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Abstract: With the specialty of improving the water solubility of chitosan, quaternary ammonium salts
have broadened the application of this polysaccharide in food, medicine and pesticides. To identify
the effect of quaternary ammonium salts’ quantity, single quaternized chitosan N-phenmethyl-
N,N-dimethyl chitosan (PDCS), double quaternized chitosan N-(1-pyridylmethyl-2-ylmethyl)-N,N-
dimethyl chitosan (MP2MDCS), N-(1-pyridylmethyl-3-ylmethyl)-N,N-dimethyl chitosan
(MP3MDCS), and N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan (MP4MDCS) were
designed and synthesized successfully through chemical modification of chitosan. Besides,
three kinds of antioxidant activities, including hydroxyl radicals, superoxide radicals, and
1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals were tested in vitro. As shown in this paper, the
scavenging ability was ranking in order of MP3MDC > MP4MDCS > MP2MDCS > PDCS > chitosan
at 1.6 mg/mL in all assays. All double quaternary ammonium salts were better than chitosan or the
single quaternary ammonium salt. In addition, MP3MDCS could scavenge hydroxyl radicals totally
at 1.6 mg/mL. MP2MDCS and MP4MDCS with more than 90% scavenging indices both had great
scavenging ability on hydroxyl radicals or DPPH radicals. Furthermore, these data demonstrated
that the increasing number of the positive charge would improve the antioxidant property of chitosan
derivatives, and the N-pyridinium position would influence the scavenging radical ability.

Keywords: single quaternized chitosan; double quaternized chitosan; chemical modification;
antioxidant activity

1. Introduction

Free radicals, especially oxygen free radicals in one’s body, may damage the chemical structure of
the organized cell and cause symptoms, such as ruptures of the main chain of the nucleic acid and
protein peptide bond, membrane lipid peroxidation, enzyme inactivation, and cell apoptosis in certain
pathological conditions [1–5]. Fortunately, free radicals can be removed by the antioxidant, where the
composite agent plays an important role in cleaning while protecting body cells from damaging [6].
Meanwhile, it was reported that some polysaccharides with free hydroxyl and amino group have
antioxidant ability, and the order of scavenging hydroxyl radicals ability is chitosan > hyaluronan >
starch [7]. Chitosan and chitosan derivatives, in consequence, have attracted numerous attentions as
the natural antioxidants with inestimable potentials [8].

Chitosan, the natural cationic amino polysaccharide copolymer of glucosamine and
N-acetylglucosamine, is usually obtained from the exoskeletons of the shellfish and the insects.
As a natural renewable resource, chitosan has advantages in unique physicochemical characteristics
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and bioactivities expressed as its antifungal, antioxidant and antitumor properties [9–13]. Due to
the high degree of polymerization, however, this polysaccharide is limited by its poor solubility
above pH 6.5 [14,15]. Therefore, functional derivatives prepared by chemical modification, such as
quaternization, carboxylation, phosphorylation and sulfation, are introduced to enhance chitosan’s water
solubility and bioactivity while sustaining its original biodegradability and biocompatibility [16–21].
Actually, with the fact that molecular structures determine the biological activities of polysaccharides,
studies of the structure activity relationship of polysaccharides start to gain their popularity [22]. And,
one branch of this promising research, the analysis of different molecular structure of quaternary
ammonium salts and their antioxidant abilities are the main idea in following parts of this paper.

Pyridine was introduced into the polysaccharide backbone in this article, since pyridine was
widely used in agrochemicals and pharmaceuticals with an aromatic heterocycle as an important
solvent and reagent [23,24]. N-pyridylmethy chitosan was synthesized based on the reaction between
the primary amino group of chitosan and aldehyde group of pyridine carboxaldehyde following
by the reduction with sodium borohydride [25,26]. Besides, the pyridine was easily attacked by
alkylating agents to obtain N-alkylpyridinium salt since its chemical property was similar to tertiary
amine [24]. Besides, it was reported that pyridine chitosan derivatives could improve polysaccharide
properties including solubility, physicochemical and biological properties, which could be applied
in antimicrobial activity, sensor application, and biomedical application [27–29]. It was reported that
pyridinium derivatives have been shown to be non-toxic for genen delivery in vitro [30]. Furthermore,
N-pyridinium positions could influence the efficiency in mental adsorption, and gene carriers [30–32].
However, less attention has been paid to the influence of N-pyridinium position on the antioxidant
activity. Therefore, double quaternary ammonium salts at different N-pyridinium position with
a similar degree of substitution (DS) were investigated in this paper.

It was reported that quaternized chitosan derivatives had better antioxidant abilities than any
of chitosan, Schiff bases of chitosan or N-substituted chitosan, and proposed that the antioxidant
activity was affected by the positive charge of quaternized chitosan derivatives [33,34]. In that case,
the density of positive charge could influence the efficiency of antioxidant activities. Therefore, in
order to further study the influence of the positive charge and N-pyridinium position of quaternized
chitosan derivatives on antioxidant activities, N-phenmethyl-N,N-dimethyl chitosan (PDCS),
N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan (MP2MDCS), N-(1-pyridylmethyl-3-ylmethyl)-
N,N-dimethyl chitosan (MP3MDCS), and N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan
(MP4MDCS) were synthesized successfully via N-pyridylmethyl chitosan in this paper, and the
antioxidant activity was also investigated systematically by the assessment of hydroxyl radicals’
scavenging activity, superoxide radicals’ scavenging activity, and DPPH radicals’ scavenging activity.
In the meantime, FT-IR, 1H-NMR, and the elemental analyses characterized the chemical structure of
the chitosan derivatives.

2. Results

2.1. Structure of the Chitosan Derivative

The synthetic procedures of the quaternary ammonium salts chitosan are shown in Scheme 1.
N-(2-pyridylmethy), N-(3-pyridylmethy), and N-(4-pyridylmethy) chitosan were synthesized based
on the reaction between the primary amino group of chitosan and aldehyde group of pyridine
carboxaldehyde following by the reduction with sodium borohydride. Then, the secondary amine and
N-pyridine were attacked by iodomethane to obtain quaternary ammonium salts, respectively.
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Scheme 1. Synthetic pathway of PDCS, MP2MDCS, MP3MDCS, and MP4MDCS. 
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The FT-IR spectrum data of chitosan, PDCS, MP2MDCS, MP3MDCS, and MP4MDCS were
shown in Figure 1. The spectrum of chitosan showed that saccharide mainly contained the following
characteristic bands: ν (O-H) or ν (N-H) 3428.81 cm−1, ν (C-H) 2919.70 cm−1, ν (O=C-NH I band)
1643.05 cm−1, δ (C-H) 1427.07, 1380.78 cm−1, ν (O=C-NH III band) 1322.93 or 1261.22 cm−1, ν (C-O)
1068.37 cm−1, and 898.67 cm−1 indicated the β glycosidic bond. After quaternized, a new peak
appeared at about 1546.63 cm−1 for PDCS, which was assigned to the benzene ring, and the peak
at about 1461.78 cm−1 was the characteristic absorption of N-CH3 [35]. The peaks of quaternary
ammonium salts of MP2MDCS, MP3MDCS, and MP4MDCS appeared at 1515.78 cm−1, 1515.78 cm−1,
and 1546.63 cm−1, respectively. The absorption of N-CH3 was at about 1461.78 cm−1, 1465.64 cm−1, and
1469.49 cm−1 for MP2MDCS, MP3MDCS, and MP4MDCS, respectively. Moreover, double quaternized
chitosan MP2MDCS, MP3MDCS, and MP4MDCS had new peaks at 779.10 cm−1, 806.10 cm−1, and
813.81 cm−1, respectively, corresponding to the pyridine groups with different substitution position.
Above results demonstrated preliminarily that quaternized chitosan derivatives were obtained.

Figure 2 showed the 1H-NMR spectra of PDCS, MP2MDCS, MP3MDCS, and MP4MDCS,
respectively. It was known that all of the signals at 5.12 to 3.81 ppm were assigned to the protons of
glucose skeleton of chitosan. It exhibited characteristic resonance of N-CH3 at about 3.35 ppm for C7
in the molecules of PDCS, MP2MDCS, MP3MDCS, and MP4MDCS, respectively. At the same time,
the peaks at 4.42, 4.38, and 4.39 ppm should correspond to methyl protons grafted to pyridine for
MP2MDCS, MP3MDCS, and MP4MDCS, respectively. And 8.0–9.3 ppm should correspond to the
pyridine ring with different substitution position. The signal at 7.5 ppm was assigned to the benzene
ring. The above mentioned results demonstrated further that PDCS, MP2MDCS, MP3MDCS and
MP4MDCS were obtained successfully.
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Figure 2. 1H-NMR spectra of PDCS, MP2MDCS, MP3MDCS, and MP4MDCS.

2.2. Antioxidant Activity

Chitosan has poor solubility in neutral water due to the high polymerization degree. We used
the water-soluble chitosan with low molecular weight in all antioxidant activity tests. All quaternized
chitosan derivatives had good solubility in water, and were prepared as aqueous solutions at the
concentration of 0.1 to 1.6 mg/mL.
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Figure 3 showed the superoxide radicals’ scavenging ability of chitosan and all quaternized
chitosan derivatives composed at 0.1 to 1.6 mg/mL. According to the graph, we concluded the results
as follows: Firstly, the superoxide radicals’ scavenging ability of all samples enhanced with the
increasing concentration. Secondly, scavenging indices were listed as follows at the concentration of
1.6 mg/mL: chitosan 40.75%, PDCS 43.04%, MP2MDCS 67.98%, MP3MDCS 82.53%, and MP4MDCS
76.80%. These data showed that MP2MDCS, MP3MDCS and MP4MDCS had better superoxide radicals’
scavenging ability than chitosan and PDCS at 1.6 mg/mL. And all double quaternized chitosan
derivatives had higher density of positive charges than chitosan and PDCS, which might conclude that
the higher density of positive charges could contribute to the scavenging on the superoxide radicals’
activity. Thirdly, in the three double quaternized chitosan derivatives, the scavenging properties of
MP2MDCS, MP3MDCS, and MP4MDCS were similar at the lower concentration, but MP3MDCS gave
much stronger scavenging ability at 1.6mg/mL, which might conclude that the different position of
N-pyridinium might have some influence on the scavenging activity.
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Figure 3. Superoxide radicals’ scavenging ability of Chitosan, PDCS, MP2MDCS, MP3MDCS
and MP4MDCS.

Figure 4 showed the curve chart of the hydroxyl radicals’ scavenging ability of chitosan and
the synthesized quaternized chitosan derivatives composed at 0.1 to 1.6 mg/mL. The results were
similar to above results on the superoxide radicals’ scavenging activity. Firstly, the scavenging indices
enhanced with the increasing concentration. Secondly, the scavenging ability against hydroxyl radicals
was in order of MP3MDCS > MP4MDCS > MP2MDCS > PDCS > chitosan at the 1.6 mg/mL. Thirdly,
MP3MDCS could scavenge hydroxyl radicals totally at 1.6 mg/mL.
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Figure 4. Hydroxyl radicals’ scavenging ability of Chitosan, PDCS, MP2MDCS, MP3MDCS and MP4MDCS.
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The scavenging abilities of chitosan, PDCS, MP2MDCS, MP3MDCS, and MP4MDCS against
DPPH radicals were shown in Figure 5. The results were similar to those of scavenging superoxide
radicals and hydroxyl radicals too. Firstly, the sample had a positive correlation with the increasing
concentration. Secondly, the scavenging indices were listed as followed: Chitosan 16.93%, PDCS
62.60%, MP2MDCS 94.80%, MP3MDCS 97.80%, and MP4MDCS 95.08%. All double quaternary
ammonium salts could improve the ability of scavenging DPPH radicals significantly.

Based on the results mentioned above, the scavenging ability of the products against superoxide
radicals, hydroxyl radicals, and DPPH radicals were almost in order of MP3MDCS > MP4MDCS >
MP2MDCS > PDCS > Chitosan at 1.6 mg/mL, which could conclude that the antioxidant ability might
associate with the density of the positive charge, as the positive charge could attract the single electron
of free radicals to damage the free radical chain reaction. All double quaternized chitosan derivatives
with higher density positive charges than chitosan and PDCS would attract more single electron
of free radicals, which could improve the antioxidant ability. Furthermore, different N-pyridinium
positions could have different influences on the antioxidant activity. The delocalization of pyridine
was remarkable at the 2- and 4-position, which was enhanced if the nitrogen was protonated. So the
distribution electronic cloud of MP2MDCS and MP4MDCS were more uniform than MP3MDCS in
pyridine ring, which could explain MP3MDCS had a better antioxidant ability than MP2MDCS and
MP4MDCS [30,36,37]. Based on the above results, it will be reasonable to presume that the density of
positive charges and the different N-pyridinium position can influence the antioxidant property of
chitosan derivatives. Further comprehensive investigation to ascertain the antioxidant mechanism and
the structure–activity relationship would be studied in the future.
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Figure 5. DPPH radicals scavenging ability of Chitosan, PDCS, MP2MDCS, MP3MDCS, and MP4MDCS.

3. Materials and Methods

3.1. Materials

Chitosan (MW 2.0 × 105, the degree of deacetylation 97%) was purchased from Qingdao Baicheng
Biochemical Corp. (Qingdao, China). In addition, 2-pyridinecarboxaldehyde, 3-pyridinecarboxaldehyde
and 4-pyridinecarboxaldehyde were purchased from Aladdin Industrial Corp. (Shanghai, China)
Sodium borohydride (NaBH4), N-methyl-2-pyrrolidone (NMP), iodomethane (CH3I), sodium iodide
(NaI), and sodium hydroxide (NaOH) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).

3.2. Analytical Methods

FT-IR spectrometers were recorded on a Jasco-4100 ranging from 4000 cm−1 to 400 cm−1 (Japan,
provided by JASCO Co., Ltd., Shanghai, China) with KBr disks. 1H NMR was recorded on a Bruker
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AVIII 500 spectrometer (Fällanden, Switzerland, provided by Bruker Biospin CN/Bruker (Beijing,
China) Tech. and Serv. Co., Ltd., Beijing, China), using D2O as solvents with tetramethylsilane (TMS)
as internal standard. Chemical shift values were given in δ (ppm). The elemental analyses (C, H, and
N) were performed on a Vario EL III (Elementar, Langenselbold, Germany). The Degree of Substitution
(DS) of chitosan derivatives were calculated based on the percentages of carbon and nitrogen, which is
acquired by following Fonseca et al.’s method [38]. The UV-vis absorbance of the tested mixture were
measured with a T6 New Century UV spectrometer (China, provided by P General Co., Ltd., Beijing,
China). The results are processed by computer programs Excel (Microsoft, Redmond, WA, DC, USA)
and Origin 8 (OriginLab, Northampton, MA, USA) and reported as mean ± SD.

3.3. Synthesis of Single Quaternized Chitosan (PDCS)

Single quaternized chitosan PDCS was prepared according to an earlier method [34]. In brief,
1.61 g chitosan was dissolved into 50 mL 1% acetic acid aqua and 50 mL ethanol in flask at 25 ◦C,
and 3.05 mL benzaldehyde were added with stirring at 25 ◦C. After 2 h, 1.8 g NaBH4 was added and
the reaction was carried out for 2 h. The solution was precipitated into acetone and the precipitants
were filtered. Then, the N-substituted chitosan derivative was obtained after drying at 60 ◦C for 24 h.
Then, 0.5 g N-substituted chitosan was dispersed into 30 mL N-methyl-2-pyrrolidone (NMP) for 12 h
at 25 ◦C. To this mixture, 0.1 mL NaOH (1 M), 0.75 g NaI, and 2 mL CH3I were added, and the reaction
was refluxed gently with stirring at 60 ◦C for 4 h. The solution was precipitated by excess acetone and
the precipitations were filtered. The single quaternized chitosan derivative was obtained by drying at
60 ◦C for 24 h (Scheme 1), yield: 90.30%; DS: 78.32% (Table 1).

Table 1. The elemental analyses, yields, and the degrees of substitution of chitosan derivatives.

Compounds Yields (%)
Elemental Analyses (%) Degrees of

Substitution (%)
Deacetylation

(%)C N H C/N

Chitosan 41.450 7.980 6.201 5.19
97PDCS 90.30 34.553 3.072 5.465 11.24 78.9

MP2MDCS 93.54 35.717 5.611 5.618 6.366 88.0
MP3MDCS 94.62 31.645 5.026 5.373 6.296 76.5
MP4MDCS 93.80 30.252 4.801 5.367 6.300 77.0

3.4. Synthesis of Double Quaternized Chitosan (MP2MDCS, MP3MDCS, and MP4MDCS)

Double quaternized chitosan MP2MDCS, MP3MDCS, and MP4MDCS were synthesized as
follows: 1.61 g chitosan was dissolved into 50 mL 1% acetic acid aqua and 50 mL ethanol in flask at
25 ◦C, and 30 mmol 2-pyridinecarboxaldehyde (2.85 mL), 3-pyridinecarboxaldehyde (2.82 mL), and
4-pyridinecarboxaldehyde (2.86 mL)were added, respectively, with stirring at 25 ◦C. After 2 h, 1.8 g
NaBH4 was added and the reaction was carried out continuously for 2 h. The solution was precipitated
into excess acetone and the precipitant were filtrated. Then, the N-methylpyridine chitosan derivatives
were obtained after drying at 60 ◦C for 6 h. In addition, 0.5 g above synthesized N-methylpyridine
chitosan was dispersed into 30 mL NMP for 12 h at 25 ◦C. The reaction was carried out at 60 ◦C for
4 h with reflux stirring after 0.2 mL NaOH solution (1 M), 1.5 g NaI and 4 mL CH3I were added.
The solution was precipitated by excess acetone and the precipitations were filtered. The double
quaternized chitosan derivatives were obtained by drying at 60 ◦C for 24 h (Scheme 1), MP2MDCS
yield: 93.54%; DS: 88.0%; MP3MDCS yield: 94.62%; DS: 76.5%; MP4MDCS yield: 93.80%; DS: 77.0%
(Table 1).

3.5. Hydroxyl Radicals’ Scavenging Activity Assay

The reaction of Fe-EDTA complex with H2O2 in phosphate buffer can generate ·OH, which is
harmful to the body through reacting with biological molecule such as amino acid or DNA. The hydroxyl
radical scavenging activity was measured according to Guo and Liu [5,34]. The reaction mixture, total



Molecules 2017, 22, 501 8 of 11

volume 4.5 mL, containing the samples of chitosan or chitosan derivatives (10 mg/mL, 0.045, 0.09,
0.18, 0.36, and 0.72 mL), were incubated with EDTA–Fe2+ (220 µM), potassium phosphate buffer
(150 mM, pH 7.4), safranine T (0.23 µM) and H2O2 (60 µM) for 30 min at 37 ◦C. The absorbance of
the mixture was measured at 520 nm. Three replicates for each sample concentration were tested.
The ·OH bleached the safranine T, so decreased absorbance of the reaction mixture indicated decreased
·OH scavenging ability, and the capability of scavenging ·OH was calculated using the follow
equation: Scavenging effect (%) = (Asample 520nm− Ablank 520nm)/(Acontrol 520nm− Ablank 520nm) × 100,
where Ablank 520nm was the absorbance of the blank (distilled water instead of the samples), and
Acontrol 520nm was the absorbance of the control (distilled water instead of H2O2).

3.6. Superoxide Radicals’ Scavenging Ability Assay

The superoxide radical ability was assessed by the method of Nishikimi et al. [39]. Superoxide
radicals can generate single oxygen or hydroxyl radicals which could cause the peroxidation of
lipids [40], which would be deleterious to the body. Involving testing samples of chitosan or chitosan
derivatives (5 mg/mL, 0.06, 0.12, 0.24, 0.48, and 0.96 mL), 30 µM phenazine methosulfate (PMS),
338 µM nicotinamide adenine dinucleotide reduced (NADH), and 72 µM nitro blue tetrazolium
(NBT) in Tris-HCl buffer (16 mM, pH 8.0), the reaction mixture was incubated at 25 ◦C for 5 min.
The absorbance was read at 560 nm against a blank. Three replicates for each sample concentration
were tested and the capability of scavenging superoxide radical was calculated using the following
equation: Scavenging effect (%) = [1 − (Asample 560nm − Acontrol 560nm)/Ablank 560nm] × 100, where
Acontrol 560nm is the absorbance of the control (distilled water instead of NADH for each concentration)
and Ablank 560nm is the absorbance of the blank (distilled water instead of the samples).

3.7. DPPH Radicals’ Scavenging Ability Assay

According to HU [35], the DPPH radical scavenging ability of chitosan, PDCS, MP2PDCS,
MP3MDCS, and MP4MDCS were measured as followed: testing samples (10 mg/mL, 0.03, 0.06,
0.12, 0.24 and 0.48 mL) and 2 mL ethanol solution of DPPH (180 µmol/L) was incubated for 30 min
at 25 ◦C. Then, the absorbance of the remained DPPH radical was measured at 517 nm against
a blank. Three replicates for each sample concentration were tested and the scavenging effect
was obtained according to the following equation: Scavenging effect (%) = [1 − (Asample 517nm −
Acontrol 517nm)/Ablank 517nm]× 100, where Acontrol 517nm is the absorbance of the control (ethanol instead
of DPPH for each concentration) and Ablank 517nm is the absorbance of the blank (distilled water instead
of the samples).

4. Conclusions

Via N-pyridylmethyl chitosan, a series of derivatives of chitosan with single or double quaternary
ammonium salts were synthesized successfully. In addition, antioxidant activities of chitosan and
quaternized chitosan derivatives against hydroxyl radicals, DPPH radicals, and superoxide radicals
were tested in vitro. It was found that all quaternized chitosan derivatives had good water solubility
and stronger antioxidant ability compared with chitosan, especially double quaternized chitosan
derivatives that might be further developed into more effective antioxidant biomaterials. These data
demonstrated that the higher positive charge density of quaternized chitosan derivatives might
contribute to antioxidant activities. Furthermore, MP3MDCS was more effective than MP2MDCS and
MP4MDCS in all assays especially at 1.6 mg/mL. It was reasonable to presume that the N-pyridinium
position of double quaternized chitosan derivatives could influence the antioxidant property. Besides,
it was reported that pyridinium derivatives were showed to be non-toxic for genen delivery in vitro
among the quaternary ammonium chitosans [30], so our double quaternized chitosan derivatives
might have lower toxicity, which needs to be studied further. Finally the mechanism of the antioxidant
activity and the structure–activity relationship need to be further investigated in the future.
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MP4MDCS N-(1-methylpyridin-4-ylmethyl)-N,N-dimethyl chitosan
MP2MDCS N-(1-methylpyridin-2-ylmethyl)-N,N-dimethyl chitosan
DPPH 1,1-Diphenyl-2-picrylhydrazyl
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