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Objectives: DFU is a serious chronic disease with high disability and fatality

rates, yet there is no completely effective therapy.While ferroptosis is integrated

to inflammation and infection, its involvement in DFU is still unclear. The study

aimed to identify ferroptosis-related genes in DFU, providing potential

therapeutic targets.

Methods: In the GEO database, two DFU microarray datasets (GSE147890 and

GSE80178) were collected. WGCNA was conducted to identify the modular

genesmost involved in DFU. Subsequently, enrichment analysis and PPI analysis

were performed. To yield the DFU-associated ferroposis genes, the ferroposis

genes were retrieved from the FerrDb database and overlapped with the

modular genes. Eventually, an optimal DFU prediction model was created by

combiningmultiplemachine learning algorithms (LASSO, SVM-RFE, Boruta, and

XGBoost) to detect ferroposis genes most closely associated with DFU. The

accuracy of the model was verified by utilizing external datasets (GSE7014)

based on ROC curves.

Results: WGCNA yielded seven modules in all, and 1223 DFU-related modular

genes were identified. GO analysis revealed that inflammatory response,

decidualization, and protein binding were the most highly enriched terms.

These module genes were also enriched in the ErbB signaling, IL-17

signaling, MAPK signaling, growth hormone synthesis, secretion and action,

and tight junction KEGG pathways. Twenty-five DFU-associated ferroposis

genes were obtained by cross-linking with modular genes, which could

distinguish DFU patients from controls. Ultimately, the prediction model

based on machine learning algorithms was well established, with high AUC

values (0.79 of LASSO, 0.80 of SVM, 0.75 of Boruta, 0.70 of XGBoost).MAFG and

MAPK3 were identified by the prediction model as the most highly associated

ferroposis-genes in DFU. Furthermore, the external dataset (GSE29221)

validation revealed that MAPK3 (AUC = 0.81) had superior AUC values than

MAFG (AUC = 0.62).
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Conclusion: As themost related ferroptosis-genes with DFU,MAFG andMAPK3

may be employed as potential therapeutic targets for DFU patients. Moreover,

MAPK3, with higher accuracy, could be the more potential ferroptosis-related

biomarker for further experimental validation.
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Introduction

Diabetic foot ulcer (DFU), one of the most devastating

consequences of diabetes, is a major health concern that

places a serious financial, physical, and mental burden on

sufferers. Extensive diabetic alterations, such as neuropathy

and vascular disease, frequently aggravate the course of DFU

(Teena et al., 2020). Even with recent advances in DFU

treatment, a considerable proportion of individuals experience

chronic trauma as a result of an irreversible process (Chen et al.,

2016). Thus, it is critical to investigate the molecular mechanisms

of DFU and inhibit the creation of chronic trauma in order to

improve the treatment efficiency and prognosis of DFU patients.

Ferroptosis is an iron-dependent programmed cell death that

differs from apoptosis, pyroptosis, and necrosis, being

characterized by excessive iron accumulation and elevated

lipid peroxidation (Stockwell et al., 2017). Induction of

ferroptosis in cancer cells has been proven to be a viable

alternative treatment for tumor disorders that are resistant to

conventional treatments (Hassannia et al., 2019). Since

ferroptosis is reported to be correlated with a variety of

disorders, it has the potential to play a role in the etiology of

DFU. However, the particular regulation mechanism of

ferroptosis in DFU is unknown and requires further

investigation.

In the current study, we employed WGCNA to identify

potential genes in ferroptosis genes linked to specific genes

closely associated to DFU. Finally, utilizing multiple machine

learning methods, a robust prediction model for identifying DFU

patients was established and validated by employing an external

DFU dataset. We investigated the genetic connection among

ferroptosis with DFU. The DFU-related ferroptosis genes could

be employed as biomarkers for disease diagnosis and therapy

monitoring, as well as a reference for early therapeutic targets

for DFU.

Materials and methods

Microarray data download and data
preprocessing

We used the “GEOquery” package of R software (version

4.1.2, http://r-project.org/) to download the DFU sample source

from the Gene Expression Omnibus (GEO) (https://www.ncbi.

nlm.nih.gov/geo/) database. The DFU-related expression profiles

GSE147890, GSE80178, GSE7014, and GSE29221 were all from

Homo sapiens (Table 1). The GSE147890 and GSE80178 gene

expression matrices were then combined to remove inter-batch

differences using the “sva” package and to drop samples where

inter-group differences could not be removed between groups

(Deng et al., 2020). A flow diagram of the study is shown in

Figure 1.

Weighted gene co-expression network
analysis.

Firstly, a soft threshold for network construction was

selected to construct a gene co-expression network by an R

package called “weighted gene co-expression network analysis

(WGCNA)” (Wang et al., 2022). The adjacency matrix was

constructed by weighting coefficients, and the adjacency

matrix was a continuous value between 0 and 1, which

conformed to the power-law distribution and was closer to

the real biological state. Secondly, a scale-free network was

constructed to hierarchically cluster the modules, identify the

gene co-expression modules, and assign them to different

colors for visualization. Finally, the correlation between

sample phenotypes and each module was assessed by

Pearson correlation analysis, and the modules with the

closest DFU were screened out. The genes most closely

associated with DFU were selected according to the

appropriate Gene Significance (GS) for DFU and Module

Membership (MM) in this module.

DFU-related gene analysis and
enrichment analysis.

The “ComplexHeatmap” package was used to heat map

DFU-related genes and assess the efficiency of genes by

principal component analysis (PCA). The Gene Ontology

(GO) analysis, including biological processes (BP), molecular

functions (MF), and cellular components (CC), was a widely used

functional enrichment method. Kyoto Encyclopedia of Genes

and Genomes (KEGG) was a database that stores a large number

of biological functions, genomes, chemicals, and drug-related
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pathways. The Database for Annotation, Visualization and

Integrated Discovery (DAVID, https://david.ncifcrf.gov/)

(Huang et al., 2009a; Huang et al., 2009b) database was used

for GO and KEGG enrichment analysis of DFU-related genes

(Zheng et al., 2020), and the results were visualized using the

“ggplot2” package.

Protein-protein interaction creation and
identification of hub genes.

Search Tools for the Retrieval of Interacting Genes

(STRING, http://string-db.org) (Szklarczyk et al., 2021) was

an online tool for predicting the protein-protein interaction

TABLE 1 Details for datasets.

Data set Category Annotated from Count Annotations

Driver Regulator Gene 108 150

Suppressor Regulator Gene 69 109

Marker Marker Gene 111 123

Inducer Regulator Small molecule 35 54

Inhibitor Regulator Small molecule 41 46

Ferroptosis aggravates disease Ferroptosis-disease association Ferroptosis and disease 49 58

Ferroptosis alleviates disease Ferroptosis-disease association Ferroptosis and disease 46 77

FIGURE 1
The workflow chart of data preparation, processing, analysis, and validation.
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(PPI), which was implemented to construct a PPI network

with a confidence score of >0.40 and visualize the network

model with Cytoscape V3.8.0 software. Nine algorithms

(Betweenness, Radiality, MNC, EPC, DMNC, MCC,

Degree, Clustering Coefficient, Closeness) in the

CytoHubba plugin were used to evaluate the importance of

each node and to select the common genes in the top 30 nodes

of each algorithm as hub genes (Liu et al., 2020).

Subsequently, enrichment analysis of the hub gene

including GO, KEGG, and Disease Ontology (DO) was

performed by the R package “clusterProfiler” and FDR < 0.

05 was considered significant.

Identification and analysis of ferroptosis-
related genes.

Ferroptosis-related genes were obtained for further

analysis according to the FerrDb database (http://www.

zhounan.org/ferrdb/) (Zhou and Bao, 2020) (Table 2), an

artificial database collection of ferroptosis-related markers

and diseases. Genes in the intersection of ferroptosis-

related genes and those in the modules most closely

associated with DFU for WGCNA were taken using the

online tool Bioinformatics & Evolutionary Genomics

(http://bioinformatics.psb.ugent.be/webtools/Venn/), and

genes in the intersection were considered to be specifically

expressed in DFU patients with ferroptosis-related genes.

Subsequently, correlations between ferroptosis-related genes

were assessed using the “corrplot” package. Heat maps and

PCA were visualized using R software, respectively.

Robust predictive model built using
multiple machine learning methods

The R packages “glmnet,” “caret,” “Boruta” and “XGBoost”

were used to build a machine learning model (Huang et al., 2022).

The least absolute shrinkage and selection operator (LASSO),

Support Vector Machine Recursive Feature Elimination (SVM-

RFE), Boruta, and extreme gradient boosting (XGBoost) analyses

were performed on the entire dataset to screen for key

ferroptosis-related genes. In addition, the GSE7014 dataset

was used as an external dataset to validate the prediction

model, and the prediction efficiency of the model was

evaluated by receiver operating characteristic (ROC) curves.

Consequently, the intersection genes between genes obtained

by model analysis and hub genes were considered the key

ferroptosis-related genes associated with DFU. Finally, the

“pROC” package was employed to assess the efficiency of key

ferroptosis-related genes as therapeutic markers in the

GSE29221 external dataset.

Results

Data preprocessing

The two data sets GSE147890 and GSE80178 were

combined and normalized to remove the batch differences

and remove the abnormal samples GSM2114232,

GSM2114233 (Figure 2). In addition, the two external

datasets GSE7014 and GSE29221 were normalized with an

external validation dataset using the “limma” package

(Supplementary Figure S1).

Weighted gene co-expression network
analysis and identification of core
modules.

In order to construct the scale-free network, we chose

20 as a soft threshold (R2 = 0.85) (Figure 3A). Next, the

adjacency matrix and the topological overlap matrix were

constructed according to the expression matrix. Based on

the correlation clustering, the module signature genes that

can represent the overall gene expression level of each module

were then calculated. A total of seven signature modules were

identified and labeled with different colors (Figure 3B).

Subsequently, we analyzed the correlation between the

modules and the sample phenotypes, and we found the

largest correlation among the blue module and DFU (r =

0.79, P = 3e-05) (Figure 3C). The correlation between genes in

the blue module and DFU genes was cor = 0.76, p < 1e-200;

146 genes most associated with DFU were selected from this

module based on GS = 0.7 and MM = 0.8 (Figure 3D).

TABLE 2 Details for Ferroptosis genes.

Dataset Platform Count Diabetic Control

GSE147890 GPL571 [HG-U133A_2] Affymetrix Human Genome U133A 2.0 Array 26 12 14

GSE80178 GPL16686 [HuGene-2_0-st] Affymetrix Human Gene 2.0 ST Array 12 9 3

GSE7014 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 36 30 6

GSE29221 GPL6947 Illumina HumanHT-12 V3.0 expression beadchip 24 12 12
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DFU-related gene analysis and
enrichment analysis

The 146 DFU-related genes were presented in a heat map to

reveal that they were significantly associatedwithDFU compared to

control samples (Figure 4A). PCA indicated that these genes

allowed us to distinguish DFU samples from control samples

(Figure 4B). The results of the significant GO enrichment

analysis of 146 DFU-related genes, including BP, CC, MF, were

illustrated in Figure 4C. The results of GO analysis were mainly

related to inflammation, protein binding, and kinase activity, such

as inflammatory response, coronification, decidualization, protein

binding, protein serine/threonine kinase activity, cytosol

(Supplementary Table S1). KEGG enrichment analysis

demonstrated that these genes were mainly enriched in the ErbB

signaling pathway, IL-17 signaling pathway, MAPK signaling

pathway, growth hormone synthesis, secretion and action, and

other pathways related to proliferation and differentiation

(Figure 4D). Detailed results of the KEGG analysis are shown in

Supplementary Table S2. The results of the enrichment analysis of

DFU-related genes suggested that these genes were of interest for

our study and could be further investigated.

FIGURE 2
Normalization of gene expression data in samples (A). Before normalization (B). After normalization.
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Protein-protein interaction analysis and
identification of hub genes

The PPI data of 146 DFU-related genes were obtained from

the STRING database, then the results were visualized and

presented using Cytoscape V3.8.0 (Figure 5A). A total of

14 genes were identified as hub genes based on nine

algorithms (Betweenness, Radiality, MNC, EPC, DMNC,

MCC, Degree, Clustering Coefficient, Closeness), which were

common to the top 30 genes in these algorithms (Figure 5B). The

FIGURE 3
Construction and module analysis of weighted gene co-expression network analysis (WGCNA). (A) Network topology analysis under various
soft-threshold powers. Left: Analysis of the scale-free index for various soft-threshold powers (β). Right: Analysis of themean connectivity for various
soft-threshold powers. (B) Identification of co-expression genemodules. The branches of the dendrogram cluster into sevenmodules and each one
was labeled in a unique color. (C) A heatmap showing the correlation between each module eigengene and phenotype. (D) The relevance of
members in the blue module and DFU.
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PPI network of 14 hub genes was presented in Figure 5C.

Subsequently, we used the “ggcorrplot” package to plot the

correlation heat map between hub genes, and the results

indicated that the genes were positively correlated with each

other (Figure 5D).

Enrichment analysis of hub genes

To further analyze the association between hub genes and

DFU, the GO, KEGG, and DO enrichment analysis were

performed on the hub genes. The results of GO analysis

showed that hub genes were mainly related to decidualization,

peptidyl-tyrosine phosphorylation, and extrinsic components of

the synaptic membrane. Phosphorylated amino acid binding

(Figures 6A–C). The DO analysis results were illustrated in

Figure 6D. The hub genes were enriched for diseases

including bacterial infectious disease, parasitic infectious

disease, musculoskeletal system cancer, and other endothelial,

infection-related diseases. Moreover, we also submitted the hub

genes to KEGG pathway enrichment analysis. As shown in

Figures 6E–H, the involved pathways were mainly enriched in

the MAPK signaling pathway, the IL-17 signaling pathway, and

growth hormone synthesis, secretion and action. The detailed

analysis results of GO, DO, and KEGG are shown in

Supplementary Table S3.

DFU-related module genes with
ferroptosis-related genes

We overlapped DFU-related genes extracted from the blue

module of WGCNA analysis with ferroptosis-related genes

extracted from the FerrDb database, and 25 overlapping genes

were obtained, namely DFU-related ferroptosis genes, as

presented by the Venn diagram (Figure 7A). In addition, PCA

FIGURE 4
DFU-related genes analysis (A). The heat map of the DFU-related gene expression between DFU samples and control samples (B) PCA of DFU-
related genes. Principal component 1 (PC1) and principal component 2 (PC2) are used as the X-axis and Y-axis, respectively, to draw the scatter
diagram, where each point represents a sample (C). GO analysis divided DFU-related genes into three groups as follows: biological processes (red),
cell components (blue), and molecular functions (green). The size of the dot represents the number of gene counts (D) KEGG pathway
enrichment analysis of DFU-related genes. The size of the dot represents the number of gene counts, and the color of the dot represents the P-value.
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revealed that these genes enabled us to effectively distinguish

DFU samples from control samples (Figure 7B). Moreover, the

heat map drawn could clearly visualize the differences in the

expression of these genes among the different samples

(Figure 7C). Finally, the correlation network diagram revealed

significant inter-correlation between the 25 genes (Figure 7D).

Construction and validation of an optimal
ferroptosis-related dfu prediction model

Four validated machine learning algorithms (LASSO, SVM-

RFE, Boruta, XGBoost) were applied to identify key genes from

25 ferroptosis genes associated with DFU, yielding

8,12,8,11 genes, respectively (Figures 8A–D). Subsequently, we

evaluated the efficiency of the four supervised machine learning

algorithms using ROC curves based on the external dataset

GSE7014, and the AUC values of all four algorithms were

greater than 0.7, considering the prediction model results

credible (Figure 8E).

Key ferroptosis genes associated with DFU

Genes that commonly belonged to the key ferroptosis genes

identified by the four machine learning algorithms and 14 hub

genes were considered to be the ferroptosis genes most closely

associated with DFU, resulting in two genes (MAFG and

MAPK3) (Figure 9A). Furthermore, the box plot results

demonstrated that MAPK3 and MAFG were both highly

FIGURE 5
PPI network and hub genes in DFU (A) PPI network of DFU-related genes. The size and color of the nodes and edges corresponding to each
gene were determined according to the degree and combine-score of interaction, respectively. Color gradients represent the variation of the
degrees and combine-score of each gene from high to low (B). Identification of the hub gene. The hub genes were identified by nine algorithms
based onCytoHubba (C). PPI network of hub genes. The size and color of the nodes corresponding to each genewere determined according to
the degree of interaction. Color gradients represent the variation of the degrees of each gene from high to low (D). Correlation heat map of hub
genes. The darker the color, the stronger the correlation.
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FIGURE 6
Enrichment analysis of hub genes. (A–C) GO enrichment analysis of hub genes (A: BP, (B) CC, (C) MF). The size of the node respondents the
number of the gene counts. (D)DO enrichment analysis of hub genes; the size of the dot represents the number of gene counts, and the color of the
dot represents the P-value. (E) KEGG enrichment analysis of hub genes; the color of the bar res represents the P-value.(F–H). MAPK signaling
pathway; IL-17 signaling pathway;MAPK signaling pathway; Growth hormone synthesis, secretion and action; Red indicates high expression in
the pathway, and green indicates low expression in the pathway.
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expressed in DFU patients and low in controls (Figure 9B).

Finally, ROC curves were plotted based on the external

validation set data to verify the potential of these two genes as

therapeutic targets for DFU patients. As shown in Figure 9C, the

AUC values of both MAPK3 and MAFG exceeded 0.6, with

MAPK3 (AUC >0.8) being more effective than MAFG as a DFU

therapeutic target.

Discussion

DFU is the leading cause of death in the diabetic population,

so an urgent need exists to find molecular therapeutic targets

with specificity that can help improve the prognosis of patients

and reduce mortality. This study appliedWGCNA to identify the

most relevant model for DFU. Further follow-up analysis was

performed on 146 genes in the model based on the set thresholds.

Functional annotation identified the primary involvement of

these genes in cell proliferation, differentiation, and multiple

classical signaling regulatory pathways, including cornification,

protein binding, growth hormone synthesis, secretion, and

action, and the MAPK signaling pathway, indicating that the

main biological processes involved in the progression of DFU

were cell proliferation and differentiation. In addition, we

extracted 14 potential hub genes that contribute most to the

diagnosis of DFU. Further enrichment analysis revealed that

potential hub genes were also mainly enriched in pathways

related to cell proliferation and differentiation.

Ferroptosis is a form of iron-dependent cell death driven by

intracellular iron overload and lipid peroxidation (Kuang et al.,

2020), and its role in physiological and pathogenic processes has

been extensively studied. It has been reported that high

concentrations of serum iron may be a risk factor for the

development of type 2 diabetes, yet the exact mechanism is

not clear (Sha et al., 2021). The relationship between

ferroptosis and DFU has rarely been reported, but the

FIGURE 7
DFU-related ferroptosis genes (A). Venn diagram showing the numbers of overlapped genes between DFU-related module genes and
ferroptosis-related genes (B). PCA of DFU-related ferroptosis genes showing good differentiation power (C). The heat map of the DFU-related
ferroptosis genes expression between DFU samples and control samples (D). The correlation network of DFU-related ferroptosis genes. The darker
the color of the edge, the stronger the correlation.
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correlation does exist. Inhibitors related to ferroptosis had been

shown to play a protective role in the diabetic foot (He et al.,

2022). In addition, studies had shown that paeoniflorin (PF) has

the ability to promote DFU wound healing by activating the

NRF2 related ferroptosis pathway and the NRF2/HO-1 pathway

(Sun et al., 2020). Therefore, exploring the pathogenesis of DFU

due to ferroptosis may provide new therapeutic targets for the

treatment of DFU and other chronic wounds. Our study obtained

25 ferroptosis genes associated with DFU through the WGCNA

and FerrDb databases.

Machine learning has a wide range of applications in the

biomedical field, demonstrating excellent efficiency in clinical

diagnosis and optimal treatment (Huang et al., 2022).

Subsequently, we applied machine learning algorithms to

screen key ferroptosis genes from ferroptosis-related genes

associated with DFU, and finally identified two ferroptosis-

related genes (MAFG and MAPK3) as potentially effective

diagnostic molecules for DFU.

It has been clearly reported that MAF BZIP Transcription

Factor G (MAFG) has a promising potential as a potential

prognostic biomarker in non-small cell lung cancer. MAFG

also can play a role as a molecular biomarker for tumor-

targeted therapy to relieve cisplatin resistance of tumor cancer

cells, improving therapeutic and prognostic efficiency (Vera-

FIGURE 8
Construction and validation of an optimal ferroptosis-related DFU prediction model (A) 8 DFU-related ferroptosis genes obtained using the
LASSO algorithm based on the minimum lambda. (B) 12 DFU-related ferroptosis genes obtained using the SVM algorithm. (C) 8 DFU-related
ferroptosis genes obtained using the Boruta algorithm. (D) 11 DFU-related ferroptosis genes obtained using the XGBoost algorithm (E). Applying
external dataset to validate four predictive models.
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Puente et al., 2018). However, there are few studies related to

MAFG in the pathogenesis of DFU progression, and only a few

reports suggest that MAFG loss improves glucose metabolism

and insulin sensitivity, thus protecting from hyperglycemia

(Pradas-Juni et al., 2020). Our results demonstrated that

MAFG was highly expressed in DFU samples compared to

controls, and we could hypothesize that the high expression of

MAFG had a detrimental effect in DFU. Nevertheless, the specific

mechanism of MAFG in DFU is unclear and further relevant

studies are required to determine whether it can be used as the

therapeutic target.

External dataset validation was employed to assess the

efficiency of both genes as therapeutic target, suggesting that

the accuracy and specificity of MAPK3 was superior to that of

MAFG. (Mitogen-Activated Protein Kinase 3) MAPK3, also

known as extracellular signal-regulated kinase 1 (ERK1), is a

protein-coding gene that encodes a protein belonging to theMAP

kinase family (www.ncbi.nlm.nih.gov/gene/), which are involved

in a variety of cellular processes such as proliferation,

inflammation, and cellular metabolism through

phosphorylation of their target proteins (Kassouf and Sumara,

2020). In this study, high expression ofMAPK3 played a positive

role in variety of the pathways associated with cell proliferation

and differentiation, such as MAPK signaling pathway, growth

hormone synthesis, secretion and action, ErbB signaling

pathway, and GnRH signaling pathway. However, some

studies have shown that overactivation of ERK1/2 is associated

with deleterious effects during obesity and diabetes. The absence

of ERK1/2 in the liver improves systemic insulin and glucose

tolerance (Jiao et al., 2013). It has been recently shown that high

glucose-activated ERK1/2 increases matrix metalloproteinase 9

(MMP9) expression in the skin and contributes to the delayed

healing of DFU wounds (Lang et al., 2021). Additionally, reactive

oxygen species (ROS)-triggered activation of ERK1/2 is involved

in the NETosis process, and diabetes-induced neutrophil

NETosis disrupts wound healing through neutrophil

extracellular traps (NETs) (Yang et al., 2019). Accordingly, we

deduced that high MAPK3 expression has a delayed wound

FIGURE 9
Identification and analysis of key DFU-Related ferroptosis genes (A). Two key DFU-related ferroptosis genes were identified by four machine
learning algorithms and f hub genes (B). Expression of the 2 key DFU-related ferroptosis genes in DFU samples and control samples; the differences
were statistically significant (****: p < 0.0001) (C). Applying external dataset to validate 2 key DFU-related ferroptosis genes.
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healing effect on DFU patients. Considering the adverse effects of

MAPK3, corresponding new molecular therapeutic strategies

should also be developed.

However, there are limitations to this study. Firstly, the

machine learning prediction model in the external validation

cohort affects the accuracy due to the small sample size, leading

to misdiagnosis and missed diagnoses. Thus, the larger DFU

sample size can improve the prediction accuracy. Secondly, the

ferroptosis-related biomarkers identified in this study that have

the potential to be therapeutic targets for DFU require further

literature support and basic experimental validation. FerrDb

database is constantly being updated, and more ferroptosis-

related genes are yet to be discovered.
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