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Introduction
The development of new blood vessels from existing vascula-

ture termed angiogenesis is an essential physiological process 

and is critical for certain pathological disorders including rheu-

matoid arthritis, diabetic retinopathy, atherosclerosis, psoriasis, 

and tumor growth/metastasis (Carmeliet and Jain, 2000; Hanahan 

and Weinberg, 2000; Folkman, 2006). Multiple endogenous 

factors have been implicated in promoting and suppressing 

 angiogenesis, and a balance between pro- and antiangiogenic 

activities determines the angiogenic response.

Both intact proteins and proteolytic fragments can be en-

dogenous angiogenesis inhibitors. Although plasminogen, type 

XVIII collagen (Col XVIII), Col XV, Col IVα1, Col IVα2, 

Col IVα3, and fi bronectin lack antiangiogenic activity, proteo-

lytic cleavage of these proteins yields angiostatin, endostatin, 

 endostatin-like fragment from type XV collagen, arresten, 

canstatin, tumstatin, and anastelin, respectively, which are anti-

angiogenic (Nyberg et al., 2005). Thrombospondin 1 exempli-

fi es an antiangiogenic protein that functions as an intact protein 

(Iruela-Arispe et al., 1991; Sund et al., 2005). A protein precur-

sor and proteolytic product can both be antiangiogenic as illus-

trated by calreticulin and its N-terminal fragment vasostatin 

(Pike et al., 1998, 1999).

Endogenous angiogenesis inhibitors target endothelium 

via suppressing cell proliferation and migration, inducing apop-

tosis, down-regulating proangiogenic factors and signaling 

pathways, and inducing antiangiogenic factors (Abdollahi et al., 

2004; Nyberg et al., 2005; Folkman, 2006). Endogenous 

 angiogenesis inhibitors can antagonize cell surface integrins 

(Sudhakar et al., 2003; Sund et al., 2005). Novel antiangio-

genic mechanisms include impaired tubulin polymerization 

 (Mabjeesh et al., 2003), inhibition of ATP synthase (Moser et al., 

2001), and induction of VEGF receptor (VEGFR) proteolysis 

(Cai et al., 2006).

Our studies to dissect genetic networks initiated by the 

transcription factor GATA-1 in erythroid cells revealed that 

GATA-1 activates transcription of the murine preprotachykinin-B 

gene (Tac-2; Pal et al., 2004), which encodes a neurokinin-B 
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stablishment of angiogenic circuits that orchestrate 

blood vessel development and remodeling requires 

an exquisite balance between the activities of pro- 

and antiangiogenic factors. However, the logic that per-

mits complex signal integration by vascular endothelium 

is poorly understood. We demonstrate that a “neuro peptide,” 

neurokinin-B (NK-B), reversibly inhibits endothelial cell 

 vascular network assembly and opposes angiogenesis 

in the chicken chorioallantoic membrane. Disruption of 

endogenous NK-B signaling promoted angiogenesis. 

Mechanistic analyses defi ned a multicomponent pathway 

in which NK-B signaling converges upon cellular pro-

cesses essential for angiogenesis. NK-B−mediated abla-

tion of Ca2+ oscillations and elevation of 3′–5′ cyclic 

adenosine monophosphate (cAMP) reduced cellular pro-

liferation, migration, and vascular endothelial growth 

factor receptor expression and induced the antiangio-

genic protein calreticulin. Whereas NK-B initiated cer-

tain responses, other activities required additional stimuli 

that increase cAMP. Although NK-B is a neurotransmitter/

neuromodulator and NK-B overexpression character-

izes the pregnancy-associated disorder preeclampsia, 

NK-B had not been linked to vascular remodeling. These 

results establish a conserved mechanism in which NK-B 

instigates multiple activities that collectively oppose vas-

cular remodeling.
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(NK-B) precursor protein (Kotani et al., 1986). The human 

 orthologue TAC-3 is highly induced upon ex vivo differentiation 

of peripheral blood hematopoietic precursors (Pal et al., 2004). 

Tac-2 is also expressed by neurons (Kotani et al., 1986), the 

uterus (Pinto et al., 1999), and syncytiotrophoblasts of the 

 placenta (Page et al., 2000). Biological functions of tachykinins 

include smooth muscle contraction (Leander et al., 1981), vaso-

dilation (Mills et al., 1974), neurotransmission (Otsuka and 

Takahashi, 1977), neurogenic infl ammation (Levine et al., 1984), 

and immune system activation (Payan et al., 1983). NK-B 

 activates NK1, NK2, and NK3 G protein−coupled receptors 

 (Shigemoto et al., 1989; Gerard et al., 1990; Fong et al., 1992). 

As quantitative RT-PCR analysis did not reveal NK receptor ex-

pression in erythroid cells, erythroid cell-derived NK-B might 

act on neighboring cells within the hematopoietic and/or vas-

cular microenvironments. NK receptors are expressed on mouse 

yolk sac endothelial cells (YSECs) and mouse aortic endothelial 

cells, and NK-B induces cAMP accumulation in these cells 

(Pal et al., 2004). NK receptors are also expressed on endothelial 

cells of rat postcapillary venules (Bowden et al., 1994), human 

umbilical vein endothelial cells (HUVECs; Greeno et al., 1993; 

Brownbill et al., 2003), and bovine corpus luteal endothelial 

cells (Brylla et al., 2005). These fi ndings led us to hypothesize 

that NK-B targets endothelial cells, although the ensemble of 

physiological targets and the molecular and physiological con-

sequences were unclear.

Here, we demonstrate that NK-B blocks endothelial cell 

motility, represses VEGFR expression, and induces an antiangio-

genic protein, all of which collectively oppose vascular network 

assembly. NK-B activity is greatly potentiated by thromboxane A2 

(TXA2) signaling or phosphodiesterase inhibition, providing 

 evidence for an antiangiogenic NK-B/TXA2 axis.

Results
NK-B synergizes with TXA2 signaling 
to abrogate vascular network assembly, 
and disruption of endogenous neurokinin 
signaling is angiogenic
Because endothelial cells express NK receptors (Pal et al., 2004), 

we tested whether NK-B regulates endothelial cell proliferation, 

migration, and vascular network assembly. Endothelial cell 

Figure 1. NK-B suppresses endothelial cell motility and vas-
cular network assembly. (A) YSECs and HUVECs were cul-
tured in supplement-free medium for 24 h and treated with 
vehicle or NK-B for 1 h. Cells were incubated with supple-
mented medium containing vehicle or NK-B for 24 h, and 
proliferation was quantitated. The graph depicts the per-
cent increase of proliferation relative to cells grown without 
supplement (mean ± SEM; three independent experiments). 
(B) YSECs and HUVECs were treated with vehicle or NK-B in 
supplement-free medium for 1 and 2 h, respectively, and 
plated on Matrigel with supplemented medium containing the 
same reagents. Cell migration was monitored for 2 h. Migrating 
cells were expressed as a percentage of the total cells (four 
independent experiments). (C) The rate of migrating YSECs 
and HUVECs analyzed in B was measured using Slidebook 4 
software. (D) YSECs and HUVECs were treated with vehicle 
or NK-B for 1 and 2 h, respectively, in supplement-free me-
dium, plated on Matrigel containing supplemented medium, 
and incubated for 16 h at 37°C. Representative pictures are 
shown. (E) The length of tubular structures from three adjacent 
frames was quantitated from three independent experiments. 
The length of the structures in vehicle-treated cells at 16 h was 
designated 100%. Statistical signifi cance was determined rel-
ative to the vehicle-treated condition (*, P < 0.05).
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growth supplement containing 2% fetal calf serum, FGF2, 

EGF, hydrocortisone, and heparin (see online supplemental 

 material, available at http://www.jcb.org/cgi/content/full/

jcb.200603152/DC1) stimulates YSEC and HUVEC prolifera-

tion. NK-B did not inhibit the proliferation response (Fig. 1 A). 

YSECs and HUVECs assemble extensive vascular networks on 

Matrigel containing the supplement. Real-time video micros-

copy revealed that NK-B treatment before culturing cells on 

Matrigel reduced the number of migrating cells (Fig. 1 B; Video 1, 

Vehicle; and Video 2, NK-B) and strongly reduced the motility 

of cells that remained competent to migrate (Fig. 1 C). Importantly, 

the rate and extent of vascular network assembly were sup-

pressed by NK-B (Fig. 1, D and E). We tested another tachykinin, 

substance P (SP; Mills et al., 1974), which was reported to 

 promote HUVEC vascular network assembly and angiogenesis 

(Fan et al., 1993; Ziche et al., 1994; Wiedermann et al., 1996). 

SP did not affect supplement-induced YSEC and HUVEC net-

work assembly (unpublished data).

A consequence of NK receptor activation is elevation of 

 intracellular cAMP (Nakajima et al., 1992). We demonstrated 

that NK-B increases cAMP in YSECs in the presence of the 

phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX; 

Pal et al., 2004). IBMX increased the magnitude of the cAMP 

induction �1.7-fold and converted the transient cAMP induc-

tion into a sustained response (Fig. 2 A). As elevated cAMP 

impairs endothelial cell survival, motility, and angiogenesis 

(Kim et al., 2000, 2002), we tested whether IBMX potentiates 

NK-B activity. Although IBMX or NK-B alone did not affect 

YSEC proliferation (Fig. 1 A), NK-B/IBMX suppressed prolif-

eration (Fig. 2 B). NK-B/IBMX nearly ablated YSEC motility 

(Fig. 2 C; Video 3, IBMX; and Video 4, NK-B/IBMX, available 

at http://www.jcb.org/cgi/content/full/jcb.200603152/DC1). 

Because the motility blockade was prevented by a combination 

of NK1- and NK3-selective small molecule inhibitors (Fig. 2 C 

and Video 5, NK-B/IBMX/NK inhibitors), NK receptor inter-

actions appear to mediate the blockade.

Given the importance of proliferation and motility for 

 vascular network organization, we predicted that NK-B/IBMX 

would severely compromise network assembly. NK-B/IBMX 

abrogated YSEC network assembly on Matrigel (Fig. 2, D and G). 

The NK-B/IBMX−mediated induction of cAMP would be 

 expected to activate PKA and downstream effectors. The PKA 

inhibitor H-89 prevented the NK-B/IBMX−mediated abroga-

tion of vascular network assembly (Fig. 2 G), indicating that 

PKA is required for NK-B/IBMX actions. Replacement of 

 NK-B/IBMX−containing medium with medium lacking 

NK-B/IBMX after 20 h restored network assembly by 36 h 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200603152/DC1),  indicating the lack of cytotoxicity.

Analogous to the IBMX potentiation of NK-B activity, 

we reasoned that physiological factors such as TXA2 that acti-

vate adenylyl cyclase functionally interact with NK-B. NK-B 

(Page et al., 2000) and TXA2 are overexpressed in preeclampsia 

(Walsh, 1985). TXA2 mediates FGF-COX-2−stimulated 

 angio genesis (Daniel et al., 1999) and inhibits VEGF- and 

FGF2-induced endothelial cell migration and vascular network 

formation (Ashton et al., 2004; Ashton and Ware, 2004).

The stable prostaglandin U46619 recapitulates endogenous 

TXA2 signaling (Rocca et al., 2000). Because IBMX potentiation 

is associated with sustained and increased magnitude of the cAMP 

induction, we asked whether U46619 similarly affects cAMP. 

YSECs and HUVECs express TXA2 receptors (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200603152/DC1). 

U46619 increased the magnitude of the cAMP induction, with-

out sustaining the response (Fig. 2 E). NK-B and U46619 

 together (NK-B/U46619; Video 7) abrogated network assembly 

and motility, whereas U46619 alone (Video 6) had no effect 

(Fig. 2, F and G). The U46619 activity required TXA2 receptor 

Figure 2. IBMX and TXA2 potentiate NK-B activity to regulate endothelial 
cell function. (A) YSECs were treated with NK-B or NK-B/IBMX in supplement-
free medium for the indicated times, and cAMP was assayed (mean ± 
SEM; three independent experiments). (B) YSECs were cultured in supple-
ment-free medium for 24 h and treated with vehicle, IBMX, or NK-B/IBMX 
for 1 h. Cells were incubated with supplemented medium containing the same 
reagents for 24 h, and proliferation was quantitated. The graph depicts the 
percent increase of proliferation relative to cells grown in supplement-free 
medium (three independent experiments). (C) YSECs were treated with the 
indicated reagents in supplement-free medium for 1 h and plated on Matri-
gel with supplemented medium containing the same reagents, and motility 
was monitored for 2 h. Migrating cells were expressed as a percentage of 
total cells (three independent experiments). (D) YSECs were treated with 
vehicle, IBMX, or NK-B/IBMX for 1 h in supplement-free medium, plated on 
Matrigel containing supplemented medium, and incubated for 20 h at 
37°C. (E) YSECs were treated with NK-B, U46619, or NK-B/U46619 in 
supplement-free medium. cAMP was quantitated various times thereafter 
(three independent experiments). (F) YSECs were treated with U46619 or 
NK-B/U46619 in supplement-free medium for 1 h, and vascular network 
assembly on Matrigel was assessed. (G) Quantitation of vascular network 
assembly. Statistical signifi cance was determined relative to the vehicle 
condition (*, P < 0.05).
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activation, as the selective TXA2 receptor antagonist SQ29548 

strongly reduced the NK-B/U46619 activity to block vascular 

network assembly (Fig. 2 G). Analogous to NK-B/IBMX, H-89 

signifi cantly reduced the NK-B/U46619 activity to abrogate net-

work assembly (Fig. 2 G). Thus, TXA2 potentiates NK-B activity 

to oppose vascular remodeling.

Endothelial cell subtypes have unique gene expression 

profi les, refl ecting their distinct functional roles (Chi et al., 

2003; Ho et al., 2003). We tested if NK-B/IBMX regulates the 

capacity of human endothelial cells from the umbilical vein 

(HUVEC), aorta (human aortic endothelial cell [HAEC]), and 

neonatal dermis microvasculature (human microvascular endo-

thelial cell [HMVEC]) to assemble vascular networks. NK-B/

IBMX abrogated HUVEC and HAEC network assembly, 

whereas HMVEC vascular network assembly was unaffected 

(Fig. 3 A). The differential responsiveness correlates with NK 

receptor expression. HUVECs and HAECs, but not HMVECs, 

express NK receptors (Fig. 3 B). NK-B/IBMX induced cAMP 

Figure 3. NK-B inhibits vascular remodeling of certain 
 human endothelial cell subtypes. (A) HUVECs, HAECs, and 
HMVECs were treated with IBMX or NK-B/IBMX for 2 h in 
supplement-free medium, plated on Matrigel containing sup-
plemented medium, and incubated for 12 h. (B) Quantitative 
real-time RT-PCR analysis of NK1, NK2, and NK3 receptor 
mRNA levels in HUVECs, HAECs, and HMVECs. The relative 
mRNA levels were normalized by HPRT mRNA levels. The 
plots depict the mRNA ratios in which the ratios obtained 
for the -RT condition were designated as 1 (mean ± SEM; 
three independent experiments). RT, reverse transcriptase. 
(C) HUVECs, HAECs, HMVECs were treated with IBMX with 
or without forskolin or NK-B for 1 h. cAMP was quantitated in 
cell lysates (mean ± SEM; three independent experiments).

Figure 4. NK-B is antiangiogenic and disruption of endoge-
nous neurokinin signaling is angiogenic in the CAM. (A) Methyl-
cellulose containing vehicle, FGF2 (500 ng)/IBMX (100 μg), 
FGF2/NK-B (40 μg) with or without IBMX, FGF2/mNK-B/
IBMX (mNK-B, inactive mutant of NK-B), or a combination of 
NK1- (L733060; 5 μM) and NK3- (SB222200; 2 μM) selec-
tive inhibitors was applied to the CAM of day 7 chicken 
 embryos. After 48 h, digital images were captured, and rep-
resentative images are shown (15–20 eggs were analyzed 
per condition; three to four independent experiments). Bar, 
500 mm. (B) The graph depicts the relative microcirculation 
density. Statistical signifi cance was determined relative to 
the FGF2/IBMX condition, unless bracketed (*, P < 0.05). 
(C) Real-time PCR quantitation of NK1 and NK3 mRNA in 
CAM and chicken embryo (mean ± SEM; three independent 
experiments). RT, reverse transcriptase.
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accumulation in HUVECs and HAECs, but not in HMVECs 

(Fig. 3 C). Direct activation of adenylyl cyclase with forskolin 

induced cAMP similarly in the three cell types. In contrast to 

NK-B/IBMX, 8-Br cAMP and forskolin did not affect HUVEC 

vascular network assembly, whereas NK-B/forskolin and NK-B/

8-Br cAMP abrogated network assembly (Fig. S3, A and B, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200603152/DC1). 

These fi ndings indicate that cAMP induction is necessary but 

insuffi cient for abrogating network assembly.

Vascular network assembly in vitro refl ects the capacity of 

endothelial cells to form blood vessels, but the milieu that regu-

lates angiogenesis in vivo is considerably more complex due 

in part to the three dimensionality of the microenvironment 

(Yancopoulos et al., 2000; Jain, 2003; Rossant and Hirashima, 

2003; Stupack and Cheresh, 2004). An alternative assay uses col-

lagen gels to recapitulate a three-dimensional microenvironment. 

NK-B/IBMX, but not IBMX, abrogated HUVEC vascular net-

work assembly in collagen gels (Fig. S3 C).

To test whether NK-B alone or NK-B/IBMX inhibits 

 angiogenesis in vivo, we asked whether NK-B and NK-B/IBMX 

oppose FGF2-dependent angiogenesis in the chicken chorio-

allantoic membrane (CAM) assay. NK-B inhibited FGF2-

mediated expansion of the microvasculature by �40%, and 

NK-B/IBMX almost completely blocked angiogenesis (Fig. 4, 

A and B). A mutant NK-B (mNK-B) inactive in the Matrigel 

assay (not depicted), in which the methionine residue at position 

2 was substituted with the β amino acid analogue β3-homome-

thionine, did not infl uence FGF2-induced angiogenesis with or 

without IBMX. Thus, the structural integrity of NK-B is crucial 

for antiangiogenic activity.

If NK-B functions physiologically to oppose proangio-

genic factors, blocking endogenous NK-B signaling with NK 

receptor inhibitors should promote angiogenesis. A combina-

tion of NK1- and NK3-selective inhibitors induced a strong 

 angiogenic response equal to FGF2 (Fig. 4, A and B). Based on 

the inhibitor specifi cities (Seabrook et al., 1996; Sarau et al., 

2000), these data provide evidence that endogenous neurokinin 

signaling suppresses endogenous angiogenic pathways. Further-

more, NK-B might function physiologically with other factors 

such as TXA2. Whereas U46619 alone lacked activity in the 

CAM assay, NK-B/U46619 suppressed angiogenesis, and this 

activity was antagonized by the TXA2 receptor antagonist 

SQ29548 (Fig. 4, A and B); SQ29548 was not active in the 

CAM assay (not depicted). Quantitative RT-PCR confi rmed 

NK1 and NK3 expression in the CAM (Fig. 4 C).

Mechanism of NK-B targeting 
of endothelium: suppression 
of intracellular Ca2+ oscillations
The NK receptor inhibitor sensitivity of the NK-B/IBMX−induced 

motility blockade suggested that the blockade requires NK recep-

tor signaling. To genetically assess the role of NK1 and NK3 in 

vascular network assembly, NK1 and NK3 were knocked down 

individually via stable expression of short hairpin RNAs. The 

knockdowns almost completely ablated the respective mRNA 

(Fig. 5 A). Under conditions in which NK1 or NK3 were knocked 

down, the ability of NK-B/IBMX to block network assembly was 

reduced (Fig. 5, B and D). Both NK1 and NK3 are therefore 

 required for NK-B to inhibit network assembly. The role of NK 

receptors in opposing vascular remodeling was further demonstrated 

with NK1- and NK3-selective inhibitors, which prevented NK-B/

IBMX from abrogating network assembly (Fig. 5, C and E).

Tachykinins induce phosphoinositide hydrolysis yielding 

metabolites that mobilize intracellular Ca2+ (Grandordy et al., 

1988; Nakajima et al., 1992). Because dynamic changes in intra-

cellular Ca2+ have an important role in regulating motility 

(Ridley et al., 2003) and differentiation (Spitzer et al., 2000), 

we investigated whether NK-B alters intracellular Ca2+ levels. 

Figure 5. NK receptor requirement for NK-B−mediated abrogation of 
vascular network assembly. (A) Quantitative RT-PCR analysis of NK1 and NK3 
mRNA in YSEC clonal lines stably expressing NK1 (left) and NK3 (right) 
siRNA molecules (RT, reverse transcriptase; two independent experiments). 
(B) Control and siRNA-expressing YSECs were treated with IBMX or NK-B/
IBMX and incubated on Matrigel for 20 h at 37°C. Knocking down either 
NK1 or NK3 reduced the capacity of NK-B/IBMX to abrogate vascular 
network assembly. (C) YSECs were treated with IBMX or NK-B/IBMX with 
or without NK1- (L733060) and NK3- (SB222200) selective inhibitors for 
15 min, followed by NK-B/IBMX, and plated on Matrigel to assess vascu-
lar network assembly. (D and E) Quantitative analysis of vascular network 
assembly. Statistical signifi cance was determined in D and E relative to 
the control vector and untreated conditions, respectively (*, P < 0.05; 
mean ± SEM; three independent experiments).
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The supplement induced Ca2+ oscillations in YSECs, which were 

blocked by NK-B or NK-B/IBMX, but not mNK-B (Fig. 6, 

A and B). Forskolin did not affect the percentage of cells exhibit-

ing oscillations (Fig. 6 B). NK-B–mediated ablation of Ca2+ 

 oscillations is therefore independent of the cAMP response.

If the NK-B−dependent suppression of Ca2+ oscillations 

is functionally important, we reasoned that an independent 

strategy to ablate Ca2+ oscillations should mimic the NK-B 

 activity to oppose vascular network assembly. The Ca2+ chelator 

BAPTA ablated Ca2+ oscillations (Fig. 6 C) and signifi cantly 

reduced network assembly (Fig. 6, D and E), consistent with the 

notion that suppression of Ca2+ oscillations represents a func-

tionally important component of the NK-B mechanism.

Mechanism of NK-B targeting 
of endothelium: VEGF and VEGFR 
down-regulation
FGF2 induces VEGF synthesis in certain contexts (Seghezzi 

et al., 1998), and both YSECs and HUVECs produce more 

VEGF when cultured in FGF2-containing medium (Fig. 7 A). 

We tested whether NK-B opposes FGF2-dependent angiogenesis 

by acting upstream or downstream of FGF2-induced VEGF 

production. NK-B alone, or in the presence of IBMX or U46619, 

prevented supplement-induced VEGF production (Fig. 7 A), 

 indicating that NK-B acts upstream of FGF2-induced VEGF 

production. Furthermore, blocking Ca2+ oscillations with BAPTA 

also inhibited VEGF production (Fig. 7 A, left), indicating that 

NK-B−mediated abrogation of Ca2+ oscillations is important 

for reduced VEGF output.

Because VEGF and FGF2 promote vascular network 

 assembly (Yancopoulos et al., 2000), we tested whether NK-B 

affects expression of Type I (VEGFR1; de Vries et al., 1992) and 

type II (VEGFR2; Matthews et al., 1991) VEGFRs and FGF 

 receptor 1 (FGFR1; Werner et al., 1992). When starved HUVECs 

and YSECs were treated with supplement, VEGFR1 and 

VEGFR2 mRNA increased fi ve- and twofold, respectively, by 6 h 

(Fig. 7 B). NK-B, NK-B/IBMX, and NK-B/U46619 inhibited 

VEGFR1 mRNA induction. NK-B/IBMX and NK-B/U46619, 

but not NK-B alone, inhibited VEGFR2 expression. Analysis 

of VEGFR1 and VEGFR2 protein expression validated the 

mRNA analysis (Fig. 7 C). VEGFR1 and VEGFR2 expression 

were also measured in HUVECs and YSECs plated on Matrigel. 

VEGFR1 and VEGFR2 mRNA increased considerably, and 

NK-B/IBMX strongly suppressed the induction (Fig. 7 D). 

FGFR1 induction in YSECs was not affected by NK-B/IBMX. 

The supplement did not induce FGFR1 expression in HUVECs. 

Because VEGF stimulates endothelial cell proliferation and 

motility (Leung et al., 1989; Waltenberger et al., 1994; Senger 

et al., 1996), VEGFR down-regulation should diminish prolif-

eration, migration, and vascular network assembly.

Figure 6. NK-B ablates Ca2+ oscillations. (A) YSECs were 
loaded with Fluo-4/AM in supplement-free M200 medium 
and plated on Matrigel under various conditions. Intracellular 
Ca2+ was monitored every 15 s. The graphs depict Ca2+ 
 oscillation patterns, plotted as a percentage of fl uorescence 
intensity at time 0 (F0), of two representative cells (two 
 independent experiments per condition; Sup, supplemented 
M200 medium). (B) Quantitation of the percentage of cells 
exhibiting Ca2+ oscillations (mean ± SEM; three independent 
experiments). (C) YSECs were loaded with Fluo-4/AM with or 
without 4 μM BAPTA/AM in supplement-free M200 medium 
and plated on Matrigel in supplement-containing medium 
with vehicle or BAPTA/AM. Intracellular Ca2+ was monitored 
every 15 s. The graphs depict Ca2+ oscillation patterns of 
representative cells, plotted as a percentage of fl uorescence 
intensity at time 0 (F0). (D) YSECs were treated with vehicle or 
4 μM BAPTA/AM for 1 h in supplement-free medium, plated 
on Matrigel containing supplemented medium with or without 
BAPTA, and incubated at 37°C. Vascular network assembly 
was assessed after 6 and 16 h. (E) Quantitation of vascular 
network assembly of the experiment described in D (three 
 independent experiments). Statistical signifi cance was deter-
mined relative to the vehicle condition (*, P < 0.05).
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As VEGF induces VEGFR1 and VEGFR2 expression 

(Barleon et al., 1997; Shen et al., 1998) and NK-B suppresses 

VEGF production (Fig. 7 A), we tested whether NK-B/

IBMX−mediated down-regulation of VEGFR1 and VEGFR2 

is counteracted by elevating VEGF164. VEGF164 induced 

VEGFR1 and VEGFR2 mRNA to 30–60% of the control level 

after 5 or 20 h in YSECs; FGF2 had no effect (Fig. S4 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200603152/DC1). 

These results support an NK-B action upstream of FGF2-

 dependent VEGF production. FGF2 was active, as FGF2 in-

duced FGFR1 expression (Fig. S4 A, right). Concomitant with 

reactivated VEGFR expression, network assembly was partially 

rescued (Fig. S4 B). These results indicate that a balance 

 between NK-B/IBMX and VEGF signaling dictates the extent 

of network assembly.

NK-B induces a known antiangiogenic factor
A proteomics screen was conducted to test if NK-B/IBMX 

 regulates the levels of proteins linked to angiogenesis. Two-

 dimensional SDS-PAGE analysis identifi ed four regulated proteins 

(Fig. 8 A). MALDI-TOF (matrix-assisted, laser-desorption-

 ionization/time of fl ight) mass spectroscopy identifi ed the pro-

teins as β-tubulin (1 and 2), l-lactate dehydrogenase (3), and 

calreticulin (4), respectively. The Ca2+ binding protein calreticu-

lin, (Johnson et al., 2001) which functions as a chaperone and 

extracellularly as a signaling molecule with thrombospondin 

(Goicoechea et al., 2002) and integrins (Coppolino et al., 1997), 

was verifi ed by Western blotting (Fig. 8 B). Whereas NK-B 

alone and U46619 alone did not induce calreticulin, NK-B/

U46619 increased calreticulin approximately twofold. The 

N-terminal 180 amino acids of calreticulin, termed vasostatin, 

were purifi ed previously as an antiangiogenic factor (Pike et al., 

1998). Both calreticulin and vasostatin are antiangiogenic 

(Pike et al., 1999; Yao et al., 2000).

To assess whether YSEC and HUVEC vascular network 

assembly is responsive to calreticulin, calreticulin and vasostatin 

were overexpressed in Escherichia coli as GST fusion proteins, 

and GST was liberated via site-specifi c proteolysis (Fig. 8 C). 

Purifi ed calreticulin and vasostatin impaired network assembly 

(Fig. 8 D). These results support a model in which NK-B/

IBMX−mediated induction of calreticulin, VEGF, VEGFR1, 

and VEGFR2 down-regulation, reduced cell proliferation, and 

reduced cell motility constitute a multicomponent antiangio-

genic mechanism.

Discussion
Our results demonstrate NK-B targeting of endothelium via 

a multicomponent mechanism to oppose vascular remodeling. 

Not only is NK-B antiangiogenic, but disruption of endogenous 

neurokinin signaling stimulated angiogenesis comparable to 

FGF2. These results suggest a new mode of vascular regula-

tion in which NK-B functions as an endogenous angiogenesis 

inhibitor. The TXA2 potentiation of NK-B activity exemplifi es 

how NK-B can interact with other physiological factors to regu-

late endothelial cell function.

Although a link between NK-B function and vascular reg-

ulation had not been established previously, SP can regulate en-

dothelial cell function. SP promotes angiogenesis during acute 

neurogenic infl ammation (Seegers et al., 2003), and expression 

Figure 7. NK-B down-regulates VEGFRs. (A) YSECs and HUVECs on tis-
sue culture plates were cultured in medium lacking supplement for 14 h and 
treated with indicated reagents in supplement-containing medium for 24 h, 
and VEGF secreted in the culture medium was quantitated by ELISA (two 
[right] to three [left] independent experiments). Sup, supplemented M200 
medium. (A and B) Statistical signifi cance was determined relative to the 
supplement condition (*, P < 0.05; mean ± SEM). (B) YSECs and HUVECs 
were cultured in medium lacking supplement for 10 h and treated with indi-
cated reagents in supplement-free medium for 2 h. Cells were treated with 
supplement-containing medium with indicated reagents for 6 h. mRNA was 
quantitated by real-time RT-PCR. mRNA levels in untreated cells were desig-
nated 1 (three independent experiments). (C) Western blot analysis of 
VEGFR1 and VEGFR2 in YSECs and HUVECs, respectively. (D) YSECs and 
HUVECs were treated with IBMX or NK-B/IBMX in medium lacking supple-
ment for 1 or 2 h, respectively, and plated on Matrigel containing supple-
mented medium for 0.5, 1, 2, and 5 h. Transcripts were quantitated by 
real-time RT-PCR. Transcript levels in untreated cells were designated 1 
(two to three independent experiments). RT, reverse transcriptase. Statistical 
signifi cance was determined relative to the IBMX-treated condition.
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of the NK receptor preferred by SP, NK1, is up-regulated in en-

dothelial cells upon angiogenesis during chronic airway infl am-

mation in rats (Baluk et al., 1997). These results indicate that 

NK receptor signaling by endothelial cells mediates vascular 

regulation in certain contexts, but the underlying mechanisms 

were not defi ned.

In addition to regulating angiogenesis, NK receptor modu-

lation alters vascular tone (Page et al., 2001). Synthetic NK 

 receptor agonists induced hypertension in guinea pigs (Roccon 

et al., 1996), continuous infusion of NK-B in rats increased blood 

pressure (Page et al., 2000), and NK-B induced vasodilation of 

TXA2-constricted perfused placental cotyledon (Brownbill 

et al., 2003). However, mechanisms underlying these activities 

are unknown.

NK-B resembles certain known endogenous angiogenesis 

inhibitors (Nyberg et al., 2005) that suppress endothelial cell 

proliferation and migration. NK-B down-regulated VEGFR1 

and VEGFR2 expression, and endostatin down-regulates 

VEGFR2 transcription approximately twofold (Abdollahi et al., 

2004). Both endostatin and TIMP2 inhibit VEGFR2 phos-

phorylation (Abdollahi et al., 2004). We are unaware of reports 

in which endogenous angiogenesis inhibitors down-regulate 

VEGFR1 expression. Pigment epithelium-derived factor in-

hibits growth factor−induced angiogenesis in microvascular 

endothelial cells through a mechanism involving cleavage 

and intracellular translocation of the VEGFR1 transmembrane 

domain (Cai et al., 2006). Another potentially important compo-

nent of the NK-B mechanism is calreticulin induction. Other 

examples of an endogenous angiogenesis inhibitor inducing 

a distinct angiogenesis inhibitor include endostatin and fi bulin 

5 up-regulation of thrombospondin 1 and pigment epithelium-

 derived factor up-regulation of plasminogen kringle 5 (Gao et al., 

2002; Abdollahi et al., 2004; Albig and Schiemann, 2004). 

 Besides NK-B, angiogenesis inhibitors have not been reported 

to induce calreticulin expression.

The molecular steps of the multicomponent mechanism 

segregate into extracellular (Fig. 9, I), intracellular signaling 

(Fig. 9, II), and effector (Fig. 9, III) modules. Multiple lines of 

evidence indicate that NK-B−mediated cAMP induction is re-

quired for a subset of the NK-B activities. Inclusion of IBMX 

with NK-B further reduced YSEC motility (Fig. 2 C) and 

 vascular network assembly (Fig. 2 D) and inhibited VEGFR2 

mRNA induction (Fig. 7 A). Forskolin resembled NK-B in 

 inhibiting VEGFR1 and VEGFR2 mRNA induction (Fig. S4 C). 

H-89 blocked NK-B/IBMX−mediated abrogation of vascular 

network assembly (Fig. 2 G). Elevated cAMP can impair en-

dothelial cell survival, motility, and angiogenesis (Kim et al., 

2002). VEGFR1 and VEGFR2 down-regulation would further 

suppress proliferation and motility, given the VEGF activity 

to stimulate proliferation and motility (Leung et al., 1989; 

Waltenberger et al., 1994; Senger et al., 1996).

Although tachykinins can mobilize intracellular Ca2+, our 

results show that NK-B blocks growth factor−dependent Ca2+ 

oscillations (Fig. 6 A). As intracellular Ca2+ stimulates motility 

via calpain-dependent and -independent mechanisms (Franco 

et al., 2004), the suppressive activity of NK-B on Ca2+ oscilla-

tions should amplify the motility blockade established via 

cAMP induction. The fi nding that BAPTA mimics NK-B in ab-

lating Ca2+ oscillations and opposing vascular network assembly 

(Fig. 6, D and E) reinforces the functional signifi cance of the 

NK-B−mediated abrogation of Ca2+ oscillations.

Recombinant calreticulin and vasostatin, which are anti-

angiogenic in vivo (Pike et al., 1999; Yao et al., 2000), sup-

pressed vascular network assembly but only modestly inhibited 

motility (unpublished data). Vasostatin inhibits endothelial cell 

attachment to laminin (Yao et al., 2002). It is attractive to 

 propose that elevated calreticulin/vasostatin synergizes with 

the NK-B−instigated motility blockade to oppose vascular 

 remodeling. Forskolin did not induce calreticulin (unpublished 

data), indicating that a distinct NK-B activity mediates calreticulin 

induction. The Ca2+ ionophore ionomycin, which increases intra-

cellular Ca2+, elevated calreticulin expression by approximately 

twofold (Fig. S4 D), suggesting that reduced intracellular Ca2+ 

does not explain NK-B−mediated calreticulin induction.

Figure 8. NK-B induces the antiangiogenic protein calreticulin. (A) YSECs 
were treated with IBMX or NK-B/IBMX for 1 h in supplement-free medium 
and then 10 min in supplemented medium. Whole cell extracts were sub-
jected to two-dimensional gel electrophoresis and stained with Coomassie 
blue. Representative stained gels are shown, and the inset shows the spot 
identifi ed as calreticulin. (B) Representative Western blots of calreticulin 
and α-tubulin in whole cell lysates of YSECs after treatment with indicated 
reagents for 1 h in supplement-free medium, followed by 10 min in supple-
mented medium. (C) SDS-PAGE of E. coli overexpressed and purifi ed re-
combinant calreticulin and vasostatin. (D) Calreticulin and vasostatin 
inhibit YSEC and HUVEC vascular network assembly. Cells were treated 
with380 nM GST, 270 nM calreticulin, or 250 nM vasostatin for 1 h in 
supplement-free medium and plated on Matrigel to assess vascular net-
work assembly.
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Because IBMX increased the magnitude and sustained the 

cAMP induction, whereas U46619 only increased the magni-

tude of the response, a sustained response is not required for 

potentiating NK-B activity. Considering that both NK-B and 

TXA2 are elevated in preeclampsia (Page et al., 2000; Walsh, 

2004), it is attractive to propose that NK-B targeting of vascular 

endothelium and TXA2 potentiation of NK-B activity have im-

portant implications for vascular deregulation in preeclampsia. 

As TXA2 is not likely the sole physiological factor that inter-

acts with NK-B to oppose vascular remodeling in vivo, it will 

be important to identify additional factors that function combi-

natorially with NK-B and TXA2. Nevertheless, our demonstra-

tion that NK-B directly targets endothelium, that perturbation 

of endogenous neurokinin signaling is angiogenic, and that 

TXA2 potentiates NK-B activity and our elucidation of the 

NK-B signaling circuitry establish an NK-B/TXA2 axis as a 

new mode of vascular regulation.

Materials and methods
Drugs and chemicals
NK-B, NK1 receptor−selective antagonist L733060 ((2S, 3S)-3-(93,5-bis 
(trifl uoromethyl) phenyl) methoxy)-2-phenylpiperidine hydrochloride), 
NK3 receptor−selective antagonist SB222200 ((S)-3 methyl-2-phenyl-N-
(1-phenylpropyl)-4-quinilinecarboxamide), 8-BrcAMP, forskolin, and H-89 
were purchased from Sigma-Aldrich. U46619 and IBMX were purchased 
from Calbiochem and were solubilized in DMSO. U46619 and H-89 were 
 diluted in ethanol and 50% ethanol, respectively. SQ 29548 (Cayman 
Chemical) was dissolved in ethanol. The fi nal concentrations of NK-B, 
IBMX, 8-Br cAMP, forskolin, H-89, U46619, and SQ 29548 in cell culture 
medium were 100, 100, 100, 10, 10, 1, and 2 μM, respectively. NK-B 
was maximally effective at 75 μM. The fi nal concentrations of DMSO and 
ethanol did not exceed 1%. Recombinant bovine FGF2 (provided by 
A. Rapraeger, University of Wisconsin School of Medicine, Madison, WI) 
and mouse VEGF164 (R&D Systems) were reconstituted in PBS containing 
1% BSA.

Synthesis of mutant NK-B
An NK-B mutant peptide was produced via microwave-assisted solid- phase 
peptide synthesis (Murray and Gellman, 2005). Fmoc amino acids 
(Calbiochem-Novabiochem) were activated with HBTU/HOBt in dimethyl-
formamide and coupled using microwave irradiation (600 W maximum 
power, 70°C, ramp 2 min, hold 2 min; MARS multimode microwave [CEM 
Corporation]). Removal of the Fmoc protecting group was accomplished 
by treatment with 20% piperidine in dimethylformamide with microwave 
irradiation (600 W maximum power, 80°C, ramp 2 min, hold 2 min). After 
cleavage from the solid support (NovaSyn TGR resin; Novabiochem) with 
trifl uoroacetic acid, the crude peptide mixture was purifi ed by reverse 
phase HPLC and structurally validated by MALDI-TOF mass spectrometry.

Cell lines and cell culture
Mouse YSECs were derived from a hypervascular transgenic mouse ex-
pressing the fps/fes protooncogene (Lu et al., 1996). YSECs exhibit a nor-
mal endothelial phenotype and are not tumorigenic. HUVECs, HAECs, and 
HMVECs were purchased from Cascade Biologics, Inc. Cells were main-
tained as described in the online supplemental material (available at 
http://www.jcb.org/cgi/content/full/jcb.200603152/DC1).

Cell proliferation assay
YSECs and HUVECs were grown in 48-well plates (1.5 × 104 cells/well) 
with supplement-free M200 medium to allow synchronization of cells in 
G1/G0. After 24 h, supplemented M200 medium containing either vehicle, 
NK-B, IBMX, or NK-B/IBMX was added and incubated at 37°C for another 
24 h. The cell proliferation was quantifi ed using CellTiter 96 AQueous 
One Solution reagent (Promega) according to the manufacturer’s directions. 
The results from triplicate determinations (mean ± SD) are presented as the 
percent increase of proliferation compared with nonstimulated growth in 
supplement-free medium.

Vascular network assembly assay
Vascular network assembly was assessed by measuring the formation of 
capillary-like structures by endothelial cells on Matrigel (BD Biosciences). 
Matrigel was diluted 1:1 with supplement-free M200 medium, poured in 
24-well plates, and allowed to solidify at 37°C. Subconfl uent endothelial 
cells were harvested and preincubated under different experimental 
conditions (YSECs, 1 h; HUVECs, HAECs, and HMVECs, 2 h) in growth 
supplement−free M200 medium in microfuge tubes. An equal volume of 
supplemented medium containing the indicated reagents was added. Cells 
were plated on Matrigel (1.5 × 105 cells/well) and incubated at 37°C. 
Vascular network assembly was measured as a function of time, and digital 
pictures were captured with an inverted microscope (Axiovert 200M; Carl 
Zeiss MicroImaging, Inc.; 10× objective, NA 0.25), using the Axiovision 3.1 
software (Carl Zeiss MicroImaging, Inc.). To quantitate the vascular net-
work assembly, digital pictures of several adjacent frames were taken, and 
the lengths of the tubelike structures were measured.

Time-lapse video microscopy
Subconfl uent YSECs and HUVECs were pretreated with vehicle, NK-B, 
IBMX, or IBMX/NK-B for 1 or 2 h, respectively, in supplement-free M200 
medium, 5–10 × 104 cells were plated per well in a 12-well Matrigel-
coated plate, and an equal volume of supplemented medium with or with-
out various reagents was added. NK receptor inhibitors were added 
30 min before adding NK-B. Cells were allowed to adhere for 30 min, and 
time-lapse images were acquired at 37°C with an inverted microscope 
(TE300; Nikon; 20× objective, NA 0.45), equipped with a CoolSnap fx 
charge-coupled device camera (Photometrics) and a cube temperature 
 controller (Life Imaging Services). Images were captured with E-See Inovision 
Software (Inovision) and with Slidebook 4 software (Intelligent Imaging 
 Innovations; one image per minute for 120 min). Cells migrating in a fi eld 
were quantitated by putting a digital mark in the center of the cell body at 
time 0 and determining the migration of the cell body away from the digital 
mark after 2 h. Migrating cells were further validated by Z-stack projection 
in Image J. The migrating cells were expressed as a percentage of the total 
cells in each fi eld. The rate of cell migration was quantitated using the 
Slidebook 4 software. The center of each migrating cell was marked digi-
tally at time 0, and the distance migrated from the digital mark after 2 h 

Figure 9. NK-B/TXA2 regulatory axis. The 
model illustrates extracellular signaling (I), 
intracellular signaling (II), and effector mod-
ules (III), each consisting of multiple reactions, 
which collectively oppose angiogenesis. NK-B, 
which is expressed in neurons, erythroid 
cells, and the placenta, signals through NK 
 receptors to increase cAMP and to suppress 
Ca2+ oscillations. TXA2 signaling mimics IBMX 
in potentiating NK-B−dependent cAMP induc-
tion and downstream responses that are sensi-
tive to changes in cAMP levels. The functional 
consequences include VEGF and VEGFR 
down-regulation, decreased cell motility, and 
increased calreticulin synthesis. The dotted line 
denotes a putative pathway that is not yet sup-
ported by experimental evidence.
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was calculated. For each fi eld, migration of at least 20 cells was analyzed 
and the mean distance migrated per cell was calculated.

Gene expression analysis
Real-time RT-PCR was conducted as described in the online supplemental 
 material. Real time RT-PCR primers were designed using PRIMER EXPRESS 
1.0 (Applied Biosystems) to amplify 50–150-bp amplicons and were based 
on GenBank or Ensembl sequences. Sequences are provided in Table S1 
(available at http://www.jcb.org/cgi/content/full/jcb.200603152/DC1).

cAMP assay
Cells were cultured in 6-well plates (2 × 105 cells/well), washed with 
 supplement-free M200 medium, and treated with the indicated reagents at 
37°C. Reactions were terminated by aspirating medium. Cells were 
washed with PBS and lysed in 500 μl of 0.1 N HCl containing 0.5% Triton 
X-100. cAMP was assayed in cell lysates (100 μl) using a direct cAMP 
 enzyme-linked immunosorbent assay (Assay Designs, Inc.).

CAM assay
Fertilized chicken eggs were incubated at 39°C with 90% humidity. On 
embryonic day 7, a small hole was drilled at the end of the egg that con-
tains the air sac to lower the embryo. A second hole was made above the 
CAM, and 200 μl of a 1.5% solution of methylcellulose (StemCell Technol-
ogies Inc.) containing vehicle, FGF2 (30 pmol)/IBMX (10 nmol), FGF2/
NK-B (33 nmol) with or without IBMX, FGF2/mNK-B  (33 nmol)/IBMX 
(mNK-B, inactive mutant of NK-B), a combination of NK1- (L733060, 10 nmol) 
and NK3- (SB222200, 4 nmol) selective inhibitors, FGF2/U46619 
(10 nmol) with or without NK-B, or FGF2/NK- B/U46619 with SQ29548 
(40 nmol) was applied to the CAM of day 7 chicken embryos. Vasculature 
was analyzed after 48 h, and digital images were captured at room tem-
perature with a Wild M3Z dissecting microscope (40×; Leica) attached to a 
SPOT RT KE charge-coupled device camera, using the software SPOT 
3.5.9 (Diagnostic Instruments).

Calcium imaging
Cells were incubated for 30 min in 4 μM fl uo-4/AM (Invitrogen) in the pres-
ence or absence of 4 μM BAPTA/AM (Invitrogen) in supplement-free M200 
medium at 37°C, trypsinized, plated on Matrigel with indicated reagents, 
and allowed to adhere for 10 min. Time-lapse video microscopy with a 
FluoView 500 laser scanning confocal microscope (Olympus; 40×, NA 0.8 
water-immersion objective) was used to measure intracellular Ca2+ as de-
scribed previously (Robles et al., 2003). An argon laser at 488 nm was used 
to excite Fluo-4, and the emitted light was detected at wavelengths >510 nm. 
Images were acquired at 15-s intervals and analyzed using Image J. When 
indicated, the fl uorescence intensity in the region of interest (F) was normal-
ized by dividing fl uorescence intensity of the resting cell at time 0 (F0).

RNA interference
To generate stably expressing siRNAs, oligonucleotides were designed 
 according to the criteria specifi ed by Dharmacon and Oligoengine and 
cloned into the BglII−HindIII sites of pSUPER Puro (Oligoengine). The NK1 
target sequence 5′-C A A C A G G A C T T A C G A G A A A -3′ corresponded to nu-
cleotides 1480–1497 of the mouse NK1 cDNA; the NK3 target sequence 
5′-A G A T T T C G T G C A G G C T T C A -3′ corresponded to nucleotides 1044–
1061 of the mouse NK3 cDNA. The empty vector was used as a negative 
control. YSECs were transfected with Lipofectin (Invitrogen), and positive 
clones were selected with 2 μg/ml puromycin.

VEGF ELISA
YSECs and HUVECs were cultured in 6-well plates (3 × 105 cells/well), 
 incubated in supplement-free M200 medium overnight, and treated with 
vehicle, NK-B, IBMX, NK-B/IBMX, U46619, NK-B/U46619, or BAPTA/
AM in supplement-containing medium for 24 h. Secreted VEGF was quan-
titated with mouse or human VEGF Quantikine ELISA kits (R&D Systems) 
according to the manufacturer’s instructions.

Two-dimensional gel electrophoresis and mass spectrometry
YSECs were treated with IBMX or NK-B/IBMX for 1 h in supplement-free 
M200 medium, followed by 10 min in supplemented medium. Cells were 
processed and proteins were analyzed as described in the online supple-
mental material.

Antibodies and immunoblot analysis
The antibodies used and methodology are described in the online supple-
mental material.

Recombinant calreticulin and vasostatin production
For construction of the GST-calreticulin and -vasostatin fusion constructs,  the 
coding regions for calreticulin and vasostatin were cloned as C-terminal 
translational fusions with the GST gene for expression in E. coli. Purifi cation 
of GST-calreticulin was achieved by lysis of the bacteria, followed by soni-
cation, centrifugation, adjusting the pH of supernatants to pH 7.0, and 
mixing with preequilibrated Glutathione Sepharose 4B (GE Healthcare) in 
PBS containing 1.0% Triton X-100. After a 30-min incubation, beads were 
washed, bound protein was cleaved with factor Xa (Novagen), and liber-
ated protein was separated from immobilized GST via centrifugation.

Online supplemental material
Table S1 shows the forward and reverse primers for RT-PCR analysis. 
Videos 1–7 document YSEC migration on Matrigel after treatment with 
vehicle, NK-B, IBMX, NK-B/IBMX, NK-B/IBMX + NK1- and NK3-selec-
tive inhibitors, U46619, and NK-B/U46619. Fig. S1 shows the revers-
ibility of the NK-B−mediated vascular network assembly blockade. Fig. S2 
shows an analysis of TXA2 receptor expression in YSECs and HUVECs. 
Fig. S3 (A and B) shows that cAMP induction is insuffi cient to inhibit vas-
cular network assembly, but cAMP potentiates NK-B−mediated inhibition 
of vascular network assembly. Fig. S3 C shows NK-B/IBMX−mediated 
abrogation of vascular network assembly in three-dimensional collagen 
gels. Fig. S4 (A and B) shows VEGF rescue of the NK-B−mediated sup-
pression of VEGFR expression and vascular network assembly. Fig. S4 
(C and D) shows that cAMP induction, but not the antiangiogenic pro-
teins calreticulin and vasostatin, down-regulates VEGFR1 and VEGFR2 
in YSECs. Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200603152/DC1.
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