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Abstract
Purpose  In a phase II trial in patients with metastatic triple-negative breast cancer (mTNBC; NCT02978716), administer-
ing trilaciclib prior to gemcitabine plus carboplatin (GCb) enhanced T-cell activation and improved overall survival versus 
GCb alone. The survival benefit was more pronounced in patients with higher immune-related gene expression. We assessed 
immune cell subsets and used molecular profiling to further elucidate effects on antitumor immunity.
Methods  Patients with mTNBC and ≤ 2 prior chemotherapy regimens for locally recurrent TNBC or mTNBC were rand-
omized 1:1:1 to GCb on days 1 and 8, trilaciclib prior to GCb on days 1 and 8, or trilaciclib alone on days 1 and 8, and prior 
to GCb on days 2 and 9. Gene expression, immune cell populations, and Tumor Inflammation Signature (TIS) scores were 
assessed in baseline tumor samples, with flow cytometric analysis and intracellular and surface cytokine staining used to 
assess immune cell populations and function.
Results  After two cycles, the trilaciclib plus GCb group (n = 68) had fewer total T cells and significantly fewer CD8+ T cells 
and myeloid-derived suppressor cells compared with baseline, with enhanced T-cell effector function versus GCb alone. No 
significant differences were observed in patients who received GCb alone (n = 34). Of 58 patients in the trilaciclib plus GCb 
group with antitumor response data, 27 had an objective response. RNA sequencing revealed a trend toward higher baseline 
TIS scores among responders versus non‑responders.
Conclusion  The results suggest that administering trilaciclib prior to GCb may modulate the composition and response of 
immune cell subsets to TNBC.
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RSEM	� RNA-Seq by Expectation Maximization
TIS	� Tumor Inflammation Signature
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Treg	� Regulatory T cell

Introduction

Triple-negative breast cancer (TNBC) is a specific subtype 
of breast cancer that is associated with high invasiveness, 
high metastatic potential, proneness to relapse, and poor 
prognosis. Patients with TNBC have fewer treatment options 
available to them than those with other types of invasive 
breast cancer [1–4]. Cytotoxic chemotherapy is the primary 
treatment option for patients with programmed death-ligand 
1 (PD-L1)-negative disease [4, 5], whereas the combina-
tion of chemotherapy plus pembrolizumab is the preferred 
first-line treatment option for patients with PD-L1-positive 
tumors (the overall rate of PD-L1 positivity in TNBC ranges 
from 20 to 60%, depending on the assays and methods used) 
[6–9]. Other treatment options include poly(adenosine 
diphosphate-ribose) polymerase inhibitors for patients with 
BRCA​-mutated tumors (reported prevalence rates varying 
from 10 to 20%) [10, 11], and sacituzumab govitecan, a 
Trop-2-directed antibody–drug conjugate, for the treatment 
of patients with unresectable locally advanced or metastatic 
TNBC (mTNBC) who have received two or more prior lines 
of systemic therapy [12]. Despite the emergence of these 
new therapies, many patients with locally advanced TNBC 
or mTNBC have no options other than standard chemother-
apy, which is commonly associated with toxicities that can 
adversely impact quality of life [13].

Trilaciclib is an intravenous myeloprotection therapy that 
is administered as a 30-min infusion within 4 h prior to the 
start of chemotherapy on each day chemotherapy is adminis-
tered. Trilaciclib transiently arrests cyclin-dependent kinase 
4/6 (CDK4/6)-dependent hematopoietic stem and progenitor 
and immune cells in the G1 phase of the cell cycle dur-
ing chemotherapy exposure, protecting these cells from 
chemotherapy-induced damage [14–16]. In 2019, trilaciclib 
received breakthrough designation from the US Food and 
Drug Administration (FDA) and, in 2021, was approved by 
the FDA to decrease the incidence of chemotherapy-induced 
myelosuppression in adult patients when administered prior 
to a platinum/etoposide-containing regimen or topotecan-
containing regimen for extensive-stage small cell lung can-
cer (ES-SCLC) on the basis of the results from three rand-
omized, placebo-controlled phase II studies [17–19].

Trilaciclib has been shown to favorably alter the tumor 
immune microenvironment in in vivo murine syngeneic 
models [15, 20, 21], in an ex vivo patient-derived organo-
typic tumor spheroid culture system [20], and in a clini-
cal setting in patients with ES-SCLC [15, 17]. Specifically, 
trilaciclib has been shown to enhance T-cell activation 
and the production of cytokines and chemokines [15, 20], 
to promote a favorable tumor immune microenvironment by 
increasing the intratumoral ratio of effector T cells to regula-
tory T cells (Tregs) and the number of activated T cells in 
the periphery [15], to inhibit immunosuppression by Tregs 
[15, 20], to significantly increase the expansion of T-cell 
clones [15, 17], and to enhance the induction of memory 
cluster of differentiation (CD)8+ T cells [21]. Consistent 
with its known mechanism of action, trilaciclib may elicit 
some of these immune effects by protecting lymphocytes 
from chemotherapy-induced damage [22].

The efficacy and safety of trilaciclib in patients with 
mTNBC have been investigated in a randomized phase II 
trial (NCT02978716) [23, 24]. Treatment with trilaciclib 
prior to gemcitabine plus carboplatin (GCb) did not lead 
to a significant improvement in duration and occurrence of 
severe neutropenia (primary endpoint); however, overall sur-
vival (OS; secondary endpoint) was improved for patients 
who received trilaciclib plus GCb compared with those 
who received GCb alone (median 19.8 vs. 12.6 months, 
respectively) [23]. In subgroup analyses, OS was prolonged 
irrespective of CDK4/6 dependence and PD-L1 status, but 
benefit was greater in the PD-L1-positive population. OS 
was also more pronounced in, but not exclusive to, patients 
with higher immune-related gene expression [24]. Lastly, 
administering trilaciclib enhanced T-cell activation, as evi-
denced by an enrichment of new T-cell clones and decreased 
Simpson clonality in peripheral blood [23, 24].

The aim of the current analysis was to further inves-
tigate potential immune mechanisms of trilaciclib in 
mTNBC through the analysis of immune cell subsets and 
molecular profiling in peripheral blood and tumor samples, 
respectively.

Materials and methods

Study design and participants

This analysis is based on data from a multicenter, ran-
domized, open-label, phase II trial including patients 
aged ≥ 18 years with mTNBC who had received up to two 
prior chemotherapy regimens for locally recurrent TNBC 
or mTNBC (NCT02978716) [23, 24]. Patients were rand-
omized (1:1:1) to 21-day treatment cycles: GCb (gemcit-
abine 1000 mg/m2, carboplatin area under the curve 2) alone 
on days 1 and 8; trilaciclib 240 mg/m2 within 4 h prior to 
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GCb on days 1 and 8; or trilaciclib alone on days 1 and 8 and 
trilaciclib within 4 h prior to GCb on days 2 and 9.

Antitumor efficacy endpoints and assessments

Efficacy and survival outcomes were analyzed as prespeci-
fied secondary endpoints and included objective response 
rate (confirmed complete or partial response) assessed in 
response-evaluable patients, and progression-free sur-
vival and OS, assessed in the intention-to-treat population. 
Objective response rate and progression-free survival were 
investigator assessed according to Response Evaluation 
Criteria in Solid Tumours (RECIST) version 1.1, based 
on the May 15, 2020, data cut-off. For tumor assessment, 
computed tomography or magnetic resonance imaging was 
performed at screening and at protocol-specified intervals 
(every 9 weeks for the first 6 months, then every 12 weeks 
thereafter) until disease progression, withdrawal of consent, 
or receipt of subsequent anticancer therapy. OS was ana-
lyzed following the final database lock on July 17, 2020. 
Genetic and/or expression markers in blood and tumors and 
immunologic markers, including PD-L1 expression, were 
analyzed as post hoc exploratory objectives. Baseline PD-L1 
status was measured using the Ventana SP142 PD-L1 assay; 
tumors were scored as PD-L1 positive if the proportion of 
PD-L1-expressing tumor-infiltrating immune cells was ≥ 1% 
and PD-L1 negative if < 1%, per the assay interpretation 
guide for TNBC tumors [25].

Peripheral immune cell population and function 
analysis

Peripheral blood was collected prior to and during treat-
ment for flow cytometric analysis; for the purposes of this 
analysis, samples were collected prior to treatment on the 
first day of the first and third treatment cycles (C1D1 and 
C3D1, respectively). Blood was collected in Cyto-Chex® 
(Streck) and sodium heparin tubes and shipped at ambient 
temperature on the day of collection for processing. Whole 
blood was used for intracellular cytokine staining and sur-
face staining. Staining and flow cytometric assays were per-
formed by a contract research organization (Covance Central 
Laboratory Services; Indianapolis, Indiana, USA).

Tumor gene expression analysis

Genomic DNA and total RNA were simultaneously purified 
and sequenced as previously described from formalin-fixed, 
paraffin-embedded (FFPE) diagnostic tumor samples col-
lected at baseline [23]. Purification was performed using 
the AllPrep DNA/RNA FFPE kit (QIAGEN; Germantown, 
Maryland, USA). Libraries were prepared using TruSeq 
RNA and DNA Exome kits for RNA-Seq and DNA-Seq, 

respectively (Illumina; San Diego, California, USA). Cluster 
generation and sequencing of libraries were performed on 
the Illumina HiSeq system. Gene expression read counts and 
fragments per kilobase of exon per million mapped reads 
(FPKM) were quantified using RNA-Seq by Expectation 
Maximization (RSEM) software [26]. RNA-Seq samples 
in which < 30% of RNA fragments were > 200 nucleotides 
in length (DV200) were excluded from the analysis. Dif-
ferentially expressed genes between trilaciclib responders 
(complete or partial response) and non‑responders (stable or 
progressive disease), at an adjusted P value of < 0.05, were 
identified using the DESeq2 package [27]. Gene set enrich-
ment analysis (GSEA) was performed using GSEA_4.1.0 
software (number of permutations: 10,000; permutation 
type: phenotype) [28, 29] using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database (c2.cp.kegg.v7.4).

Tumor immune microenvironment analysis

The Tumor Inflammation Signature (TIS) [30] was used to 
assess the tumor immune microenvironment at baseline. The 
TIS is an investigational 18-gene signature that detects a pre-
existing but suppressed adaptive immune response within 
tumors by measuring the expression of genes associated with 
antigen-presentation cell abundance (PSMB10, HLA-DQA1, 
HLA-DRB1, CMKLR1), T-cell and natural killer (NK)-cell 
abundance (HLA-E, NKG7, CD8A), interferon (IFN) activ-
ity (CCL5, CXCL9, CD27, CXCR6, IDO1, STAT1), and 
T-cell exhaustion (TIGIT, LAG3, CD274, PDCDILG2, 
CD276) [30]. TIS or signature scores were calculated as an 
average of the expression values (quantile-normalized and 
log10-transformed) of the respective gene sets.

Statistical methods

Statistical comparisons of cell numbers/ratios and TIS 
scores for different time points and patient groups were 
performed using the Wilcoxon signed-rank test. Plots were 
created using the ggplot2 and EnhancedVolcano R packages 
[31, 32].

Results

Participants and treatment

As of July 17, 2020, median (range) duration of follow-up 
was 8.4 (0.1–25.7) months for the 34 patients who received 
GCb alone, 14.0 (1.3–33.6) months for the 33 patients who 
received trilaciclib prior to GCb on days 1 and 8, and 15.3 
(3.5–33.7) months for the 35 patients who received trilaci-
clib alone on days 1 and 8 and trilaciclib prior to GCb on 
days 2 and 9. Antitumor response status was available for 58 
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of the 68 patients who received trilaciclib prior to GCb: 27 
patients (46.6%) had an antitumor response with trilaciclib 
plus GCb (trilaciclib responders), and 31 (53.4%) had no 
response (non‑responders).

Analysis of immune subsets and T‑cell function 
at C1D1 versus C3D1 in patients receiving trilaciclib 
prior to GCb or GCb alone

Patients who received trilaciclib prior to GCb had fewer total 
T cells (P = 0.064) and significantly fewer CD8+ T cells 
(P = 0.013) and myeloid-derived suppressor cells (MDSCs; 
P < 0.0001) at C3D1 compared with C1D1, whereas no sig-
nificant differences were observed between these time points 
in patients who received GCb alone (Fig. 1a). Administer-
ing trilaciclib prior to GCb greatly enhanced T-cell effector 
function compared with administering GCb alone, as evi-
denced by significant increases in the number of cytokine-
producing CD4+ and CD8+ T cells (Fig. 1b) from C1D1 
to C3D1. No significant differences from baseline in T-cell 
effector functions were observed in patients who received 
GCb alone.

Immune cell populations and T‑cell function analysis 
among trilaciclib responders versus non‑responders

To determine if the impact on T-cell effector function was 
attributable to clinical outcomes, data from responders 
and non‑responders who were treated with trilaciclib were 
compared. After two cycles, T-cell numbers were main-
tained in trilaciclib responders but significantly reduced 
in non‑responders (P = 0.0034; Fig. 2), with significant 
reductions in CD4+ T cells (P = 0.009) and CD8+ T cells 
(P = 0.0066) contributing to the overall reduction. Tregs 
were maintained among both responders and non‑respond-
ers, whereas MDSCs were significantly reduced among 
both responders (P = 0.0046) and non‑responders 
(P = 0.013; Fig. 2). T-cell function was maintained or 
improved in responders but was maintained or reduced 
in non‑responders. Human leukocyte antigen–DR isotype 
(HLA-DR) expression, a marker of T-cell activation, was 
also downregulated in trilaciclib non‑responders (Fig. 3).
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Fig. 1   Changes to a immune cell populations and b T-cell function in 
peripheral blood over two cycles (C1D1 vs. C3D1) in patients receiv-
ing trilaciclib prior to GCb or GCb alone. C1D1 cycle 1, day 1 C3D1 

cycle 3, day 1 CD cluster of differentiation, GCb gemcitabine plus 
carboplatin, IFNγ interferon gamma, IL interleukin, MDSC myeloid-
derived suppressor cell, Treg regulatory T cell
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Tumor gene expression analysis (trilaciclib 
responders vs. non‑responders at baseline)

Analysis of tumor samples revealed 69 differentially 
expressed genes (adjusted P < 0.05) between trilaciclib 
responders (n = 15) and non‑responders (n = 17) at base-
line (Fig. 4a). In total, 23 genes were upregulated and 46 
genes were downregulated (Table 1).

KEGG pathways upregulated in trilaciclib responders 
(FDR < 0.25) were T-cell receptor signaling, antigen pro-
cessing and presentation, NK-cell–mediated cytotoxicity, 
nucleotide-binding oligomerization domain (NOD)-like 
receptor signaling, Toll-like receptor signaling, cytosolic 
DNA sensing, graft-versus-host disease, and glycosphin-
golipid biosynthesis. Analysis of immune gene signatures 
revealed trends toward a higher overall TIS score at baseline 
among responders versus non‑responders (Fig. 4b). Trends 
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Table 1   Upregulated and downregulated genes for trilaciclib responders versus non-responders at baseline

Upregulated genes Downregulated genes

MAGEA3, MAGEA6, MAGEA12, CSAG1, OR8G1, PAGE2, BC011773, 
GABRA3, CSAG3, TMEM213, POTEG, MEF2B, ALOX12B, KRT81, 
BNC1, TF, BHLHA15, GTSF1, TUBB1, C4orf26, SPAG4, DIS3L, 
WHAMM

TMEM237, TTLL7, KRT18, CRAT, CMBL, SNORA65, SLC7A2, 
ENPP3, SPTB, FGFR4, ABCC6, SOX11, AR, REEP6, RBM20, 
NEURL, ZNF729, TMEM45B, MAPT, TDRD1, CYP4Z1, AGR2, 
APOB, DEFB1, FAM5C, MUC2, ABCC11, ALB, TFAP2B, 
DLK1, FGB, FGG, CRISP3, ZFP42, FLG, CDSN, UGT2B11, 
DIO1, MUCL1, SLC26A3, IRS4, CLCA2, FLG2, UGT2B10, 
LOC652203, RP11-1186N24.5
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toward increased TIS score were observed for T-cell/NK-cell 
abundance, IFN activity, and T-cell exhaustion in trilaciclib 
responders.

Discussion

Data from this exploratory analysis provide further 
evidence of a trilaciclib-mediated antitumor immune 
response among patients with mTNBC [23, 24]. Patients 
who received trilaciclib prior to GCb had fewer, but more 
functional, peripheral T  cells and fewer MDSCs after 
two treatment cycles than patients who received GCb 
alone. Furthermore, peripheral T-cell numbers, function, 
and activation were maintained in trilaciclib responders 
after two treatment cycles but reduced in non‑responders, 
whereas Treg numbers were maintained and MDSCs were 
significantly reduced in both groups.

These findings support prior research indicating that, 
following transient G1 arrest, the proportion of immu-
nosuppressive cells in the tumor microenvironment is 
decreased and effector T-cell function is enhanced [15]. 
The benefits of transient T-cell inhibition have also been 
shown in a drug-regulatable platform, wherein transient 
inhibition of chimeric antigen receptor expression directed 
T cells to a memory-like phenotype and restored antitumor 
functionality in a cell population that had already devel-
oped features of exhaustion [33]. CDK4/6 inhibition has 
previously been shown to enhance T-cell function via the 
de-repression of the Nuclear Factor of Activated T cell 
(NFAT) family of proteins. De-repression leads to the 
activation of downstream genes that regulate T-cell func-
tion, resulting in reduced proliferation but increased tumor 
infiltration and activation of effector T cells [20]. A reduc-
tion in the number of MDSCs, which are critical drivers 
of immune suppression in the tumor microenvironment, 
suggests that trilaciclib can reduce suppression of the host 
antitumor immune response to enhance immune-mediated 
antitumor responses [34].

Data from diagnostic tumor samples collected at base-
line showed that genes involved in immune cell activation 
were upregulated among trilaciclib responders, and there 
was a trend toward higher TIS scores. In general, although 
higher TIS scores are not associated with increased OS in 
breast cancer, they are associated with improved prognosis 
in those patients with the highest 10% of TIS scores [30]. 
All KEGG pathways that were upregulated at baseline in 
trilaciclib responders were pathways that are involved in 
the generation of an immune response and, except for the 
graft-versus-host disease pathway, are also necessary for 
an antitumor response.

A trend for higher T-cell exhaustion at baseline may 
indicate that patients had a greater existing immune 

response and, consequently, higher existing T-cell infil-
tration into the tumor. Exhausted T-cell profiles in the 
tumor microenvironment [35], or in peripheral blood [36], 
have previously been associated with better responses. 
Preclinical studies have shown that, following CDK4/6 
inhibition, intratumoral CD8+ T cells display markedly 
reduced expression of the inhibitory immune receptors 
PD-1, Tim-3, CTLA-4, and LAG-3—all markers of T-cell 
exhaustion [37]—potentially enhancing the susceptibility 
of such tumors to antitumor immune responses. It is pos-
sible, therefore, that differential gene expression profiles 
at baseline, including T-cell exhaustion, may be predictive 
of response to trilaciclib-containing regimens.

Additional analyses were conducted to compare results 
by PD-L1 status at baseline. Increased levels of periph-
eral memory CD8+ T cells and naïve CD8+ T cells were 
observed after two cycles in trilaciclib responders, regard-
less of PD-L1 status. However, greater peripheral immune 
responses and a trend toward an enriched TIS were iden-
tified in PD-L1-positive trilaciclib responders at baseline 
compared with non‑responders. These data support previous 
research showing that CDK4/6 inhibition promotes the for-
mation of memory CD8+ T cells, which is proposed to occur 
via upregulation of MXD4 and resultant downregulation of 
Myc activity during T-cell activation [38]. Furthermore, 
because an enriched tumor microenvironment suggests bet-
ter immune cell infiltration, collectively, these data may 
explain, at least in part, why subgroup analysis of the final 
OS results from this trial demonstrated larger OS benefit in 
the PD-L1-positive population [24].

Limitations of this study include the small sample size, 
particularly in the responder subsets. Moreover, antitumor 
efficacy outcomes were not the primary study endpoints. 
The sample size was powered to show superiority among 
patients who received trilaciclib prior to GCb over those 
who received GCb alone for at least one primary endpoint 
(duration of severe neutropenia in cycle 1 or occurrence of 
severe neutropenia during the treatment period). As such, 
comparisons of secondary endpoints, including antitumor 
responses, should be considered exploratory and inter-
preted with caution. However, the findings of this hypoth-
esis-generating analysis were consistent with, and support-
ive of, a previous exploratory analysis of the same study 
[24] and suggest that the improvement in OS observed in 
patients with mTNBC could be due to increased antitumor 
immunity, mediated by trilaciclib [24]. Clinical trials are 
ongoing to explore this further. The phase III PRESERVE 
2 trial, investigating trilaciclib or placebo administered 
prior to GCb in patients with locally advanced unresect-
able TNBC or mTNBC, has OS as the primary endpoint 
(NCT04799249). In this study, the impact of trilaciclib 
on tumor-associated immune responses will be evaluated 
by comparing immunophenotypic changes between tumor 
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biopsies from patients receiving trilaciclib or placebo. 
In addition, a phase II mechanism-of-action trial in the 
neoadjuvant TNBC setting is underway (NCT05112536). 
The primary objective is to evaluate the immune-based 
mechanism of action of trilaciclib after a single dose, as 
measured by changes in the CD8+/Treg ratio in tumor tis-
sue. Pathologic complete response, safety and tolerability, 
and additional exploratory immune biomarker endpoints 
will also be assessed.

Overall, these data contribute to a growing body of evi-
dence that transient administration of trilaciclib prior to 
GCb may enhance antitumor efficacy by both protecting 
immune cells from chemotherapy-induced damage and 
modulating the composition and response of immune cell 
subsets. Data from ongoing clinical studies are critical 
to confirming the underlying immune mechanisms and 
to identifying biomarkers that will clearly distinguish 
between trilaciclib responders and non‑responders.
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