a relatively low neural flexibility that remained low
throughout the first 2 y of life. It has been widely recognized that
the primary visual networks mature early in infancy (1, 45). Our
finding that the flexibility of the primary visual network did not
change with age is consistent with already mature network
functioning. Importantly, we found a significantly negative as-
sociation between neural flexibility of the primary visual network
at 3 mo and cognitive ability at 5/6 y of age [Pearson’s correlation
t test, t (14) = −5.13, P = 0.0439, FDR-corrected]. Thus, low
neural flexibility (more matured) of the primary visual network
in early infancy was associated with better cognitive outcome at
5/6 y of age. We additionally found that members of the flexible
club during early infancy included brain regions associated with
cognitive flexibility in adults. Finally, the brain flexible club
exhibited distinctly different characteristics from brain functional
hub regions and the diverse club, including different anatomical
locations, topological properties, connection strengths, and
temporal instability, suggesting that the flexible club possesses a
unique role in brain function.

Neural Flexibility and Behavioral Outcomes. Although our study
could not reveal and did not focus on the origins of neural
flexibility (SI Appendix, section SI-1), the neural flexibility of the
primary visual network at 3 mo of age was negatively associated
with GCA score evaluated at 5/6 y of age. As discussed previ-
ously, a low and stable neural flexibility in the visual network
represents greater maturity. Therefore, our results suggest that a
more mature primary visual network (i.e., lower neural flexibil-
ity) at 3 mo of age may be beneficial for long-term cognitive
development. The importance of visual functions in cognitive
development has been widely reported; infant visual perfor-
mance, such as attention and fixation, has been shown to predict
later neurocognitive development (46–48). Specifically, visual
fixation in newborns is significantly correlated with visual-motor

performance at 2 and 5 y of age and associated with visual reasoning
at 5 y of age (47). Infant fixation duration is also associated with
childhood effortful control, surgency, and hyperactivity–inattention
(48). Our results thus echo results reported in previous behavioral
studies concluding that visual function in early infancy is critical for
future development of higher-order cognition.
Finally, in exploratory analyses we found that regions in the

flexible club such as the TPJ, ITG, and superior temporal gyrus
were correlated with GCA score assessed at 5/6 y of age. We
cannot make too much out of these findings, since after cor-
recting for multiple comparisons the observed associations were
no longer significant. Therefore, studies with a larger sample size
will be needed to determine whether these findings are signifi-
cant. In summary, while more studies are needed to prospec-
tively evaluate how neural flexibility measures during early
infancy may predict later cognitive outcomes, our results reveal a
potential association between neural flexibility during early in-
fancy and later cognition.

Neural Flexibility and Cognitive Flexibility. Cognitive flexibility, one
of the three components of executive function (15, 16), has been
reported to develop starting from 3 y of age with a sharp increase
between 7 and 9 y of age (22, 49). However, we argue that the
increased neural flexibility that we observed from 0 to 2 y of age
in regions associated with cognitive flexibility and other higher-
order cognitive functions may indicate early developmental
processes that support the later emergence of cognitive flexibil-
ity. In particular, it has been suggested that cognitive flexibility is
accomplished through multiple networks working in synergy to
accomplish mental switching. Specifically, prior to switching
mental functions, the salience and attention network would be
engaged for awareness of and attention toward external stimuli,
the working memory network would be engaged to remember
the current task, and finally the inhibition network would be
engaged to inhibit the current task. Inhibition develops as early
as 12 mo and is largely mature by 10 to 12 y of age (22). Working
memory also emerges during the first year of life and continues
to improve into adolescence (50). The attention system is active
from birth as a means for directing engagement with the envi-
ronment and subserving learning (50). These findings suggest the
possibility that cognitive flexibility may start to develop during
the first years of life as well. However, the lack of tools capable
of assessing these aforementioned functions during early infancy
has substantially hampered our ability to gain insights into the
development of cognitive flexibility. To this end, the measure of
neural flexibility could be a powerful parameter enabling the
assessment of brain cognitive flexibility during early infancy for
the following reasons. First, recent adult task- and resting-state
fMRI studies have demonstrated that brain neural flexibility is
cognitively beneficial for working-memory performance and
could help to predict task performance including working-
memory performance (51, 52), which is one of the three com-
ponents of executive functioning (15, 16, 22). Second, neural
flexibility is calculated as nodal modular transition frequency
among different functional modules across time, which resem-
bles the classic definition of cognitive flexibility. Third, unlike
behavioral assessments of cognitive flexibility, which are im-
practical during early infancy, rsfMRI can be easily applied to
infants. Fourth, members of the flexible clubs in our cohort
consist of brain regions (TPJ, dorsolateral/ventrolateral pre-
frontal cortex, aI, premotor area, and subcortical areas) that are
widely implicated in cognitive flexibility in adults. Finally, the
developmental trajectories of neural flexibility of higher-order
functional networks (salience, attention, working memory, and
inhibition networks) implicated in cognitive flexibility all show
increased neural flexibility with age, indicating continuing de-
velopment of these functional networks.
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Importantly, the optimal neural flexibility in a healthy brain
highly depends on the functional domain. It has been found that
sensorimotor and visual regions have lower flexibility, while re-
gions associated with multimodal higher-order functions have
higher flexibility (38). Indeed, in our study visual regions were ob-
served to have low neural flexibility beginning from 3 mo (SI Ap-
pendix, Fig. S5B), and subjects with lower flexibility in the visual
network had better cognitive outcomes at 5/6 y as assessed with
GCA. While motor regions showed significantly increasing flexi-
bility during infancy, they have been reported to be associated with
low flexibility in adults (38). This observed developmental feature
of neural flexibility in motor regions may underlie the learning of
fine motor skills during early infancy (8). Finally, the regions with
the highest flexibility (i.e., flexible club) were mostly located in
multimodal association regions involved in higher-order cognition
generally and cognitive flexibility specifically.

Flexible Club, Functional Hub, and Diverse Club. Brain functional
hub regions play a critical role in whole-brain information
transmission. Therefore, strong and stable connections are required
for these regions to ensure the stability of the whole-brain system.
Injury to these regions greatly influences whole-brain global effi-
ciency and leads to major deficits in cognitive performance (53).
Moreover, since the brain diverse club is responsible for functional
integration, injury to regions of the diverse club would also greatly
influence whole-brain efficiency, leading to an inability to integrate
information and cause cognitive impairment (54).
In marked contrast to functional hub and diverse club regions,

our results demonstrated that regions high in neural flexibility—
termed the flexible club—have unique properties as compared to
brain functional hub and diverse club regions. We found that,
across all ages, few regions in the flexible club overlapped with
functional hub or diverse club regions. Compared with functional
hub and the diverse club regions, flexible club regions possessed
significantly weaker connection strength (paired t test, P< 10−4,
FDR-corrected) and higher variability of connection strength
(paired t test, P< 0.05, FDR-corrected). These results are not
surprising, since these three types of regions are responsible for
different functions. More importantly, recent studies have indicated
that weak connections enable the system to function within many
difficult-to-reach states, reflecting a capacity to adapt to novel sit-
uations by engaging mechanisms for flexible behavior (55, 56),
which echoes our findings. Finally, using a simulation, we found
that injury to flexible club regions did not significantly influence
whole-brain global efficiency, as these regions tend to be located at
the periphery of different modules and thus are not as important
for global information transmission. Therefore, the flexible club
may be resilient to brain injury.

Limitations. Our study has several limitations. First, changes of
brain tissue properties during early infancy may affect the ac-
curacy of registration. Nevertheless, our team has developed
image analysis tools (57) that minimize the potential inaccuracy
of registration. Second, a constant echo time (TE) was used for
the echo-planar imaging sequence across our entire study. Since
T2* of brain tissues is longer during early infancy and progres-
sively shortens with age, using a constant TE over all ages could
impact the sensitivity of BOLD effects. While using age-specific
TEs could potentially mitigate this limitation, the changes of T2*
are spatially nonuniform, making it difficult to select a single TE
for the whole brain. In addition, adjusting TE based on age could
introduce additional biases. Third, the number of scanning vol-
umes (i.e., 150 volumes, 5 min) is less than that suggested by the
Human Connectome Protocol (42, 58). While a longer acquisi-
tion time and greater number of volumes of rsfMRI data are
clearly desirable, the choice of duration reflects a compromise in
order to maximize the success rate of obtaining usable resting
fMRI in imaging typically developing children without sedation.

Fourth, sleep information was not available, making it difficult to
account for the effects of different sleep stages on functional con-
nectivity. Nevertheless, with the approaches and results reported in
this study as well as in the literature (59, 60), we believe that the
effects should be minimal. More detailed discussion of these limi-
tations are provided in SI Appendix, section SI-12.

Materials and Methods
A total of 52 typically developing infants were included in this study. Subjects
were imaged at <1, 3, 6, 9, 12, 18, and 24 mo of age. Since all 52 subjects
were typically developing children, no sedation was employed for imaging
and all subjects were imaged during natural sleep. The experimental pro-
tocols were approved by the Internal Review Board, University of North
Carolina at Chapel Hill. Written informed consent was obtained from
the parents of all participants. All subjects were scanned with 3-T MR scan-
ner (Siemens Medical Systems), to acquire T1w (1 × 1 × 1 mm3), T2w
(1. 25 × 1. 25 × 1. 95 mm3), and rsfMRI images (repetition time = 2 s, TE = 32
ms, 150 volumes, 4 × 4 × 4 mm3). All resting functional MR images were
preprocessed using the FSL (FMRIB Software Library) (61–63) and MATLAB,
following the published wavelet-based preprocessing pipeline (64). After
excluding the data of failed scans with excessive motion (i.e., spike per-
centage >5%), a total of 203 scans were included in data analyses.

To mitigate the effects of age-dependent gray matter contrast on the
accuracy of registration, a pediatric-specific tissue segmentation approach
utilizing both T1w and T2w images was employed to obtain tissue seg-
mentation results (65). A longitudinal registration pipeline was used to
generate the deformation field from each subject to the standard template
as well as the reverse deformation field (5, 6, 66, 67). Shen268 (34) atlas was
then deformed back to subject space and mean time series of each region was
estimated by averaging voxel time series in each region. Additional results
using AAL (68) and CC200 (69) are provided in SI Appendix, section SI-3.

A sliding windows approach was employed with a window width of 30
volumes and a step size of 1 volume, yielding a total of 111 slidingwindows. The
effects of window length were evaluated and results are provided in SI Ap-
pendix, section SI-10 and Fig. S10). Interregional connection of each sliding
window was captured using Pearson’s correlation. In order to remove weak
and random connections, a P value for each correlation coefficient was esti-
mated using the MATLAB function corrcoef; only connections significantly
different from zero were retained (Pearson’s correlation t test, P < 0.05, FDR-
corrected) and converted to an absolute value. Additional results when signs of
connections were considered are provided in SI Appendix, section SI-11 and Fig.
S11). Overall, although some discrepancies on the spatial distributions of neural
flexibility were observed using absolute, positive, and signed connectivity val-
ues, the developmental patterns of neural flexibility remain consistent.

A multilayer network structure was constructed for each scan by linking
networks between sliding windows (29) (Fig. 1C). Dynamic community de-
tection was performed using the generalized Louvain method (GenLouvain)
(29, 70), which includes the ability to study the dynamic community structure
in a time-dependent, multilayer, and/or multiplex network. The multilayer
modularity quality function (Q) is defined as

Q = 1
2μ

∑
ijsr

[(Aijs − γs
kiskjs
2ms

)δsr + δijωjsr]δ(gis, gjr),

where the matrix of layer s has components Aijs. Note the layer here refers to
an adjacency matrix of a given sliding window. The resolution parameter of
layer s is γs; gis and gjr are the community assignments of node i in layer s and

node j in layer r, respectively; ωjsr is the interlayer coupling strength pa-
rameter connecting node j in layers r and s; μ is the total edge weight in the
network, calculated as μ = 1

2∑
jr
κjr; kjs = ∑

i
Aijs is the intralayer strength of

node j in layer s; the interlayer strength of node j in layer s is cjs = ∑
r
ωjsr; the

strength of node j in layer s is κjs = kjs + cjs; and ms is the total edge weight in

layer s, defined as ms = 1
2∑

ij
Aijs. We kept resolution parameters the same

across layers (γ = γs) and gave all interlayer connections that were present
(between the same node in layers that neighbor in time) the same weight ω.
We optimized multiplayer modularity by running GenLouvain for 100 times
for each scan, since this procedure is not deterministic and each run may
yield slightly different partitions of the community. In this study, resolution
and coupling parameters were set to be unity, which was used in previous
studies (8, 38, 51). The effects of using different resolution and coupling
parameters were evaluated in SI Appendix, section SI-9 and Fig. S9) with a
wide range from 0.2 to 2, respectively.
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Given the dynamic community detection results, we defined the neural
flexibility of a node as the number of times that a node changed its modular
assignment across the sliding windows, normalized by the total possible
changes.

The developmental patterns of neural flexibility were further evaluated by
an LME model and a generalized addictive mixed model (GAMM), separately
(SI Appendix, section SI-5, Fig. S6, and Table S2). The generalized cross-
validation (GCV) errors were used to compare the fitting performance be-
tween the two models. The differences of GCV were less than 5% in all
network and 10% for all region-of-interest comparisons, suggesting that the
LME and GAMM models performed similarly. Since the LME model could
provide quantitative measure such as the slope to represent developmental
pace while the GAMM model could not, we have chosen to report the LME
model in our study. We further determined if the slopes across different
functional systems were different by fitting their neural flexibility differ-
ences with age using an LME model.

In addition, the spatiotemporal distribution of brain neural flexibility was
also revealed. Finally, we defined the brain regions with significantly higher
neural flexibility than that of whole brain as the flexible club and compared
them to the diverse club (44) and functional hub (4).

Diverse club was defined as brain regions exhibited a high participation
coefficient (PC). The PC indicates how evenly a node’s connections are dis-
tributed to different modules. For a given modular assignment, the partic-
ipation coefficient of node i can be calculated as

PCi = 1 −∑Nm

s=1
(Kis

Ki
)2,

where Ki is the sum of node i’s edge weights, Kis is the sum of node i’s edge
weights to module s, and Nm is the total number of modules. Since PC cal-
culation requires modular assignments, we performed the (classic) Louvain
algorithm (71) for each subject.

Brain functional hub was defined as the brain regions exhibiting high BC.
Given a graph, BC is defined as the fraction of shortest paths between node
pairs that travels through the node of interest:

BCi = 1
Nn(Nn − 1) ∑

i≠j≠k∈G

Pjk(i)
Pjk

,

where Pjk is the total number of shortest paths between node j and node k
within the graph G, Pjk(i) is the total number of these shortest paths passing
through node i, and Nn is the total number of nodes in the graph.

To determine the unique features associated with the flexible club when
compared to the better-documented functional hub and diverse club, spatial
overlapping ratio, mean/SD of dynamic connectivity strength, and resilience
to target attack were compared. Specifically, for each region and time
window, the mean connectivity strength to all other regions was calculated.
The mean (i.e., averaging across all time windows) and SD of dynamic con-
nectivity strength were calculated for each region and further spatially av-
eraged across regions for each of the three club types (i.e., flexible club,
diverse club, and functional hub). In addition, brain targeted attack was
simulated by removing regions (i.e., flexible club, diverse club, and func-
tional hub) and all their connections, and brain global efficiency (4) was
calculated. The global efficiency of node i can be calculated as

GE(i) = 1
Nn − 1

∑
j∈G

1
Lij
,

where Nn is the number of nodes of the whole graph and Lij is the minimum
path length between the node i and all other nodes in the whole graph. The
mean GE was obtained by averaging across all nodes. A paired t test was
performed to compare the statistical difference between these parameters.

In this study, statistical significance was considered as P < 0.05. For multiple
comparison correction, FDR correction was performed by controlling FDR at
a level alpha = 0.05.

Data Availability. Some study data are available upon request.
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