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Abstract

The brighter portions of a shaded complex object are in principle more informative about its
lightness and are preferentially fixated during lightness judgments. In this study, we investigate
whether preventing this strategy also has measurable detrimental effects on performance.
Observers were presented with a reference and a comparison three-dimensional rendered
object and had to choose which one was “painted with a lighter gray.” The comparison was
rendered with different diffuse reflectance values. We compared precision between three differ-
ent conditions: full image, 20% of the lightest pixels removed, or 20% of the darkest pixels
removed. Removing the bright pixels maximally impaired performance. The results confirm that
the strategy of relying on the brightest areas of a complex object in order to estimate lightness is
functionally optimal, yielding more precise representations.
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Introduction

The amount of light coming to the eye from a matte object depends on the intensity of the
illumination and on the proportion of light that is reflected (i.e., the surface albedo). Albedo is
a specific property of the surface’s material and is thus of great importance for material
perception. Lightness is defined as the visual counterpart of albedo (Adelson, 2000).

To perceive lightness, the visual system is faced with the problem that it is impossible to
distinguish between illumination and reflectance solely based on the light originating from
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one point of the surface. Different factors contribute to solve this ambiguity. Lateral inhi-
bition between retinal neurons filters out shallow intensity gradients, which are prevalently
due to illumination rather than reflectance differences within a surface (Cornsweet, 1970;
Land & McCann, 1971; Mach, 1866). Lightness perception also depends on higher order
inferences on the scene. The geometrical interpretation of the shape of a surface in its context
dramatically changes its lightness (Gilchrist, 1977; Knill & Kersten, 1991; Purves, Shimpi, &
Lotto, 1999). The visual system is also able to parse the scene in depth layers and account for
the effects of semitransparent media on the reflected light (Anderson, 1997, 2003; Anderson
& Winawer, 2005).

As a general theoretical framework, it was proposed that the visual system recovers
albedo by explicitly estimating and discounting the contributions of illumination and geom-
etry to luminance (e.g., Marr, 1982; Pizlo, 2001; Poggio & Koch, 1985; Poggio, Torre, &
Koch, 1987). This is computationally complex and poses a “chicken and egg” problem,
because in order to estimate and discount illumination and geometry, the visual system
would need to estimate the surface’s albedo (Fleming, 2014). Alternatively, the system
could use simple heuristics to bypass this problem and estimate surface albedo directly
from image statistics (see for review: Fleming, 2014; Thompson, Fleming, Creem-Regehr,
& Stefanucci, 2011). For instance, it can exploit that albedo is negatively correlated to the
skewness of the histogram of the surface luminance distribution and positively correlated to
its standard deviation and to its 90th percentile (Motoyoshi, Nishida, Sharan, & Adelson,
2007; Sharan, Li, Motoyoshi, Nishida, & Adelson, 2008).

Our previous research (Toscani, Valsecchi, & Gegenfurtner, 2013a, 2017) indicated that the
brightest portions of the luminance histogram are diagnostic for surface albedo. We showed this
using a physically based rendering system (Heasly, Cottaris, Lichtman, Xiao, & Brainard, 2014;
Ward, 1994) to simulate reflections in a large number of three-dimensional realistic shapes.
This approach allows to generate a large dataset of object images to statistically relate reflected
light to surface properties (e.g., Singh, Cottaris, Heasly, Brainard, & Burge, 2018; Wiebel,
Toscani, & Gegenfurtner, 2015). Specifically, we rendered images of different objects, placed
in different complex realistic light fields (Debevec, 1998). The images were rendered with dif-
ferent albedos under different positions and viewing angles. By means of receiver operating
characteristic (ROC) analysis (Toscani et al., 2013a) and linear classifiers (Toscani, Valsecchi, et
al., 2017), we demonstrated that the highest percentiles of the luminance distributions of matte
objects are particularly diagnostic for their albedo. This property is exploited by human observ-
ers, who tend to base their lightness judgments on the surfaces’ brightest portions (Toscani
et al., 2013a, 2015; Toscani, Valsecchi, & Gegenfurtner, 2013b; Toscani, Valsecchi, et al., 2017;
Toscani, Zdravkovié, & Gegenfurtner, 2016).

When we selectively manipulated different bands of the luminance histograms of three-
dimensional simulated objects while keeping their mean luminance constant, we observed
that for matte surfaces, increasing or decreasing luminance of the brightest band maximally
affected lightness appearance (Toscani, Valsecchi, et al., 2017).

The strategy of using the most diagnostic luminance values as a proxy for lightness
appearance would help the visual system to create a perceptual representation which max-
imally tells surfaces of a different albedo apart, and that is relatively immune to changes in
illumination and geometry. In fact, in a complex three-dimensional object, the maximum
luminance would be expressed where the local surface is oriented perpendicular to the light
source, the rest would be affected by shading and thus depend on the local orientation. This
strategy constitutes a possible heuristic to achieve a stable lightness appearance, without
requiring knowledge of the scene geometry, shape, or illumination.
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While we know that this strategy influences lightness appearance, the direct prediction of
our simulations is that lightness discrimination judgments are mostly dependent on the
brightest percentiles and was never tested on human perception. In fact, the simulations
are based on luminance, but perceived brightness is known to be nonlinearly related to
luminance, and, whether this relationship is logarithmic (Fechner, 1860) or roughly a
cube-root curve (Stevens, 1957), this implies that differences within the low luminance
range might be amplified compared to those in the high range. Hence, at the perceptual
level, the dark portion of an object’s luminance distribution might impact discrimination
more than the light one, despite being in principle less informative.

Here, we test the relative importance of dark and light portions of the luminance distri-
bution of shaded complex objects in a lightness discrimination task. Removing the lightest
portions impaired discrimination more than removing the dark ones.

Methods

Participants

Five naive observers took part in the experiment. They all had normal or corrected visual
acuity. All gave written informed consent in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki) for experiments involving humans. The experi-
ments were approved by the local ethics committee (approval number LEK 2009-0008).

Apparatus

We used the psychtoolbox-3 software (Kleiner, Brainad, & Pelli, 2007) working on MATLAB
(http://www.mathworks.com), to display the rendered movies on Samsung SyncMaster 1100
MB monitor. The procedure for monitor linearization has been described elsewhere (e.g.,
Ennis, Toscani, & Gegenfurtner, 2017; Milojevic, Ennis, Toscani, & Gegenfurtner, 2018).

Stimuli

We used two three-dimensional models (Figure 1) to render realistic matte objects under
different views and orientations. The objects were positioned with random orientation in a
complex light field (Debevec, 1998); the viewing position was randomly sampled from a
spherical perimeter surrounding the objects (see for details: Toscani et al., 2013a).
Reflections were simulated with the physically based rendering system RADIANCE
(Ward, 1994) interfaced with a MATLAB toolbox (Heasly et al., 1994). The background
was masked by a black and white grid pattern, to standardize local contrasts. Each shape was
rendered with the following diffuse reflectance parameters (0.29, 0.35, 0.38, 0.41, 0.44, 0.47,
0.5, 0.53, 0.56, 0.5916, 0.65) and 30 different random orientation and viewing conditions.
The central reflectance value (i.e., 0.47) was chosen as reference and the other ones were
comparisons, in a constant stimuli paradigm.

Procedure

In a dark room, participants had their heads stabilized by a chinrest with 58 cm distance
between forehead and the center of the screen. They were presented with the reference and
comparison stimuli next to each other, randomly left and right or vice versa (Figure 1(a)).
The task was to indicate which one was “painted with a lighter gray”. In the Full condition,
the comparison and the reference were presented as they were rendered, with no
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Figure |. Stimuli. (a) Reference and comparison stimulus, one on the left and the right side of the display.
The horse shape is shown here; the other one was the three-dimensional model of a whale; see example in
(b). (b) Experimental conditions. In the Full condition, the whole shape was presented. Here, for illustration
purposes, the 20% lightest and darkest pixels are highlighted in red and blue, respectively. In the Dark Cut
condition, the 20% dark pixels were substituted with the background pattern; the 20% lightest in the Light Cut
condition.

manipulation. In the Dark Cut condition, the 20% darkest pixels (Figure 1(b), blue area —
left panel) were substituted with the background (Figure 1(b) — central panel); in the Light
Cut condition, the 20% lightest pixels (Figure 1(b), red area — left panel) were substituted
(Figure 1(b) — right panel). For each of the three conditions and each of the two shapes, each
reflectance comparison was shown 30 times, at random orientations and viewing angles, for a
total of 1980 experimental trials. Presentation order was randomized.

Analyses

For each condition and each participant, we modeled the probability of the comparison to be
reported as lighter than the reference as a function of the reflectance difference. To do that,
we used the psignifit 4 (Schiitt, Harmeling, Macke, & Wichmann, 2016) MATLAB toolbox
to fit a psychometric function to the observers’ responses (with a cumulative Gaussian func-
tion). To stabilize the fitting procedure, data were binned into five intervals. The slope of the
psychometric function is a measure of JND (just noticeable difference), that is, the albedo
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Figure 2. Results. (a) Example of psychometric functions for one observer for the three conditions. y-axis
denotes the probability of judging the comparisons as lighter than the reference; x-axis denotes albedo
difference between the comparison and the reference. Albedo is expressed in percentage from black (0%) to
white (100%). Black circles indicate the measured probabilities in the Dark Cut condition, gray in the Full and
light gray in the Light Cut condition. The black solid line represents the fitted psychometric function for the
Dark Cut condition, the solid light gray line for the Light Cut condition, and the dashed gray line for the Full
condition. (b) JND averaged across observers (y-axis), for the three conditions (x-axis). Error bars represent
the standard error of the mean. J]ND = just noticeable difference. (*p < 0.017).

difference at which the participants perform discrimination with an 84% success rate.
Steeper curves correspond to better ability to tell apart objects with different albedos.
We used a one-way repeated measure analysis of variance (ANOVA) on the JNDs to test
for overall differences between the three conditions (Full, Light Cut, and Dark Cut) and
Bonferroni-corrected ¢ tests to assess difference between all condition pairs.

Results

Figure 2(a) shows an example of the psychometric functions for the three conditions of a
participant. The slope is steepest in the Full condition (dashed gray line), indicating that both
replacing the dark and the light portions impaired performance. Crucially, the slope is
shallowest in the Light Cut condition, suggesting that replacing the light portions of the
objects impairs performance the most.

Figure 2(b) represents the average JND in the three conditions. ANOVA reveals a
significant difference between conditions, F(2,14)=27.312, p <.001.

JNDs are lowest in the Full condition, indicating better performed when all the informa-
tion was available. Both removing the light and dark portions impaired performance—#(4) =
4.21 and #(4)=6.12, respectively; p values <o, with a=.017 because of the Bonferroni
correction. However, the negative effect on performance was bigger in the Light Cut than
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in the Dark Cut condition, #(4)=4.25, p <.017, indicating the light portions have an higher
influence on performance than the dark portions.

Discussion

We tested how lightness discrimination performance depends on the light and the dark
portions of shaded three-dimensional objects. Our results indicate that the light portions
are particularly important for lightness discrimination. This is in agreement with our previ-
ous results from physically based rendering simulations (Toscani et al., 2013a, 2015; Toscani,
Valsecchi, et al., 2017), which could predict perception without incorporating the nonlinear
relationship between luminance and perceived brightness (Fechner, 1860; Stevens, 1957).
Also cutting the darkest portions impaired performance, suggesting that, although discrim-
ination mostly depends on the lightest portions, the whole distribution is taken into account.

Discrimination and appearance are different perceptual processes characterized by specific
but also shared common mechanisms. For instance, color appearance and discrimination are
both influenced by a slow color adaptation process, but extremely rapid adaptation exclu-
sively influences appearance (Rinner & Gegenfurtner, 2000).

We argue that lightness appearance of shaded objects is built by selecting the brightest areas
of an object’s surface, which are the most informative for lightness discrimination. This strat-
egy supports the discrimination of objects with different albedos and at the same time stabilizes
lightness perception when viewing conditions change. In fact, if an object exhibits enough
geometrical complexity, some portion of it is surface will be under direct illumination, thus
reflecting the largest amount of light possible, given the illuminant and the surface reflectance.
This portion would be the brightest one, while other portions would be in shadow.

Using the maximum luminance within the boundaries of an object to estimate lightness is
an adaptive strategy because the maximum luminance value is maximally diagnostic, based
on the fact that, given a complex enough geometry, one portion of the surface will always be
maximally illuminated. This offers an interesting parallel with the problem of estimating the
relative lightness of objects within a scene. Again, assuming that there is a complex enough
assortment of lightness values within the scene, the highest brightness will correspond to a
white or close to white object. Indeed, among the strategies that the visual system uses
achieve lightness constancy, one is to assume that the highest luminance in an image is
assumed to be white, “anchoring” the perceived albedos of the other surfaces. The lightness
of each surface is proportional to its luminance, but dependent on the other surfaces in the
scene, being the scale of variability normalized to a fixed range (Gilchrist et al., 1999). These
phenomena could be the results of Bayesian integration of prior knowledge on illumination
and reflectances in the word with the current sensory evidence (Brainard & Freeman, 1997,
Murray, 2013). In general, the visual system seems to estimate the illuminant from the
brightest light in the scene (Gilchrist & Soranzo, 2019; Kozaki, 1973; Noguchi & Masuda,
1971), consistent with the “anchoring” rule, since a white surface reflects almost all the light
that received from the illumination.

Nevertheless, constancy is far from perfect: When observers are asked to judge lightness,
their behavior is often—at last in part—driven by perceived luminance (i.e., brightness;
Ripamonti et al., 2004; Robilotto & Zaidi, 2004, 2006; Toscani et al., 2016; Zdravkovié,
2008). When an object moves through an environment in which the illumination changes
across space, its lightness dramatically depends on the intensity of the illumination (Toscani
et al., 2016; Zdravkovi¢, 2008). Furthermore, some participants systematically base their
lightness judgments on albedo, others on brightness (Robilotto & Zaidi, 2004). Thus, light-
ness and brightness are not trivial to dissociate and it is possible that in the present study,
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instead of discriminating reflectance differences, observers based their judgments on bright-
ness. However, whether they used a simple (e.g., mean perceived luminance), a more complex
brightness measure (e.g., Robilotto & Zaidi, 2004), or measure of perceived surface albedo
(i.e., lightness), our results show that in a discrimination task this measure depends more on
the brightest than on the darkest portions of the surfaces’ luminance distribution.

Exactly what mechanism implements the heuristic of relying more on the brightest part of
an object for recovering albedo is not yet clear. One possibility is that observers only consider
the lightest portions of objects for their judgments and ignore the rest. Alternatively, they
might compute albedo integrating the perceived luminance distribution, after this has been
shifted towards higher values through fixation behavior. In fact, there is evidence that lumi-
nance at fixation is extrapolated to peripheral portions of the rest of the surface (Toscani,
Gegenfurtner, & Valsecchi, 2017). Both possibilities are consistent with the finding that while
judging the lightness of real three-dimensional objects, observers tend to look at their bright-
est portions and when forced to a different fixation pattern, their lightness judgments change
depending on the luminance at fixation (Toscani et al., 2013a, 2013b, 2015, 2016).

Extrapolating perceived luminance based on fixation and fixating the most diagnostic areas
within an object could contribute to compress differences within an objects surface and
enhancing differences between different objects and their parts, ultimately helping to discrim-
inate different objects. This is similar to what happens for color. Chromatic discrimination, as
inferred from the shape of the MacAdam ellipses (MacAdam, 1942), is worse along the direc-
tion of elongation of the color distribution of colored natural objects (Ennis, Schiller, Toscani,
& Gegenfurtner, 2018; Hansen, Giesel, & Gegenfurtner, 2008). This implies, for instance,
humans are poorly sensitive to the different shades of yellow within the surface of a lemon,
but can tell apart the color of the lemon from the one of an orange.

The brightest areas within the object surface determine the lightness of matte objects
(Toscani, Valsecchi, et al., 2017). This is however not the case for glossy objects, presumably
because the visual system ignores specular highlights when judging lightness (Toscani,
Valsecchi, et al., 2017). Specular highlights tend to be colocated with the areas that are
best illuminated (Koenderink & van Doorn, 1980); therefore, they cover the areas that
would be brightest if the object was matte. Based on the results of the present study, ignoring
specular highlights should impair lightness discrimination similar to removing the brightest
regions of a matte object. Indeed, lightness discrimination is more difficult for glossy surfaces
(Toscani, Valsecchi, et al., 2017).

To summarize, object regions which are relied upon for lightness appearance are also
more important for lightness discrimination. We argue that the strategy of basing appear-
ance on the most discriminable regions helps to build useful perceptual representations for
object recognition, coherent with the idea that the main purpose of lightness and color
perception is to recover the properties of objects and materials in our environment, rather
than precisely representing the light that reaches our eyes (Witzel & Gegenfurtner, 2018).
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