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How humans make decisions in non-cooperative strategic interactions is a big question. For the
fundamental Rock-Paper-Scissors (RPS) model game system, classic Nash equilibrium (NE) theory predicts
that players randomize completely their action choices to avoid being exploited, while evolutionary game
theory of bounded rationality in general predicts persistent cyclic motions, especially in finite populations.
However as empirical studies have been relatively sparse, it is still a controversial issue as to which theoretical
framework is more appropriate to describe decision-making of human subjects. Here we observe
population-level persistent cyclic motions in a laboratory experiment of the discrete-time iterated RPS game
under the traditional random pairwise-matching protocol. This collective behavior contradicts with the NE
theory but is quantitatively explained, without any adjustable parameter, by a microscopic model of
win-lose-tie conditional response. Theoretical calculations suggest that if all players adopt the same
optimized conditional response strategy, their accumulated payoff will be much higher than the reference
value of the NE mixed strategy. Our work demonstrates the feasibility of understanding human competition
behaviors from the angle of non-equilibrium statistical physics.

T
he Rock-Paper-Scissors (RPS) game is a fundamental non-cooperative game. It has been widely used to
study competition phenomena in society and biology, such as species diversity of ecosystems1–6 and price
dispersion of markets7,8. This game has three candidate actions R (rock), P (paper) and S (scissors). In the

simplest settings the payoff matrix is characterized by a single parameter, the payoff a of the winning action (a .

1, see Fig. 1A)9. There are the following non-transitive dominance relations among the actions: R wins over S, P
wins over R, yet S wins over P (Fig. 1B), so no action is absolutely better than the others.

The RPS game is also a basic model system for studying decision-making of human subjects in competitive
environments and the associated social dynamics and non-equilibrium physics. Assuming ideal rationality for
players who repeatedly playing the RPS game within a population, classical game theory predicts that individual
players will completely randomize their action choices so that their behaviors will be unpredictable and not be
exploited by the other players10,11. This is referred to as the mixed-strategy Nash equilibrium (NE), in which every
player chooses the three actions with equal probability 1/3 at each game round (see Supplementary Notes online).
When the payoff parameter a , 2 this NE is evolutionarily unstable with respect to small perturbations but it
becomes evolutionarily stable at a . 2 (see Supplementary Notes online)12. On the other hand, evolutionary game
theory drops the infinite rationality assumption and looks at the RPS game from the angle of evolution and
adaption13–18. Evolutionary models based on various microscopic learning rules (such as the replicator
dynamics12,19–21, the best response dynamics22,23 and the logit dynamics24,25) generally predict cyclic evolution
patterns for the action marginal distribution (mixed strategy) of each player, especially in finite populations.

Empirical verification of non-equilibrial persistent cycling in the human-subject RPS game (and other non-
cooperative games) has been rather nontrivial, as the recorded evolutionary trajectories are usually highly
stochastic and not long enough to draw convincing conclusions. Two of the present authors partially overcame
these difficulties by using social state velocity vectors26 and forward and backward transition vectors27 to visualize
violation of detailed balance in game evolution trajectories, but a simple way of quantitatively measuring per-
sistent cyclic behavoiors in a highly stochastic trajectory was still lacking. The cycling frequency of directional
flows in the neutral RPS game (a 5 2) was later quantitatively measured in28 using a coarse-grained counting
technique. Cason and co-workers29 using another cycle rotation index as the order parameter also obtained
evidence of persistent cycling in some evolutionarily stable RPS-like games, if players were allowed to update
actions asynchronously in continuous time and were informed about the social states of the whole population by
some sophisticated ‘heat maps’.
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In this work we investigate whether cycling is a general aspect even
for the simplest RPS game. We adopt an improved cycle counting
method on the basis of our earlier experiences28 and study directional
flows in evolutionarily stable (a . 2) and unstable (a , 2) discrete-
time RPS games. We show strong evidence that the RPS game is an
intrinsic non-equilibrium system, which cannot be fully described by
the NE concept even in the evolutionarily stable region but rather
exhibits persistent population-level cyclic motions. We then bridge
the collective cycling behavior and the highly stochastic decision-
making of individuals through a simple conditional response (CR)
mechanism. Our empirical data confirm the plausibility of this
microscopic model of bounded rationality. Our theoretical calcula-
tions also demonstrate that, if all the players adopt the same CR
strategy and if the transition parameters of this strategy are chosen
in an optimized way, this CR strategy will outperform the NE mixed
strategy in terms of the accumulated payoffs of individual players, yet
the action marginal distribution of individual players is indistin-
guishable from that of the NE mixed strategy. Our work as a suc-
cessful attempt of understanding competition dynamics from the
perspective of non-equilibrium statistical physics may stimulate
future more refined experimental and theoretical studies on the
microscopic mechanisms of decision-making and learning in basic
game systems19,30–34.

Results
Experimental system. We recruited a total number of 360 students
from different disciplines of Zhejiang University to form 60 disjoint
populations of size N 5 6. Each population then carries out one
experimental session by playing the RPS game 300 rounds (taking
90–150 minutes) with a fixed value of a. In real-world situations
individuals often have to make decisions based only on partial
input information. We mimic such situations by adopting the
traditional random pairwise-matching experimental protocol11: At
each game round (time) t the players are randomly paired within the
population and compete with their pair opponent once; after that
each player gets feedback information about her own payoff as well as
her and her opponent’s action. As the experimental session finishes,
the players are paid in real cash proportional to their accumulated
payoffs (see Methods). Our experimental setting differs from those of
two other recent experiments, in which every player competes

against the whole population9,29 and may change actions in conti-
nuous time29. We set a 5 1.1, 2, 4, 9 and 100, respectively, in one-fifth
of the populations so as to compare the dynamical behaviors in the
evolutionarily unstable, neutral, stable and deeply stable regions.

Action marginal distribution of individual players. We observe
that the individual players shift their actions frequently in all the
populations except one with a 5 1.1 (this exceptional population
is discarded from further analysis, see Supplementary Notes online).
Averaged among the 354 players of these 59 populations, the
probabilities that a player adopts action R, P, S at one game round
are, respectively, 0.36 6 0.08, 0.33 6 0.07 and 0.32 6 0.06 (mean 6

s.d.). We obtain very similar results for each set of populations of the
same a value (see Supplementary Table S1 online). These results are
consistent with NE and suggest the NE mixed strategy is a good
description of a player’s marginal distribution of actions. However,
a player’s actions at two consecutive times are not independent but
correlated. As demonstrated in Fig. 2A–2E, at each time the players
are more likely to repeat their last action than to shift action either
counter-clockwise (i.e., R R P, P R S, S R R, see Fig. 1B) or clockwise
(R R S, S R P, P R R). This inertial effect is especially strong at a 5

1.1 and it diminishes as a increases.
We notice that at a $ 2, an individual player’s probability of

making a clockwise action shift is equal to or just slightly different
from that of making a counter-clockwise action shift (Fig. 2A–2E).
There is no or only very weak cycling behavior at the level of indi-
vidual players in the evolutionarily neutral (a 5 2) and stable (a . 2)
RPS games, in accordance with the NE theory. As shown in Fig. 2F–
2J, the action shift statistics of individual players can be well
explained by the later introduced conditional response model.

Collective behaviors of the whole population. The social state of the
population at any time t is denoted as s(t) ; (nR(t), nP(t), nS(t)) with
nq being the number of players adopting action q g {R, P, S}. Since nR

1 nP 1 nS ; N there are (N 1 1)(N 1 2)/2 such social states, all lying
on a three-dimensional plane bounded by an equilateral triangle
(Fig. 1C). Each population leaves a trajectory on this plane as the
RPS game proceeds. To detect rotational flows, we assign for every
social state transition s(t) R s(t 1 1) a rotation angle h(t), which
measures the angle this transition rotates with respect to the centroid
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Figure 1 | The Rock-Paper-Scissors game. (A) Each matrix entry specifies the row action’s payoff. (B) Non-transitive dominance relations

(R beats S, P beats R, S beats P) among the three actions. (C) The social state plane for a population of size N 5 6. Each filled circle denotes a social state (nR,

nP, nS); the star marks the centroid c0; the arrows indicate three social state transitions at game rounds t 5 1, 2, 3.
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c0 ; (N/3, N/3, N/3) of the social state plane (see Methods)28. Positive
and negative h values signify counter-clockwise and clockwise
rotations, respectively, while h 5 0 means the transition is not a
rotation around c0. For example, we have h(1) 5 p/3, h(2) 5 0,
and h(3) 5 22p/3 for the three transitions shown in Fig. 1C.

The net number of cycles around c0 during the time interval [t0, t1]
is computed by

Ct0,t1:
Xt1{1

t~t0

h tð Þ
2p

: ð1Þ

As shown in Fig. 3A–3E, C1,t has an increasing trend in most of the 59
populations, indicating persistent counter-clockwise cycling. The
cycling frequency of each trajectory in [t0, t1] is evaluated by

ft0,t1:
Ct0,t1

t1{t0
: ð2Þ

The values of f1,300 for all the 59 populations are listed in Table 1,
from which we obtain the mean frequency to be 0.031 6 0.006 (a 5

1.1, mean 6 SEM), 0.027 6 0.008 (a 5 2), 0.031 6 0.008 (a 5 4),
0.022 6 0.008 (a 5 9) and 0.018 6 0.007 (a 5 100). These mean
frequencies are all positive irrespective to the particular value of a,
indicating that behind the seemingly highly irregular social state
evolution process, there is a deterministic pattern of social state
cycling from slightly rich in action R, to slightly rich in P, then to
slightly rich in S, and then back to slightly rich in R again. Statistical
analysis confirms that f1,300 . 0 is significant for all the five sets of
populations (Wilcoxon signed-rank test, p , 0.05). The correlation
between the mean cycling frequency f1,300 and the payoff parameter a
is not statistically significant (Spearman’s correlation test: r 5 20.82,
p 5 0.19, for n 5 5 mean frequencies; and r 5 20.16, p 5 0.24, for
n 5 59 frequencies). We also notice that the mean cycling frequency
in the second half of the game (f151,300) is slightly higher than that in
the first half (f1,150) for all the five sets of populations (Supplementary
Table S2 online), suggesting that cycling does not die out with time.

A recent experimental work35 also observed cycling behaviors in a
RPS-like game with more than three actions. Evidences of persistent
cycling in some complete-information and continuous-time RPS-
like games were reported in another experimental study29.
However, no (or only very weak) evidence of population-level cycling
was detected in29 if action updating was performed in discrete time.

Here and in Ref. 28 we find that even discrete-time updating of
actions will lead to collective cyclic motions in the RPS game, and
such a population-level behavior is not affected by the particular
value of a.

Empirical conditional response patterns. Under the assumption of
mixed-strategy NE (i.e., each player chooses the three actions with
equal probability at every game round, independent of each other
and of the payoffs of previous plays), the social state transitions
should obey the detailed balance condition. Therefore the observed
persistent cycling behavior cannot be understood within the NE
framework. Persistent cycling can also not be explained by the
independent decision model which assumes the action choice of
a player at one time is influenced only by her action at the previous
time (see Supplementary Notes online). Using the empirically
determined action shift probabilities of Fig. 2A–2E as inputs, we
find that this independent decision model predicts the cycling
frequency to be 0.0050 (for a 5 1.1), 20.0005 (a 5 2), 20.0024
(a 5 4), 20.0075 (a 5 9) and 20.0081 (a 5 100), which are all
very close to zero and significantly different from the empirical
values.

The action choices of different players must be mutually influ-
enced. Our empirical data shown in Fig. 3F–3J confirm the existence
of such mutual influences. Let us denote by O the performance (out-
put) of a player at a given game round, with O g {W (win), T (tie), L
(lose)}. Conditional on the output O, the probability that this player
will decide to shift action clockwise or counter-clockwise or keep the
same action in the next play is denoted as O2, O1 and O0 (; 1 2 O2

2 O1), respectively. Most interestingly, we see from Fig. 3F–3J that if
a player wins over her opponent in one play, her probability (W0) of
repeating the same action in the next play is considerably higher than
her probabilities (W2 and W1) of shifting actions. Furthermore, for
payoff parameter a $ 2, if a player loses to her opponent in one play,
she is more likely to shift action clockwise (probability L2) than
either to keep the old action (L0) or to shift action counter-clockwise
(L1).

The conditional response model. Inspired by these empirical
observations, we develop a simplest nontrival model by assuming
the following conditional response strategy: at each game round,
every player review her previous performance O g {W, T, L} and
makes an action choice according to the corresponding three

Figure 2 | Action shift probability conditional on a player’s current action. If a player adopts action R at one game round, this player’s probability of

repeating the same action at the next game round is denoted as R0, while the probability of performing a counter-clockwise or clockwise action

shift is denoted, respectively, as R1 and R2. The conditional probabilities P0, P1, P2 and S0, S1, S2 are defined similarly. (A–E) The mean (vertical bin)

and the SEM (standard error of the mean, error bar) of each conditional probability obtained by averaging over the different populations of the same

payoff parameter a 5 1.1, 2, 4, 9, and 100 (from left to right). (F–J) The corresponding action shift probability values predicted by the conditional

response model using the parameters of Fig. 3F–3J as inputs.
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conditional probabilities (O2, O0, O1). This model is characterized
by a set C ; {W2, W1; T2, T1; L2, L1} of six CR parameters. Notice
this CR model differs qualitatively from the discrete-time logit
dynamics model24,25 used in Ref. 28, which assumes each player has
global information about the population’s social state.

We can solve this win-lose-tie CR model analytically and numer-
ically (see Supplementary Notes online). Let us denote by nrr, npp, nss,
nrp, nps and nsr, respectively, as the number of pairs in which the
competition being R–R, P–P, S–S, R–P, P–S, and S–R, in one game

round t. Given the social state s 5 (nR, nP, nS) at time t, the con-
ditional joint probability distribution of these six integers is
expressed as

Ps nrr,npp,nss,nrp,nps,nsr

� �
~

nR!nP!nS!d
nR
2nrrznsrznrp

dnP
2nppznrpznps

dnS
2nssznpsznsr

N{1ð Þ!!2nrr nrr!2npp npp!2nss nss!nrp!nps!nsr!
,

ð3Þ

where (N 2 1)!! ; 1 3 3 3 … 3 (N 2 3) 3 (N 2 1) and dn
m is the

Kronecker symbol (dn
m~1 if m 5 n and 5 0 if otherwise). With

the help of this expression, we can then obtain an explicit formula
for the social state transition probability Mcr[s9js] from s to any
another social state s9 (see Methods). We then compute numerically
the steady-state social state distribution P�cr sð Þ of this Markov
matrix36 and other average quantities of interest. For example, the
mean steady-state cycling frequency fcr of this model is computed by

fcr~
X

s

P�cr sð Þ
X

s’

Mcr s’ sj½ �hs?s’, ð4Þ

where hsRs9 is the rotation angle associated with the social state
transition s R s9, see Eq. (7).

Using the empirically determined response parameters as inputs,
the CR model predicts the mean cycling frequencies for the five sets
of populations to be fcr 5 0.035 (a 5 1.1), 0.026 (a 5 2), 0.030 (a 5 4),
0.018 (a 5 9) and 0.017 (a 5 100), agreeing well with the empirical
measurements. Such good agreements between model and experi-
ment are achieved also for the 59 individual populations (Fig. 3K–
3O). In addition, we find the empirically observed inertial effect of
Fig. 2A–2E is quantitatively reproduced by the CR model without
any fitting parameter (see Fig. 2F–2J).

Because of the rotational symmetry of the conditional response
parameters, the CR model predicts that each player’s action marginal

Figure 3 | Social cycling explained by conditional response. The payoff parameter is a 5 1.1, 2, 4, 9 and 100 from left-most column to right-most

column. (A–E) Accumulated cycle numbers C1,t of 59 populations. (F–J) Empirically determined CR parameters, with the mean (vertical bin) and the

SEM (error bar) of each CR parameter obtained by considering all the populations of the same a value. (K–O) Comparison between the empirical cycling

frequency (vertical axis) of each population and the theoretical frequency (horizontal axis) obtained by using the empirical CR parameters of this

population as inputs.

Table 1 | Empirical cycling frequencies f1,300 of 59 populations

a 5 1.1 2 4 9 100

f1,300 f1,300 f1,300 f1,300 f1,300

0.039 0.019 0.033 0.007 0.047
0.023 0.023 0.005 20.002 0.004
0.005 0.054 0.029 0.053 0.024
0.029 0.034 0.041 0.027 0.051
0.015 20.010 0.008 0.068 0.027
0.052 0.052 0.042 20.017 0.031
0.028 0.084 0.069 0.032 0.017
0.034 0.041 20.022 0.049 20.017
0.073 20.013 0.069 0.020 20.012
0.023 0.017 0.035 20.022 0.053
0.018 20.005 0.048 0.018 20.010

0.028 0.018 0.032 20.005
m 0.031 0.027 0.031 0.022 0.018
s 0.019 0.029 0.026 0.027 0.025
d 0.006 0.008 0.008 0.008 0.007

m: the mean cycling frequency, s: the standard deviation (s.d.) of cycling frequencies, d: the
standard error (SEM) of the mean cycling frequency (d~s=

ffiffiffiffiffi
ns
p

, with sample number ns 5 11 for
a 5 1.1 and ns 5 12 for a 5 2, 4, 9 and 100).
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distribution is uniform, identical to the NE mixed strategy
(Supplementary Notes online). On the other hand, according to this
model, the expected payoff gcr per game round of each player is

gcr~g0z a{2ð Þ| 1=6{tcr=2ð Þ, ð5Þ

where g0 ; (1 1 a)/3 is the expected payoff of the NE mixed strategy,
and tcr is the average fraction of ties among the N/2 pairs at each
game round, with the expression

tcr~
X

s

P�cr sð Þ

P
nrr ,...,nrs

nrrznppznss
� �

Ps nrr, . . . ,nsrð Þ

N=2
: ð6Þ

The value of gcr depends on the CR parameters. By uniformly sam-
pling 2.4 3 109 instances ofC from the three-dimensional probability
simplex, we find that for a . 2, gcr has high chance of being lower
than g0 (Fig. 4), with the mean value of (gcr2g0) being
20.0085(a22). (Qualitatively the same conclusion is obtained for
larger N values, e.g., see Supplementary Fig. S1 online for N 5 12.)
This is consistent with the mixed-strategy NE being evolutionarily
stable12. On the other hand, the four gcr values (for the four cases of
a ? 2) determined by the empirical CR parameters and the corres-
ponding four mean payoffs of the empirical data sets all weakly
exceed g0, indicating that individual players are adjusting their res-
ponses to achieve higher accumulated payoffs (Supplementary Notes
online). The positive gap between gcr and g0 may further enlarge if the
individual players were given more learning time to optimize their
response parameters (e.g., through increasing the repeats of the
game).

As shown in Fig. 4 and Supplementary Fig. S1 online, the CR
parameters have to be highly optimized to achieve a large value of
gcr. For population size N 5 6 we give three examples of the sampled
best CR strategies for a . 2: C1 5 {0.002, 0.000; 0.067, 0.110; 0.003,
0.003}, with cycling frequency fcr 5 0.003 and gcr 5 g0 1 0.035(a 2

2); C2 5 {0.995, 0.001; 0.800, 0.058; 0.988, 0.012}, with fcr 5 20.190
and gcr 5 g0 1 0.034(a 2 2); C3 5 {0.001, 0.004; 0.063, 0.791; 0.989,
0.001}, with fcr 5 0.189 and gcr 5 g0 1 0.033(a 2 2). For large a these
CR strategies outperform the NE mixed strategy in payoff by about
10%. Set C1 indicates that population-level cycling is not a necessary
condition for achieving high payoff values. On the other hand, set C3

implies W0 < 1, L0 < 0, therefore this CR strategy can be regarded as
an extension of the win-stay lose-shift (also called Pavlov) strategy,
which has been shown by computer simulations to facilitate coop-

eration in the prisoner’s dilemma game37–40. We should also emphas-
ize that the empirically observed CR transition parameters (Fig. 3F–
3J) still differ considerably from those of the win-stay lose-shift strat-
egy C3.

Discussion
In game-theory literature it is common to equate individual players’
action marginal distributions with their actual strategies11,18. In real-
ity, however, decision-making and learning are very complicated
neural processes41–45. The action marginal distributions are only a
consequence of such complex dynamical processes, their coarse-
grained nature makes them unsuitable to describe dynamical prop-
erties17. Our work on the finite-population RPS game clearly demon-
strates this point. This game exhibits persistent cyclic motions at the
population level (but not at the individual player level) which cannot
be understood by the NE concept but are successfully explained by
the empirical data-inspired CR mechanism. As far as the action
marginal distributions of individual players are concerned, the CR
strategy is indistinguishable from the NE mixed strategy, yet it is
capable of bringing higher payoffs to the players if its parameters
are optimized and all players adopt the same CR strategy. This simple
conditional response strategy, with the win-stay lose-shift strategy
being a special case, appears to be psychologically plausible for
human subjects with bounded rationality46,47. For more complicated
game payoff matrices, we can generalize the conditional response
model accordingly by introducing a larger set of CR parameters
(see Supplementary Notes online). It should be very interesting to
re-analyze many existing laboratory experimental data9,29,35,48–51

using this extended model. Figure 3 also reveals that the empirical
CR parameters and the social-state cycling frequency change with the
payoff parameter a. In a following paper we will study the effect of the
payoff parameter a to the individual- and population-level behaviors
in more detail52.

The CR model as a simple model of decision-making under uncer-
tainty deserves to be fully explored. For example, different players
may have different CR transition parameters and these transition
parameters may change with time constantly as a result of learning.
We find the cycling frequency is not sensitive to population size N at
given CR parameters (see Supplementary Fig. S2 online); and the
cycling frequency is nonzero even for symmetric CR parameters (i.e.,
W1/W2 5 T1/T2 5 L1/L2 5 1), as long as W0 ? L0 (see
Supplementary Fig. S3 online). The optimization issue of CR para-
meters is left out in this work. We will investigate whether an optimal
CR strategy is achievable through simple stochastic learning
rules42,43,45. The effects of memory length53 and population size to
the optimal CR strategies also need to be thoroughly studied. On
the more biological side, whether conditional response is a basic
decision-making mechanism of the human brain or just a con-
sequence of more fundamental neural mechanisms is a challenging
question for future studies.

Methods
Experiment. The experiment was approved by the Experimental Social Science
Laboratory of Zhejiang University and performed at Zhejiang University in the
period of December 2010 to March 2014. The corresponding author confirms that
this experiment was performed in accordance with the approved social experiments
guidelines and regulations. A total number of 360 undergraduate and graduate
students of Zhejiang University volunteered to serve as the human subjects of this
experiment. These students were openly recruited through a web registration system.
Female students were slightly more enthusiastic than male students in registering as
candidate human subjects of our experiment. Since we sampled students uniformly at
random from the candidate list, more female students were recruited than male
students (among the 360 students, the female versus male ratio is 2175143). Informed
consent was obtained from all the participanting human subjects.

The 360 human subjects (referred to as players in this work) were distributed into
60 populations of equal size N 5 6. The six players of each population carried one
experimental session by playing the RPS game for 300 rounds with fixed payoff
parameter a, whose value is chosen from {1.1, 2, 4, 9, 100}. During the game process
the players sited separately in a classroom, each of which facing a computer screen.

2

4

6

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

P
ro

ba
bi

lit
y 

(x
 1

0-3
)

gcr-g0

Figure 4 | Probability distribution of payoff difference gcr 2 g0 at
population size N 5 6. We assume a . 2 and set the unit of the horizontal

axis to be (a 2 2). The solid line is obtained by sampling 2.4 3 109 CR

strategies uniformly at random; the filled circle denotes the maximal value

of gcr among these samples.
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They were not allowed to communicate with each other during the whole experi-
mental session. Written instructions were handed out to each player and the rules of
the experiment were also orally explained by an experimental instructor. The rules of
the experimental session are as follows:

(i) Each player plays the RPS game repeatedly with the same other five players.
(ii) Each player earns virtual points during the experimental session according

to the payoff matrix shown in the written instruction. These virtual points
are then exchanged into RMB as a reward to the player, plus an additional 5
RMB as show-up fee.

(iii) In each game round, the six players of each group are randomly matched by
a computer program to form three pairs, and each player competes only with
the pair opponent.

(iv) Each player has at most 40 seconds in one game round to make a choice
among the three candidate actions ‘‘Rock’’, ‘‘Paper’’ and ‘‘Scissors’’. If this
time runs out, the player has to make a choice immediately (the experi-
mental instructor will loudly urge these players to do so). After a choice has
been made it can not be changed.

Before the start of the actual experimental session, the player were asked to answer
four questions to ensure that they understand completely the rules of the experi-
mental session. These four questions are: (1) If you choose ‘‘Rock’’ and your opponent
chooses ‘‘Scissors’’, how many virtual points will you earn? (2) If you choose ‘‘Rock’’ and
your opponent chooses also ‘‘Rock’’, how many virtual points will you earn? (3) If you
choose ‘‘Scissors’’ and your opponent chooses ‘‘Rock’’, how many virtual points will you
earn? (4) Do you know that at each game round you will play with a randomly chosen
opponent from your group (yes/no)?

During the experimental session, the computer screen of each player will show an
information window and a decision window. The window on the left of the computer
screen is the information window. The upper panel of this information window shows
the current game round, the time limit (40 seconds) of making a choice, and the time
left to make a choice. The color of this upper panel turns to green at the start of each
game round. The color will change to yellow if the player does not make a choice
within 20 seconds. The color will change to red if the decision time runs out (and then
the experimental instructor will loudly urge the players to make a choice immedi-
ately). The color will change to blue if a choice has been made by the player. After all
the players of the group have made their decisions, the lower panel of the information
window will show the player’s own choice, the opponent’s choice, and the player’s
own payoff in this game round. The player’s own accumulated payoff is also shown.
The players are asked to record their choices of each round on the record sheet (Rock
as R, Paper as P, and Scissors as S).

The window on the right of the computer screen is the decision window. It is
activated only after all the players of the group have made their choices. The upper
panel of this decision window lists the current game round, while the lower panel lists
the three candidate actions ‘‘Rock’’, ‘‘Scissors’’, ‘‘Paper’’ horizontally from left to right.
The player can make a choice by clicking on the corresponding action names. After a
choice has been made by the player, the decision window becomes inactive until the
next game round starts.

The reward in RMB for each player is determined by the following formula.
Suppose a player i earns xi virtual points in the whole experimental session, the total
reward yi in RMB for this player is then given by

yi~xi|rz5,

where r is the exchange rate between virtual point and RMB. According to the mixed-
strategy Nash equilibrium, the expected payoff of each player in one game round is
(1 1 a)/3. Therefore we set the exchange rate to be r 5 0.45/(1 1 a) to ensure that,
under the mixed-strategy NE assumption, the expected total earning in RMB for a
player will be 50 RMB irrespective of the particular experimental session. The value of
the payoff parameter a, the numerical value of r, and the above-mentioned reward
formula were listed in the written instruction and also orally mentioned by the
experimental instructor at the instruction phase of the experiment.

Rotation angle computation. Consider a transition from one social state s 5 (nR, nP,
nS) at game round t to another social state ~s~ ~nR,~nP ,~nSð Þ at game round (t 1 1), if at
least one of the two social states coincides with the centroid c0 of the social state plane,
or the three points s, ~s and c0 lie on a straight line, then the transition s?~s is not
regarded as a rotation around c0, and the rotation angle h 5 0. In all the other cases,
the transition s?~s is regarded as a rotation around c0, and the rotation angle is
computed through

h~sgns?~s|acos
3 nR~nRznP~nPznS~nSð Þ{N2
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where acos(x) g [0, p) is the inverse cosine function, and sgns?~s~1 if
3 nR~nP{nP~nRð ÞzN nP{nRz~nR{~nPð Þ½ �w0 (counter-clockwise rotation around c0)

and sgns?~s~{1 if otherwise (clockwise rotation around c0).

Statistical Analysis. Statistical analyses, including Wilcoxon signed-rank test and
Spearman’s rank correlation test, were performed by using stata 12.0 (Stata, College
Station, TX).

Transition matrix of the conditional response model. For the conditional response
model, the transition probability Mcr[s9js] from the social state s ; (nR, nP, nS) at time
t to the social state s’: n’R,n’P ,n’Sð Þ at time (t 1 1) is expressed as:
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