
OPEN

Review

Obesity and cancer, a case for insulin signaling
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Obesity is a worldwide epidemic, with the number of overweight and obese individuals climbing from just over 500 million in 2008
to 1.9 billion in 2014. Type 2 diabetes (T2D), cardiovascular disease and non-alcoholic fatty liver disease have long been associated
with the obese state, whereas cancer is quickly emerging as another pathological consequence of this disease. Globally, at least
2.8 million people die each year from being overweight or obese. It is estimated that by 2020 being overweight or obese will surpass
the health burden of tobacco consumption. Increase in the body mass index (BMI) in overweight (BMI425 kg/m2) and obese
(BMI430 kg/m2) individuals is a result of adipose tissue (AT) expansion, which can lead to fat comprising 450% of the body
weight in the morbidly obese. Extensive research over the last several years has painted a very complex picture of AT biology. One
clear link between AT expansion and etiology of diseases like T2D and cancer is the development of insulin resistance (IR) and
hyperinsulinemia. This review focuses on defining the link between obesity, IR and cancer.
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Facts

� Hyperinsulinemia, along with the other obesity-related
factors, is linked to the development of several types of
cancers.

� Insulin, signaling through insulin receptor A, has direct
oncogenic effects on cancer cells.

� Insulin-lowering drugs, such as metformin, may proof to be
useful in lowering insulin levels and insulin resistance,
decreasing body weight and improving cancer outcomes in
patients with obesity and type 2 diabetes.

Open Questions

� How are the PI3K-AKT and the Ras-MAPK pathways
regulated by INSR-A in normal epithelial cells and in
cancer?

� How should obesity and T2D be treated in order to minimize
the risk of cancer development, specifically keeping in mind
the potential oncogenic effect of hyperinsulinemia?

� What are the effective drugs targeting the molecular
pathways that link obesity and T2D to cancer?

Obesity and Cancer

Insulin is the master regulator of energy storage and
whole-body metabolism (Figure 1). It is produced and
secreted by pancreatic β cells in response to a surge in blood
glucose levels. Insulin stimulates glucose uptake by adipose
tissue (AT) and muscle, whereas suppressing the release of
glucose from the liver. It also stimulates the liver and the
muscle to store excess glucose in the form of glycogen. In
addition to regulating glucose homeostasis, insulin also
induces fat storage. In adipocytes, it inhibits lipolysis while
inducing lipogenesis and fatty acid uptake from the blood
stream. Insulin thus ensures sufficient storage of energy that
can be mobilized during fasting, when insulin levels are low.
Perpetual caloric excess in individuals with obesity

disrupts the intricate balance between energy storage
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and mobilization, leading to desensitization of tissues to
the actions of insulin and the development of IR. The
attenuation of the response of insulin target tissues to
the physiological actions of insulin leads to a compensatory
increase in pancreatic insulin production in an attempt to
reestablish glucose homeostasis and thus overt hyperglyce-
mia. This overproduction of insulin by the pancreatic β cells
and a concomitant increase in serum insulin levels is a
condition called hyperinsulinemia.
Strong clinical and epidemiological evidence links

hyperinsulinemia, along with the other obesity-related factors,
to the development of several types of cancers, including
those of the breast, endometrium, colon, liver, esophagus,
kidney and pancreas.1–7 International Agency for Research on
Cancer estimated that obesity is a cause of 11% of colon,
9% of postmenopausal breast, 39% of endometrial, 25% of
kidney and 37% of esophageal cancer cases.7 A prospective
study of 900 000 adults in the United States reported that
obesity accounts for 14% of deaths from cancer in men and
20% in women, directly linking excess body weight to cancer
mortality.3 This study also highlighted a dose–response
relationship between obesity and cancer, finding an increase
in cancer risk with increasing body mass index (BMI). Finally,
an analysis of the global burden of cancer has identified that
3.6% of all new cancers are attributable to BMI.8 Of particular
interest, weight loss following a lifestyle change or bariatric
surgery reduces cancer risk,9–11 whereas in the Swedish
Obesity Subjects study, women who lost 430% of their body
weight had a marked 41% reduction in cancer risk.11 Although
some recent research suggests that the hereditary and
environmental factors contribute less to the cell transformation
than the cell’s division history,12 it is likely that the interplay of
the cumulative changes associated with cell’s proliferative
past, in the context of the genetic underpinning and the
environmental factors such as obesity, underlies the develop-
ment of most cancers. The beneficial effects of weight loss
raise the possibility that the adverse impact of obesity on

cancer can be reversed and suggests that obesity-directed
therapies may impact cancer treatment and survival.

The Insulin Signaling Pathway

The diverse cellular actions of insulin are initiated by its binding
to the insulin receptor (INSR) on the surface of target cells
(Figure 2). The INSR signaling pathway mediates both the
metabolic and the mitogenic effects of insulin and its
deregulation is central to the development of insulin resistance
(IR). INSR is a heterotetramer composed of two extracellular
insulin-binding α subunits (130 kDa), covalently linked to two
transmembrane β subunits (95 kDa) with intrinsic tyrosine
kinase activity.13 There are two isoforms of INSR, INSR-A and
INSR-B, differing by the presence (INSR-B) or the absence
(INSR-A) of exon 11, which encodes a 12 amino-acid stretch
at the C-terminal end of the α subunit (Figure 3).14–16 The lack
of exon 11 in INSR-A allows this receptor to bind not only
insulin but also insulin-like growth factor II (IGFII) and
pro-insulin with high affinity.17,18 Indeed, INSR-A has a
1.7-fold higher affinity for insulin than INSR-B and is
internalized and recycled faster than INSR-B.19–21

The expression of the two isoforms is regulated devel-
opmentally and in a tissue-specific manner. The INSR-A
isoform is predominantly expressed in the fetal tissueswhere it
regulates embryonic growth. Remarkably, INSR-A is also the
predominant isoform overexpressed by many cancer
cells.22–24 In human embryos, lack of insulin, as in the
cases of pancreatic agenesis, lack of β cells or pancreatic
islets, or transient neonatal diabetes, results in severe growth
retardation.25–27 INSR deficiency during embryonic develop-
ment results in comparable growth retardation, as seen in the
infants with the Donohue syndrome.28 INSR-A also mediates
the mitogenic signaling in the regulation of pancreatic β-cell
proliferation, and is able to protect the myeloid 32D cells from
apoptosis upon IL-3 removal more effectively than
INSR-B.23,29 INSR-B is predominantly expressed in the
differentiated adult tissues, particularly the liver, the fat and
the muscle, where it regulates the metabolic effects of insulin.
An abnormally high INSR-A:INSR-B ratio in muscle cells of
patientswith myotonic dystrophy appears to be responsible for
the IR seen in these patients, further highlighting the functional
differences between the two isoforms of the receptor.30 In
mice, INSR deletion leads to 10–20% growth retardation and
metabolic abnormalities that develop after birth.31

INSR can form hybrid receptors from INSR-A or B but also
with a related tyrosine kinase, insulin-like growth factor 1
receptor (IGF1R), thus resulting in a complex, tissue-specific
regulation of the metabolic and the mitogenic signaling
pathways. Upon insulin binding, INSR undergoes a conforma-
tional change and autophosphorylates several residues in the
C-terminal tail of the β subunit, leading to recruitment and
further phosphorylation of a number of effector proteins.
Insulin receptor substrates (IRSs), which bind INSR and are
directly phosphorylated by it on tyrosine residues, present
sites for binding of adaptor molecules containing Src
homology 2 (SH2) and phosphotyrosine-binding (PTB)
domains, which further propagate the signals.32,33 One
such effector is the regulatory subunit (p85) of phosphoinosi-
tide 3-kinase (PI3K), which, when bound to tyrosine

Figure 1 The role of insulin in the control of whole-body metabolism
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phosphorylated IRS, relieves inhibition of the catalytic PI3K
subunit (p110) leading to its activation.34 PI3K then phosphor-
ylates phosphatidylinositol 4,5-bisphosphate (PIP2) to
produce phosphatidylinositol 3,4,5-triphosphate (PIP3), a cell
membrane-associated lipid second messenger that attracts
proteins containing pleckstrin homology (PH) domains,
including protein kinase B/AKT (PKB/AKT) and the
3-phosphoinositide-dependent protein kinase 1 (PDK1).35

PIP3 recruits AKTand PDK1 to the plasma membrane where
PDK1 phosphorylates AKTon threonine 308 (T308), leading to
its partial activation.36 Mammalian target of rapamycin
complex 2 (mTORC2) then phosphorylates AKT on serine
473 (S473), fully activating the protein.37

AKT signaling through numerous downstream targets
governs the metabolic effects of insulin. For example, the
AKT substrate of 160 kDa (AS160) regulates the glucose
transporter 4 (GLUT4) translocation to the plasmamembrane,
a process that initiates cellular glucose uptake in response to
insulin.38 Phosphorylation of the phosphofructokinase 2 by
AKT induces glycolysis, enabling cells to metabolize glucose
into usable energy in the form of adenosine triphosphate
(ATP).39 AKT also phosphorylates and inhibits the glycogen
synthase kinase 3 (GSK3), a negative regulator of glycogen
synthesis and lipogenesis.40,41 In the liver, PDK1-dependent
disassembly of the cAMP-response-element-binding protein

(CREB) complex and phosphorylation of the forkhead box O
(FOXO) by AKT suppress gluconeogenesis.42–44 Finally, AKT
phosphorylates and downregulates the GTPase activator
protein (GAP) activity of tuberous sclerosis complex 2
(TSC2) toward Ras homolog enriched in brain (Rheb), a G
protein that regulates the activity of mammalian target of
rapamycin complex 1 (mTORC1).45–48 This allows for a Rheb-
mediated activation of mTORC1, which in turn phosphorylates
the sterol regulatory element-binding protein 1c (SREBP1c), a
transcription factor that induces the transcription of genes
involved in lipogenesis and represses those involved in
lipolysis.49,50

The PI3K-AKT pathway also mediates some of the
mitogenic effects of insulin. mTORC1 regulates cell growth
not only through SREBP1-mediated lipid synthesis but also by
controlling mRNA translation, via direct phosphorylation of the
S6 kinase (p70S6K) and the 4E binding proteins (4EBPs).51,52

In addition, AKT-mediated phosphorylation and deactivation of
the transcription factor FOXO results in its nuclear export and
proteasomal degradation, thus releasing cells from
FOXO-mediated cell cycle arrest.53–55 Deactivation of FOXO,
along with another target of Akt activity, the BCL2-associated
agonist of cell death (BAD), coordinately represses the cellular
apoptotic program.56 Finally, AKT-mediated inhibition of GSK3
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results in nuclear accumulation of cyclin D1, which regulates
G1/S phase transition.57

The mitogenic effects of insulin are mainly mediated by the
recruitment of SH2 domain-containing adaptor (SHC) to INSR
and activation of the rat sarcoma-mitogen-activated protein
kinase/ERK (Ras-MAPK/ERK) signaling pathway.58 SHC
interacts with the activated INSR via its PTB domain and
recruits growth factor receptor bound 2 – son of sevenless
(GRB2-SOS) complexes to the cell membrane where SOS
acts as a guanine nucleotide exchange factor (GEF) for Ras,
converting GDP-bound Ras into the active GTP-bound
form.59–62 Ras may also be activated through the interaction
of the GRB2-SOS complex with IRSs.62 Ras then recruits and
activates Raf, which phosphorylates and activates MEK,
which in turn phosphorylates and activates MAPK/ERK.63,64

Activated MAPK translocates to the nucleus where it
phosphorylates several transcription factors that regulate
genes involved in cell growth, proliferation, differentiation and
survival.65 Activated Ras can also feed into the PI3K-AKT
signaling pathway through its direct interaction with PI3K
p110, independently of p85.66 Multiple negative feedback
loops and crosstalk between the PI3K-AKT and RAS-MAPK

pathways orchestrate the dynamic and intricate tissue-specific
effects of insulin, governing both cell metabolism and
proliferation.
How the two isoforms of INSR differentially activate the

mitogenic versus the metabolic signaling pathways in cells is
under active investigation, especially as many cancer cells
overexpress INSR-A. In the pancreatic β cells, insulin
upregulates the expression of its own gene through INSR-A
and the IRS2-PI3K class Ia-mTORC1-p70S6K signaling
pathway,67,68 whereas the upregulation of the glucokinase
(βGK) gene requires the INSR-B signaling through the PI3K
class II C2α-PDK1-PKB/AKT signaling pathway.69 Work in
MEFs engineered to only express either INSR-A or INSR-B
(R- cells), revealed that long-acting insulin analogs (adminis-
tered to many patients with diabetes) preferentially stimulated
cell proliferation and led to higher ERK:AKT phosphorylation
ratios through INSR-A.70 Differential activation of the signaling
pathways by the two INSR isoforms can, at least in part, be
attributed to their distinct localization within the plasma
membrane and discrete internalization and recycling
dynamics.21,71
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Insulin Signaling and Cancer

INSR is often overexpressed in tumor cells, particularly that of
the breast.72–76 Increased INSR expression in breast tumors
is associated with poor survival in patients.74 INSR is also
overexpressed and highly phosphorylated in mammary
tumors from diabetic mice.77 Preferential expression of the
INSR-A isoform has been demonstrated in cancers of the
breast, lung, colon, ovaries, endometrium, thyroid and
muscle.18,73,78–82 In vitro, INSR-A has been shown to be
essential for the growth and survival of many cancer cell lines,
including those of the breast.82–85 Overexpression of INSR-A
in NIH 3T3 fibroblasts or in immortalized human breast
epithelial cells, induced a ligand-dependent transformed
phenotype, which could be reversed with anti-INSR
antibodies.86,87 INSR is also essential for virus-induced
transformation of vascular endothelial cells.88 Finally, the
knockdown of INSR in MDA-MB-435 breast cancer cell line
results in smaller xenograft tumors and fewer pulmonary
metastases.89

A pathway initiated by the IGFIR receptor operates in
parallel to the INSR, sharing several downstream
components. This pathway can be activated by three ligands:
insulin, IGFI and IGFII (Figure 3). Hyperinsulinemia has been
shown to increase hepatic production and bioavailability of
IGFI, in part by inhibiting hepatic production of IGF binding
proteins 1 and 2 (IGFBP1 and IGFBP2), which sequester IGFs
in the serum.90,91 This excess IGFI may hyperactivate IGF1R
and INSR/IGFIR and their proliferative and anti-apoptotic
programs in both premalignant and malignant tissues. Strong
evidence for a direct and independent impact of hyperinsuli-
nemia on cancer development came out of studies in the MKR
mice.77 These animals express a dominant negative form of
IGF1R in the muscle, thus disrupting signaling through the
IGF1R receptors and INSR/IGF1R hybrid receptors. This
results in severe muscle IR and systemic hyperinsulinemia,
without obesity, hyperglycemia or hyperlipidemia, thus
allowing an assessment of the impact of high insulin levels
on cancer, without the confounding effects of other obesity-
related factors. When implanted with xenografts, MKR mice
formed larger mammary tumors, with increased lung
metastases compared with their non-hyperinsulinemic
wild-type counterparts. Chronic treatment of MKR mice with a
fast-acting insulin analog (AspB10) results in even bigger
tumors and a further increase in INSR but not IGF1R
phosphorylation. In this model, tumors display greater INSR
but not IGF1R phosphorylation.92,93 Accordingly, knockdown
of INSR, but not IGF1R, in mammary carcinomaMvt-1 cell line
led to the considerably smaller xenografted tumors, both in
wild-type and hypersinsulinemic mice.94 Similarly, in breast
cancer patients, increased INSRbut not IGFIR expression and
higher phosphorylation of INSR/IGFIR hybrid receptors
correlate with poor survival.74

In addition to the possible direct oncogenic effects of insulin
on the proliferative and anti-apoptotic signaling in cancer
cells, insulin is also implicated in various aspects of the
maintenance of whole-body homeostasis, including the action
of sex hormones, which may contribute to carcinogenesis. For
over 100 years, sex hormones have been known to affect
cancer development and progression.95 Hyperinsulinemia

inhibits hepatic production and secretion of the sex
hormone-binding globulin (SHBG; Figure 3).96,97 A reduction
in serum SHBG results in increased bioavailability of estradiol
(in men and in women) and testosterone (in women only).98,99

High insulin levels can also increase ovarian and adrenal
androgen production.100 Moreover, adipocytes express a
number of sex steroid stabilizing enzymes that convert
androgenic precursors into estrogens, thus AT can act as a
sink or a source of lipid-soluble sex hormones.101 Remarkably,
AT is the main site of estrogen production in men and
postmenopausal women.102,103 Considering that 470% of all
breast cancers express the estrogen receptor (ER) and that
activation of this receptor initiates a proliferative and anti-
apoptotic transcription program, in such tumors, deregulated
insulin signaling and its effects on AT may have considerable
impact on prognosis and outcome.99,104

Hyperinsulinemia Drugs as Cancer Therapeutics

Metformin is the most commonly used drug for treatment of
type 2 diabetes (T2D). It is cheap, widely available and well
tolerated. Growing preclinical, clinical and epidemiologic
evidence suggests that metformin may also prove to be a
valuable drug for cancer therapy. Patients with diabetes that
are treated with metformin have a lower incidence and
mortality of breast, pancreatic, hepatocellular and colorectal
cancer.105–110 Metformin may impact tumor cells via direct and
indirect mechanisms, both involving the activation of 5′-AMP-
activated protein kinase (AMPK), the major cellular sensor of
energy stress. Metformin is transported into cells via the
organic cation transporter 1 (OCT1), where it accumulates in
the mitochondria and inhibits the complex 1 of the mitochon-
drial respiratory chain.111,112 Inhibition of mitochondrial ATP
synthesis by metformin leads to a rise in intracellular AMP,
which binds AMPK and facilitates its phosphorylation by the
liver kinase B1 (LKB1) on threonine 172, thus activating the
protein.113,114 In the liver, AMPK-mediated suppression of
gluconeogenesis results in a decrease in the levels of fasting
blood glucose, leading to a reduction in circulating insulin
levels and resensitization of insulin target tissues to the action
of insulin.115,116

A decrease in circulating insulin levels may also result in the
downregulation of INSR signaling pathways in cancers
expressing INSR and attenuation of the proliferative and
anti-apoptotic signals117,118 Supporting such a possibility,
non-diabetic breast cancer patients given metformin for
6 months displayed an average 22% reduction in insulin
levels.119 Moreover, a 2-week administration of metformin in
between diagnosis and surgery led to a reduction in circulating
insulin levels, a decrease in INSR expression and down-
regulation of AKT and MAPK signaling pathways in their
tumors.117

Metformin may also have direct effects on tumor cells,
involving AMPK-mediated stabilization of TSC2 and
concomitant inhibition of mTORC1. This results in the
downregulation of p70S6K and 4EBP1 activities and inhibition
of protein synthesis and cell proliferation.120–123 Limited
evidence also suggests that there may be other, AMPK
independent, direct effects of metformin on cancer cells.124

In vitro data on metformin action should be interpreted with
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caution though, as the concentrations of the drug used in such
studies far exceed tolerable doses achievable in humans.125

To further probe the utility of metformin in cancer therapy,
the NCIC Clinical Trials Group, as part of the North American
Breast Cancer Group, is leading an ongoing phase III,
randomized and placebo-controlled clinical trial (MA.32).115

The effect of metformin on disease-free survival and other
outcomes ismonitored in 3649 non-diabetic womenwith early-
stage breast cancer receiving metformin versus placebo for 5
years. Analyses of key metabolic parameters after 6 months of
treatment showed that women on metformin have a reduction
in body weight (−3.0%), glucose (−3.8%), insulin (−11.1%), IR
(homeostasis model assessment; − 17.1%) and leptin
(−20.2%). Furthermore, there was a significant reduction in
the levels of highly sensitive C-reactive protein (−6.7%), a
marker of chronic inflammation. Further analyses in this cohort
are aimed at identifying the link(s) between metformin’s
metabolic and anti-inflammatory impact on cancer-free
survival.

Sources of IR in Obesity

A series of confounding factors and a complex interplay
between many tissues contributes to the development of IR
and hyperinsulinemia in obesity. The mechanisms have not
been fully elucidated, but the major factors center on the
changes in AT biology, disruption of the normal endocrine
function of adipocytes, as well as deregulated lipolysis and
overproduction of free fatty acids (FFAs; Figure 4).
AT is the body’s main energy reserve. There are two major

types of AT, white AT (WAT) and brown AT (BAT). BAT is
primarily responsible for heat production in infants, although

small BAT depots have recently also been identified in
adults.126 The majority of body fat is stored in WAT, where
adipocytes store energy in the form of triglycerides (TAGs).
When there is energetic demand, TAGs are broken down into
glycerol and FFAs through the process of lipolysis. Adipocytes
then release glycerol and FFAs into the blood stream for
transporting to target tissues, mainly the liver and the muscle.
Oxidative metabolism in these tissues breaks down the FFAs
to produce ATP, whereas gluconeogenesis in the liver converts
glycerol into glucose.
Fat storage is not the only function of AT, as adipocytes are

also secretory cells. They produce a number of hormones and
cytokines, now termed adipokines, which influence AT biology,
as well as cellular metabolism and function in the brain, liver,
muscle, vasculature, reproductive organs and β cells of the
pancreas.127 This function of adipocytes came to light when
leptin was discovered as the gene mutated in obese ob/ob
mice.128 Leptin is a peptide hormone, produced primarily by
the adipocytes, which opposes many actions of insulin. It acts
in the hypothalamus to repress appetite, and in the liver and AT
to stimulate lipolysis and inhibit lipogenesis through activation
of AMPK.129,130 When administered to ob/ob mice or human
patients with a mutation in the leptin gene, leptin lowers blood
glucose levels and resensitizes cells to insulin.131,132 Obesity
in humans often leads to high leptin levels and leptin
resistance.133,134 Adiponectin is another hormone product of
adipocytes.135 In the muscle and liver, adiponectin binding to
its receptor activates two signaling pathways, involving LKB1
and the Ca2+/calmodulin-dependent protein kinase kinase
(CaMKK), which converge on AMPK activation, which then
induces glucose uptake and lipolysis, inhibits gluconeogen-
esis and promotes FFA oxidation.136,137 Adiponectin also

Figure 4 The sources of IR in obesity
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sensitizes cells to the action of insulin by inducing transcription
of IRS and GLUT4, as well as translocation of GLUT4 to the
membrane.138–141 Paradoxically, adiponectin levels are low in
patientswith obesity and/or T2D, which likely contributes to the
development of IR.142,143 A perturbed balance in leptin and
adiponectin levels is a hallmark of obesity and IR.
Adipocytes also produce pro-inflammatory cytokines, such

as the tumor necrosis factor alpha (TNFα), monocyte
chemoattractant protein 1 (MCP-1), interleukins 1β and 6
(IL1β and IL6) and others.144–146 TNFα, like leptin, stimulates
lipolysis and inhibits lipogenesis in AT.147 Enlarged adipocytes
from the obese rodents and humans overexpress TNFα, which
is thought to have a major role in the development of IR.148,149

In the muscle, TNFα leads to activation of the Jun N-terminal
kinase 1 (JNK1) and mitogen-activated protein kinase kinase
kinase kinase 4 (MAP4K4) pathway, which inhibits GLUT4
translocation to the membrane and induces inhibitory serine
(S270, S307 and S636/639) phosphorylation of IRSs, thereby
inhibiting INSR signaling.150–155 In adipocytes, TNFα inhibits
IRS and GLUT4 expression.156 Highlighting the physiological
relevance of these relationships, knockout of TNFα or MCP-1
in high-fat diet-fed mice, or knockdown of MAP4K4 in the
isolated muscles from patients with diabetes, ameliorates
IR.149,150,157 TNFα also impedes expression and protein
stability of the nuclear hormone receptor peroxisome
proliferator-activated receptor gamma (PPARγ).158,159 This
transcription factor regulates expression of genes involved in
lipogenesis and lipid sequestration in adipocytes and thus a
reduction in its expression leads to overproduction of FFAs.
PPARγ-activating thiazolidinediones or the activation of
PPARγ by deletion of NCoR, corepressors of transcription,
can block sensing of cytokines and improve insulin sensitivity
in adipocytes.160,161

MCP-1, which is also overexpressed in AT during obesity,
acts as a chemoattractant for macrophages and other immune
cells that infiltrate AT, leading to the development of
inflammation, another hallmark of obesity and IR.146,162,163

AT of individuals with obesity consists of up to 50% of
macrophages, whereas they only make up 5–10% of AT cells
in lean subjects.164 Macrophages locally secret TNFα, a
process that requires signaling by the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) and
JNK-MAP4K4-AP1 (activator protein 1) pathways.165–167

Indicative of the importance of TNFα in AT biology, knockout
of JNK1 in macrophages partially protects from high-fat diet-
induced IR in mice.167 Consistent with such a notion, anti-
inflammatory drugs like the salsalate, an NF-kB inhibitor, have
shown some efficacy in improving IR in patients with obesity
and T2D.168–170

Rapid expansion of AT mass and enlarged adipocyte size in
obesity impact oxygen delivery and can create hypoxic stress,
with further effects on the development of IR. In adipocytes in
culture, hypoxia leads to reduced INSR and IRS1 tyrosine
phosphorylation, directly affecting their ability to sense
insulin.171 Hypoxia has also been found to affect the glucose
transport machinery via the reduction in AS160 phosphoryla-
tion and eventually lowered GLUT4 expression.171 Finally, low
O2 pressure in adipocytes stabilizes the O2-sensitive
transcription factor hypoxia-inducible factor 1 alpha (HIF1α),
the master regulator of cellular response to hypoxia.172 HIF1α,

in concert with HIF1β, induces expression of TNFα, IL6 and
leptin, whereas repressing expression of adiponectin, further
driving IR development.173,174

Another major hallmark of AT expansion is an increase in
circulating FFA levels, because of elevated lipolysis, and their
uptake by the muscle, liver and pancreatic cells. Excessive
FFA accumulation in these cells results in lipotoxicity and
development of IR.175 There are several hypotheses as to how
excess FFAs lead to IR. One suggests that an increase in
diacyglycerol levels in themuscle, likely due to a backlog in the
FFA reesterification pathway, leads to activation of protein
kinase C theta, beta2 and delta (PKCθ,β2,δ).176–179 These
novel PKCs phosphorylate INSR and IRSs on inhibitory serine
residues thereby reducing their activity. Another hypothesis
suggests that FFAs induce the pro-inflammatory response
through activation of NF-kB signaling and production of pro-
inflammatory cytokines like TNFα, MCP-1, IL6 and IL1β.180

The development of IR in response to FFAs is thus a complex
process, involving deactivation of INSR signaling pathway
components and induction of inflammation and cellular stress.
Insufficiency in AT, as seen in the cases of lipodystrophy,

can also lead to IR. As AT is a storage depot for fat,
physiologically low AT levels lead to elevated circulating
concentrations of TAG and FFAs and development of IR.181,182

Healthy AT is also required for proper secretion and the
physiological balance of adipokines like adopinectin and
leptin, which sensitize cells to insulin.183,184 Leptin replace-
ment therapy is now an approved treatment for patients with
lipodystrophy, and significantly attenuates IR in those
patients.185 Functional AT in proportion to body size is thus
essential for normal insulin sensitivity and whole-body
metabolism.

Outlook and Treatment Options

Special considerations have to be made for the prevention,
detection and treatment of cancers in patients with obesity and
T2D. In 2007, the World Cancer Research Fund/American
Institute for Cancer Research Second Expert Report provided
the guidelines for cancer prevention, with the main recom-
mendation being ‘maintaining a healthy weight throughout
life’.6 Thus, patients should be encouraged to lose weight and
undergo a lifestyle change, incorporating exercise and healthy
diet into their daily lives.
There are several challenges in cancer detection in the

overweight/obese patients. Women with obesity and T2D are
less likely to use the preventative services for cancer
screening.186,187 Among over 700 000 Canadian women,
those with diabetes were 32% less likely to receive routine
mammography screening.186 This highlights a need for better
patient education and organization of primary healthcare to
ensure early cancer detection in this high-risk group. Obesity
is also linked to a reduction in tumor biomarkers, like the
carcinoembryonic antigen in colorectal cancer.188 The ability
to detect cancer in individuals with obesity is further
complicated by the restrictions in the weight and the diameter
of most imaging modalities, as well as poorer quality of the
collected images.189 A considerable challenge in the treat-
ment of cancer in these patients is the ability to achieve proper
chemotherapy dosing. In a study of over 9000 women with
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breast cancer, reduced chemotherapy dosing was found in up
to 40% of patients with obesity.190 Furthermore, patients
with T2D and obesity may present for cancer treatment
with pre-existing renal, cardiovascular or neurological compli-
cations, conditions that can be further exacerbated by the
chemotherapeutic agents. The use of glucocorticoids
should be carefully considered, as they are known to cause
IR, decrease insulin production and secretion, as well as
increase gluconeogenesis and glycogenolysis.191 Inflamma-
tion has long been associated with neoplastic transformation
and the inflammatory cytokines are known to activate
oncogenic signaling in cells. Thus, targeting the obesity-
associated inflammation may reduce the development of IR
while decreasing the oncogenic input from the cytokines
in the tumor microenvironment, together inhibiting cancer
development.192

The ability to treat cancers in patients with obesity and T2D
will hinge on the development of effective drugs targeting the
molecular pathways that link obesity and T2D to cancer. For
example, targeting INSR-A or the PI3K-AKT and/or
RAS-MAPK pathways that are downstream of INSR-A
represents such an option. Moreover, supplementing the
standard of care treatments with metformin or other insulin-
lowering drugs may proof to be useful in lowering insulin levels
and IR, decreasing body weight and improving cancer
outcomes in patients with obesity and T2D.
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