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Early detection and evaluation of cognitive alteration in chronic liver disease is

important for predicting the subsequent development of hepatic encephalopathy. While

visuomotor tasks have been rigorously employed for cognitive evaluation in chronic liver

disease, there is a paucity of auditory processing task. Here we focused on auditory

perception and examined behavioral and haemodynamic responses to amelodic contour

identification task (CIT) to compare cognitive abilities in patients with chronic liver disease

(CLD, N = 30) and healthy controls (N = 25). Further, we used support vector machines

to examine the optimal combination of channels of functional near-infrared spectroscopy

that can classify cognitive alterations in CLD. Behavioral findings showed that CIT

performance was significantly worse in the patient group and CIT significantly correlated

with neurocognitive evaluation (i.e., number connection test, digit span test). The findings

indicated that CIT can measure auditory cognitive capacity and its difference existing

between patient group and healthy controls. Additionally, optimal subsets classified

the 16-dimensional haemodynamic data with 78.35% classification accuracy, yielding

markers of cognitive alterations in the prefrontal regions (CH6, CH7, CH10, CH13,

CH14, and CH16). The results confirmed the potential use of behavioral as well as

haemodynamic responses to music perception as an alternative or supplementary

method for evaluating cognitive alterations in chronic liver disease.

Keywords: chronic liver disease (CLD), cognitive alteration, nonverbal auditory perception/music perception,

melodic contour identification, haemodynamic response, functional near-infrared spectroscopy (fNIRS)

INTRODUCTION

Chronic liver disease (CLD) is a progressive destruction of liver functions over a period more than
6 months leading to fibrosis and cirrhosis (Sharma and Nagalli, 2020). Depending on the severity
of impairment, patients with CLD show the limited mental capacity, changes in psychomotor
functions and/or hepatic coma (Bernthal et al., 1987; Brodersen et al., 2014; Filipović et al., 2018).
CLD-related neurophysiological and psychometric dysfunctions vary, ranging from psychomotor
speed to executive functioning (Ortiz et al., 2005; Zhan and Stremmel, 2012) and get worsened as
approach to overt hepatic encephalopathy (HE) (Butterworth, 2000; Sánchez-Carrión et al., 2008).
Patients with HE present with overt clinical symptoms, such as disorientation, and consciousness
disorders, which contributes to an increased risk of death in cirrhotic patients (Bustamante et al.,
1999; Weissenborn et al., 2001a, 2005; Bajaj et al., 2007a; Prasad et al., 2007; Stewart et al., 2007).

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.535775
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.535775&domain=pdf&date_stamp=2020-10-08
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:noshin@hanyang.ac.kr
mailto:ejeong@hanyang.ac.kr
https://doi.org/10.3389/fnhum.2020.535775
https://www.frontiersin.org/articles/10.3389/fnhum.2020.535775/full


Jo et al. Music for Cognition Classification

Early detection of cognitive alteration in chronic liver disease
is, thus, critical to predict the subsequent development of HE
(Krieger et al., 1996; Romero-Gómez et al., 2001; Chen et al.,
2013).

The current cognitive evaluation in chronic liver disease do
not cater for cognitive functions in diverse sensory modalities.
For example, the West Haven scale is a subjective and semi-
quantitative clinical scale that classifies mental state changes
(Conn et al., 1977; Groeneweg et al., 1998; Hartmann et al., 2000;
Ferenci et al., 2002; Amodio et al., 2004). In addition, there is a
battery of psychometric tests that aims to detect neurocognitive
impairments, such as neuropsychological and perceptual motor
dysfunction (Weissenborn et al., 2005), named the psychometric
hepatic encephalopathy score (PHES). The PHES consists of five
subtests, including the A and B number connection tests (NCT-A,
NCT-B), the line tracing test (LTT), the serial dotting test (SDT),
and the digit symbol test (DST) (Weissenborn et al., 2001b;
Ferenci et al., 2002; Bajaj et al., 2009), a primarily paper-and-
pencil test. The stimuli in these neurocognitive tasks are limited
to visual perception and visuomotor agility and rarely provide
information about cognitive alteration in auditory modality.
Clinicians and researchers have emphasized to a novel method
that employs another type of stimuli and tasks to detect cognitive
alterations, and that is also time- and cost-effective (Bajaj et al.,
2007b, 2008; Romero-Gómez et al., 2007; Sharma et al., 2013;
Kircheis et al., 2014; Gupta et al., 2015), which is a central aim
of this study.

In this study, we focused on the potential of auditory
perception as a new evaluation task (Mehndiratta et al.,
1990; Saxena et al., 2001). For instance, Mehndiratta et al.
(1990) employed different modality tasks to detect hepatic
encephalopathy (HE), auditory task as measured by brain stem
auditory evoked potentials were found to be the most sensitive
to indicate HE compared to visual and somatosensory evoked
potentials. Event-related potentials (ERPs) using an auditory
oddball test have been shown to have significantly delayed P300
components in patients with minimal hepatic encephalopathy
(MHE, the earliest form of HE characterized by neurocognitive
impairment; Stinton and Jayakumar, 2013) and in patients with
cirrhosis compared to healthy adults (Ciećko-Michalska et al.,
2006; Teodoro et al., 2008). In a similar vein, Moon et al. showed
cirrhotic patients had longer latencies for N100, P200, N200, and
P300 than healthy adults in the auditory oddball test (Moon
et al., 2014). In particular, the N200 latency, a negative peak
related to mismatch detection and executive cognitive control
function (Folstein and Van Petten, 2008), was significantly
prolonged in cirrhotic patients than in healthy adults. The
authors suggested that both P300 and N200 were delayed due to a
slowness in intracerebral nerve conduction and that the two EEG
components can be considered to be the first signs of cerebral
deterioration in HE (Moon et al., 2014).

Rather than the auditory oddball test, in which target and non-
target stimuli are presented consecutively, this study employed
melodic contour identification task (CIT) that is designed to
measure the selectivity of auditory attention, which is the
core characteristics of auditory information processing. Our
previous studies confirmed the validity of using melodic CIT

to measure the various types of attention in moderate-to-severe
traumatic brain injury patients. Jeong (2013) validated that the
melodic contour stimuli could distinguish the different types and
capacities of auditory attention existing in the various age groups
and that it is a valid and reliable test for auditory cognition. They
also that melodic CITs can measure attentional and cognitive
dysfunctions existing clinical populations (Jeong and Lesiuk,
2011). More recently, the updated and computerized version of
the test was scaled up, showing that the different CITs could
distinguish different cognitive loads (Jeong et al., 2018).

We also examined HbO2 (oxygenated hemoglobin) in the
frontal lobe, which is known as an indicator of cognitive
alterations in patients with chronic liver disease (Mendonça et al.,
2013). Keiding and Pavese (2013) revealed that the cerebral
oedema yields dysfunction in haemodynamic responses and,
thus, it is the main cause of cognitive alterations in HE. Macias-
Rodriguez et al. (2016) supported the idea that the severity
of HE contributes to haemodynamic alteration, mainly caused
by damage to the vascular system and dysfunction of auto-
regulatory vascular responses. The prefrontal areas modulate
diverse cognitive systems, such as attention, working memory,
decision-making, and problem solving (Amodio et al., 2004;
Felipo et al., 2012; Jao et al., 2015) and to receive projections
from almost all processing levels in the superior temporal
gyrus (Poremba et al., 2004; Kusmierek and Rauschecker, 2009;
Kikuchi et al., 2010). With regards to oxygen changes, to a
lesser extent, prefrontal activity has been examined with patients
with MHE. To our best knowledge, there existed a single
study examining oxygen consumption changes during cognitive
performance at the prefrontal cortex using fNIRS. Nakanishi et al.
(2014) compared regional HbO2 in cirrhotic patients without
MHE and those with MHE during a word fluency task. Their
findings showed a significant difference between groups in HbO2

changes over time. That is, HbO2 in the MHE group were
gradually increased throughout tasks, while the non-MHE group
showed recurrent patterns of abrupt increase and decrease in
concentrations. Also, the increase in HbO2 upon stimulation
was significantly delayed in the MHE group than in non-MHE
group (i.e., 5 s after stimulus presentation). These findings were
suggestive of HbO2 obtained from the frontal area can reflect
cognitive alterations along with progress of liver disease.

Thus, the main purpose of this study was to examine
the potential of the melodic CIT as a test for cognitive
alterations following chronic liver disease. We measured
behavioral performance using three subtests of the CIT (focused,
selective, and alternating listening, respectively) and examined
the criterion validity of CIT, in correlation with standard
neurocognitive tests. We also examined whether changes in
HbO2 can be indicative of cognitive alterations in chronic
liver diseases, and whether the regions of the prefrontal
cortex, known to modulate attention and cognition, can be
specified to characterize the alterations in chronic liver disease.
For this analysis, we employed a support vector machine
(SVM) combined with an fNIRS to classify cognitive alterations
following liver diseases, a technique which has been increasingly
used to classify clinical and healthy populations. Monden et al.
(2015) previously measured HbO2 during a go/no-go task and
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performed classification using a SVM algorithm. The findings of
that algorithm yielded a 90% accuracy, indicating the potential of
SVM as a tool for classifying and, thus, diagnosing children with
attention deficit hyperactivity disorder (ADHD). In addition,
Ichikawa et al. (2014) employed an exhaustive search method
combined with SVM that explored all possible combinations of
the fNIRS channels to classify children with ADHD and autism
spectrum disorder (ASD).

METHODS

Participants
A total of 55 participants were included: 30 patients with
chronic liver diseases (Male = 19, Female = 11), and 25 healthy
controls (Male = 8, Female = 17) were matched by age and
the level of education. Participants who had a <3 months of
regular involvement in musical activities and/or professional
training and who had a minimal ability to understand the
spoken instruction were eligible to participate in the study.
The diagnosis of liver disease was based on either a liver
biopsy or the presence of portal hypertension and markers of
hepatocyte synthetic dysfunction. We included patients who
have been diagnosed as liver disease for more than 6 months.
Participants with any of the following conditions were excluded:
diabetes mellitus, systemic arterial hypertension, metabolic liver
disease (hemochromatosis and Wilson’s), personal history of
stroke or cancer, use of neuropsychiatric drugs, neuropsychiatric
disorders, current alcohol intake or smoking, rotating shift work,
or acute inflammatory responses of infectious origin. Table 1
presents the demographics of the two groups.

TABLE 1 | Participant demographics.

CL (N = 30) HC (N = 25) p-value

Mean SD Mean SD

Age (years) 55.80 6.91 54.64 ± 5.94 0.205

Education (years) 10.80 3.67 13.48 ± 3.10 0.394

CL, Patients with chronic liver disease; HC, Healthy control group.

N = 55 for this correlation analysis.

Musical Stimuli and Tasks
Three melodic contours (ascending, stationary, descending) were
adopted from Jeong and Ryu (2016). Melodic contours are a
series of tones moving in different directions (i.e., ascending,
descending, and stationary). Two different types of contours
were combined consecutively to yield six test items (i.e.,
ascending and descending, ascending and stationary, stationary
and ascending, stationary and descending, descending and
ascending, descending and stationary). The presentation time of
each test item was 5,250ms, including two contours (2,250ms
for each) and inter-contour interval (750ms). Figure 1 shows
examples of the pitch contours used in the study.

The six test items were modulated in five different keys
(G# to C major) and were presented using three instrument
timbres (i.e., piano, flute, string), yielding a total of 90 test
items. We selected the instruments based on a previous study
that classified various musical instruments according to their
spectral features of timbre, such as the harmonic structure,
inharmonicity, and harmonic energy skewness (Agostini et al.,
2003). The melodic contours were generated by a digital audio
workstation (Logic Pro X, Apple Inc., Cupertino, CA, USA) with
amplitude normalization. The experimental test was developed
as a computerized version, using Visual Studio (Microsoft,
Washington, DC, USA).

Contour identification tasks (CITs). The computerized
version of the CIT was designed to measure different types of
auditory attention and the associated cognitive load changes
(Table 2). The task stimuli and task structures were adopted
from previous studies (Jeong, 2013; Jeong and Ryu, 2016; Jeong
et al., 2018) and modified for the current purpose. In CIT1,
two consecutive contour directions were presented as target
contour with environmental sounds, including traffic, raining,
twittering, ticktack, bustling, laughing, gabbling, applause,
crying, and jeering sounds. They were randomly presented
against target contours (i.e., selective contour identification
against environmental noise). In CIT2, participants were
presented with target melodic contours against target-like
distractors (i.e., another melodic contour played by different
instrument timbres) and were asked to identify a target contour
presented in a predetermined instrument timbre. In CIT3, two
melodic contours were presented, while participants were asked
to shift their attention from one to another target contour and
identify the direction of contours. For both CIT2 and CIT3, a

FIGURE 1 | Sample melodic contours. (A) Ascending and stationary contours, (B) ascending and descending contours.
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visual cue (e.g., a picture of an instrument) was shown on the
computer screen to inform about the instrument timbre of target
contour. For all CITs, the direction of melodic contours and
instrument timbres were randomly selected.

CIT1 had no visual cues, however, in CIT2, a picture of an
instrument that plays target contours was presented prior to
presenting the item to inform which contour the participants
selectively listened to. In CIT3, outlined boxes were additionally
used to guide at which contours the participants selectively
listened to and shifted from one to another instrument (see
Figure 2). For example, the first outlined box appeared in the
upper or lower line with the first set of contours, and the second
box appeared with the second set of contours.

Haemodynamic Measurements
Oxygenated hemoglobin was measured to evaluate cognitive
activation in participants and the loads imposed by the given
tasks (Peck et al., 2013; Ogawa et al., 2014; Yasumura et al.,
2014). For this evaluation, we employed an fNIRS and a non-
invasive to monitor cortical tissue oxygenation (oxygenated
hemoglobin, HbO2; deoxygenated hemoglobin, HHb) during
cognitive, motor, and sensory stimulation. We used a 16-channel
Spectratech OEG-16 (Shimadzu Co. Ltd., Kyoto, Japan) for the
measurements (Figure 3). Task-related haemodynamic changes
in HbO2 were recorded in 16 channels with a sampling rate of
0.65 s. In addition to the fNIRS data, we collected behavioral data,
including task performance accuracy and reaction time.

Experimental Procedure
This study was approved by the Institutional Review Board
of Hanyang Medical Centre (HYUH-2013-08-017-002). Healthy
adults voluntarily participated and were recruited via physical
and online advertisements and patients with CLD were recruited

TABLE 2 | Structure of the CITs.

Target Distractor Given task Cognitive load

CIT1 Melodic

contour

Environmental

sounds

Selective

identification-Basic

Low

High

CIT2 Melodic

contour

Target-like

contours

Selective

identification-Advanced

CIT3 Melodic

contour

Target-like

contours

Alternating

CIT, contour identification task.

via Hanyang Medical Center. All participants gave written
informed consent in accordance with the Declaration of
Helsinki. All other experimental methods were performed
in accordance with the relevant guidelines and regulations.
Prior to the experiment, two medical doctors with 17 and
20 years of experience, respectively, met with the participants
to determine the participation eligibility and administered
neurocognitive tests.

After taking a 30-min break, the participants wore a band-
type fNIRS containing an array of 12 probes on their forehead.
Participants had a short rest period and then the pre-stimulus
baseline data were obtained for 20 s while they fixated their eyes
on the center of the monitor. A 20-s baseline was also obtained
during inter-task rest periods and post-task period. Once the
baseline data were obtained, the participants were presented
with instruction and examples of melodic contours. Each of the
three CITs started with brief instruction in terms of the task
characteristics given in each CIT and how to respond to test
items. Participants were also instructed to identify the directions
of the target contours by clicking the arrow corresponding to
the contour direction as accurate and immediate as possible.
The contours were delivered via a headphone with controlled
volume, while the visual cues specifying the target musical
instrument were presented to the participants on a monitor. The

FIGURE 3 | Spectratech OEG-16. The locations of the 16 fNIRS channels

along the frontal cortex. The center of the measurement unit was placed on

the frontopolar (Fp) region according to the international 10–20 system.

FIGURE 2 | An example of an answer page given in a monitor with the musical stimuli (CIT3). The boxes were presented prior to presentation of each contour.
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FIGURE 4 | The flow of the experiment.

participants underwent a practice session to become familiar with
the direction identification task. When their accuracy was over
80%, the main experimental session was administered. A total of
18 test items were presented in each CIT (a blocked design) and
the order of CIT was randomized across participants (Figure 4).
The CITs took about 20min to complete. The experiment
was performed in a sound-proof room, in which light and
temperature were controlled.

Signal Pre-processing
The fNIRS raw data were collected throughout the experiment
and were converted into concentration changes of hemoglobin
using the modified Beer–Lambert law (Baker et al., 2014).
Subsequently, a zero-phase low- and high-pass filter with a cut
off frequency from 0.01 to 0.09Hz was applied to remove any
noise from heartbeat pulsations and longitudinal signal drifts
(Morren et al., 2004; Akgül et al., 2005; Bauernfeind et al., 2011).
In this study, we employed an HbO2 index that was based
on previous studies, which reported that HbO2 shows better
classification performance than other measures (Li et al., 2015),
especially for conditions with a high-dimensional feature and low
sample sizes (Mourao-Miranda et al., 2005; Yoon et al., 2007).
The obtained HbO2 values were standardized by subtracting
the mean of 20-s pre-stimulus baselines in order to compare
directly across participants and channels (Herff et al., 2013).
Subsequently, the mean HbO2 during each CIT (CIT1, CIT2,
CIT3) was calculated for each of the 16 channels. Since we found
that the fNIRS response peak was delayed by a few seconds
compared to the stimulus onset (Cui et al., 2010; Ichikawa et al.,
2014), we eliminated the HbO2 from the first 3–10 s for the
statistical analysis. Finally, we obtained 165 data points, including
90 from CL (including 30 from the MHE subgroup) and 75 from
HC.We used the data as inputs and the diagnosis (HC, CL,MHE)
of the groups as outputs.

Classification Using Support Vector
Machines (SVMs)
In this study, we employed a linear SVMmodel with a repeated k-
fold cross validation to solve classification problems between HC
and patients with liver disease. K-fold cross validation method is
one of the split sample methods that randomly divide data into k
subsets, then one of the k subsets are used as the test set and the
other k-1 subsets are used as training set. This process is iterated
k times so that each subset is used as testing set then results are
averaged (Kim, 2009; Mishra and Sahu, 2011).We adopted 5-fold

FIGURE 5 | SVM classification.

cross validation with repeated 20 times to accurately estimate the
generalized performance of the classification (Refaeilzadeh et al.,
2009). Then, we evaluated classification performance using the
MCC and the bACC, as described by previous studies (Sakiyama
et al., 2008; Jiao and Du, 2016). The studies recommended the
use of different evaluation methods to confirm high classification
performance in practical application (Jiao and Du, 2016).

The standardized mean of HbO2 was trained in three different
ways, including (1) eight channels from the right hemisphere
(CH1–CH8), (2) eight channels from the left hemisphere (CH9–
CH16), and (3) 16 channels from both hemispheres (CH1–
CH16). The standardized HbO2 data from the eight channels
from both hemispheres and the 16 channels have an 8-
dimensional (28- 1 = 255 subsets) or 16-dimensional (216-
1 = 65,565 subsets) feature vector, respectively. The obtained
HbO2 data were trained and classified to diagnose groups.
SVMs have been applied previously for classification problems in
various domains, and have yielded high generalization capability
(Bennett and Campbell, 2000; Lotte et al., 2007). An SVM learns
the relationship between the input and output, (i.e. classes) from
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the given set of data. In the feature vector space (Figure 5), the
SVM algorithm creates a hyperplane that separates the input data
into two classes with a maximum margin.

The following equation describes the hyperplane of SVM.

wTx+ b = 0, (1)

Where w is the normal vector to the hyperplane, the two classes
are represented as follows:

wTxi + b≥1 for yi = 1, (2)

wTxi + b≤− 1 for yi = −1, (3)

xi = (xi1, xi2, . . . , xin), yi ⊂ {1, − 1},

where xi is the ith example of the training data and yi is its label.
Once we trained the SVM model, the weight vector w is

known. To test the model, we put a test sample into the left side
of the Equation (1). If the value was more than 0, the sample was
classified as positive. If the value was<0, the sample was classified
as negative.

Evaluation
To evaluate the trained model, we first computed the confusion
matrix shown in Table 3. A confusion matrix describes the
classification result of the test samples by counting the number of
true positives, true negatives, false positives, and false negatives.
If both actual and predicted classes of a sample are positives, the
sample is a true positive; similarly, the sample is a true negative
when both classes are negatives. If the actual class of a sample is
positive but the predicted class of the sample is negative, then the
sample is a false negative. If the actual class of a sample is negative
but the predicted class is positive, the sample is a false positive.

From the confusion matrix, the basic performance measures
were calculated according to the following equations:

Sensitivity :TP/(TP+ FN) (1)

Specificity :TN/(TN+ FP) (2)

Accuracy :(TP+ TN)/(TP+ FP+ FN+ TN) (3)

Sensitivity is the probability to correctly predict the samples
that are actually classed as positive. It is an indicator that assess
the ability of a model to identify positive samples. Specificity
also assess a model’s ability to correctly to correctly predict
the samples whose class is actually negative. Accuracy is the
ability of a model to correctly identify classes for all samples.
However, accuracy could lead to evaluation errors when the
data is imbalanced. If one class is a majority class, the real

TABLE 3 | Confusion matrix.

Predicted Class

Positive Negative

Actual Class Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

performance of the other class cannot be reflected accurately.
Moreover, sensitivity and specificity are not proper measures to
study the balanced performance. For a balanced evaluation, the
following measure was used.

MCC =
TP · TN − FP · FN

√(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
(4)

bACC = (Sensitivity+ Specificity)/2 (5)

We assessed a modified classification performance measure using
a MCC, which is used widely in biomedical research (Van’t Veer
et al., 2002; Boughorbel et al., 2017). MCC considers all of the
confusion matrix categories (true positives, true negatives, false
positives, false negatives), making it suitable for providing a more
balanced value when the sample numbers between groups were
imbalanced (Brodersen et al., 2010; Powers, 2011). Because of a
difference in the number of samples in our patients (CL = 30,
and HC = 25), we adopted the MCC to classify performance
measures. MCC values range between −1 and +1. If an MCC
coefficient is +1, it means the classifier can perfectly predict
the class of the data. An MCC coefficient = 0 means that it is
not different from a random prediction, and a −1 coefficient
means it totally mispredicts the class. Also, we considered the
bACC, which is the average of sensitivity and specificity since it
is also one of the ways to solve an imbalanced dataset (Brodersen
et al., 2010; Powers, 2011), for our accuracy measurements. All
statistical procedures were performed using R.

RESULTS

We analyzed behavioral responses to CITs and performed
classifications between patients with chronic liver disease (CL)
and healthy controls (HC) using HbO2. HbO2 was obtained from
16 fNIRS channels located in the prefrontal cortex. We employed
SVM with the exhaustive search method and grouped three data
sets, including (1) 8-dimension dataset obtained from the right
hemisphere (CH1–CH8), (2) 8-dimension dataset obtained from
the left hemisphere (CH9–CH16), and (3) 16-dimension dataset
obtained from the bilateral hemispheres (CH1–CH16). For each
of these three datasets, we trained the SVM and evaluated
its classification accuracy using Matthew correlation coefficient
(MCC) and the balanced accuracy (bACC).

Behavioral Responses
Table 4 shows the mean accuracy and reaction time for the CL
and HC groups on the CIT. The mean accuracy in the HC group
was the highest for CIT1(0.75), and was followed by the CIT2
score (0.48). Accuracy in the HC was lowest (0.46) when an
attention shift was required between two concurrent melodic
contours during CIT3. A similar trend was found across the
CITs for the CL group (decreasing from 0.62 to 0.32). However,
accuracy declined considerably between both the CIT1 and CIT2
and between the CIT2 and CIT3, while the HC group showed
an obvious decrease only between CIT1 and CIT2. Reaction time
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TABLE 4 | Statistical difference of CIT performance between groups.

Accuracy Reaction time

CL (N = 30) HC (N = 25) CL (N = 30) HC (N = 25)

M SD M SD M SD M SD

CIT1 0.62a 0.30 0.75d 0.28 8576.44f1 816.34 5799.34 894.26h1

CIT2 0.45b 0.23 0.48e1 0.25 9595.72f2 1154.55 6695.61 1264.74h2

CIT3 0.32c 0.21 0.46e2 0.26 11139.09g 1490.87 6926.38 1633.17h3

CL, Patients with chronic liver disease; HC, Healthy control group; M, Mean; SD, Standard Deviation.

Different superscript letters in the same column indicate statistical significance.

p < 0.001 for the pairs of a and b, b and c, c and a, d and e1, d and e2.

p < 0.05 for the pairs of f1 and g, f2 and g. The pairs of e1 and e2, f1 and f2, h1, h2, and h3 did not show any statistical significance (p > 0.05).

TABLE 5 | Correlation between CIT and neurocognitive evaluation tests.

CL HC

NCT-A NCT-B DST-Forward DST-Backward NCT-A NCT-B DST-Forward DST-Backward

Accuracy CIT1 −0.673** −0.546** 0.32 0.325 −0.3 −0.470* 0.560** 0.558**

CIT2 −0.565** −0.520** 0.38 0.33 −0.438* −0.429* 0.466** 0.398*

CIT3 −0.593** −0.459* 0.415* 0.367 −0.418* −0.473** 0.521** 0.414*

Total −0.691** −0.573** 0.416* 0.383 −0.409* −0.499** 0.566** 0.509**

Reaction time CIT1 0.753** 0.567** −0.248 −0.332 0.752** 0.759** −0.431* −0.304

CIT2 0.670** 0.576** −0.289 −0.231 0.626** 0.649** −0.380* −0.24

CIT3 0.692** 0.566** −0.386 −0.182 0.721** 0.714** −0.467** −0.319

Total 0.752** 0.602** −0.311 −0.279 0.723** 0.732** −0.435* −0.295

NCT, Number Connection Test (Time to completion, sec); DST, Digit Span Test (Number of correct answers).

N = 55 for this correlation analysis.

**p < 0.01, *p < 0.05.

showed a similar trend between HC and CL groups, and was the
shortest in the CIT1 and the longest in the CIT3.

A two-way mixed ANOVA [i.e., Group (CL, HC) × Task
(CIT1, CIT2, CIT3)] was performed to validate accuracy and
reaction time. For accuracy, there was a significant main effect
of the Task [F(2, 110) = 65.566, p < 0.001], indicating that CIT
performance for both groups worsened significantly as the CITs
became more difficult. The pairwise post hoc comparison using
the Bonferroni correction revealed that CIT1 was significantly
better than CIT2 (p < 0.001), and that CIT2 was significantly
better than CIT3 (p < 0.01). We also found a significant
interaction between the Group and Task [F(2, 110) = 3.114, p <

0.05]. Interestingly, the pairwise post-hoc comparison revealed
that the CL group performed significantly better in the CIT2
than in the CIT3 (p < 0.001), while the HC group showed
similar performances in the CIT2 and CIT3 (p > 0.05). There
was a significant main effect of the Task [F(2, 110) = 6.126, p <

0.01] on the response time. The pairwise post hoc comparison
using the Bonferroni correction revealed that only the CL group
performed significantly worse in the CIT3 than CIT1 and CIT2 (p
< 0.05, respectively). Table 4 present the statistical difference of
behavioral performance between groups. Our behavioral findings
collectively indicated that patients with chronic liver disease
showed significantly worse auditory perception and cognition,
specifically between CIT2 and CIT3. Additionally, we performed

a correlation analysis to examine the criterion validity of the
CITs. Table 5 presents the correlations between the CITs and
neurocognitive evaluations.

Classification of Hemodynamic Responses
Further, we classified the differences in haemodynamic responses
to CIT1 and CIT2 between HC and CL in combination with an
SVM and an exhausted feature selection method. We decided to
exclude CIT3 since our behavioral findings clearly showed that
CIT3 was too difficult for CL group and, thus, haemodynamic
response to CIT3 might not indicate appropriate cognitive load
in this group.With the analysis, we found a total of 15 subsets that
classified the datamore accurately into two groups among the 255
subtests (five each for the right, left, and bilateral hemispheres,
respectively). Table 6 presents the classification performance for
each of the 15 subsets. The classification performance was higher
for the right hemisphere (MCC= 0.451) than the left hemisphere
(MCC = 0.317). The compute score of sensitivity and specificity
was also higher for the right hemisphere (bACC = 69.75%)
than in the left (bACC = 64.50%) hemisphere. The classification
performance was best with CH6, CH7, CH10, CH13, CH14,
and CH16 (MCC = 0.577, bACC = 78.35%), indicating that
the inclusion of HbO2 obtained from the bilateral hemisphere
yielded better classification performance than values obtained
from the unilateral hemispheres. After an additional t-test, we
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TABLE 6 | Classification accuracy between HC and CL data sets.

Hemisphere Best subset MCC bACC

Right 2,7 0.451 69.75%

3,4,7 0.435 71.05%

1,2,4,7,8 0.366 69.40%

3,4,6,7 0.364 68.75%

2,4,6,7 0.363 62.25%

Left 9,13,16 0.317 64.50%

9,13 0.309 63.65%

9,13,15 0.296 62.65%

9,12,13,14,15 0.274 60.80%

9,10,13 0.245 61.50%

Bilateral 6,7,10,13,14,16 0.577 78.35%

6,7,10,12,13,14,16 0.575 78.00%

1,2,6,7,12,13,16 0.571 77.45%

4,6,7,9,13,14,16 0.560 77.45%

4,6,7,8,13,14,16 0.548 76.70%

N = 255 subtests for the right and left hemispheres, N = 65565 subtests for

the bilateral hemisphere. Best subsets indicated a group of the channels that

yielded optimum classification accuracy. MCC, Matthew Correlation Coefficient; bACC,

balanced Accuracy.

found that classification performance of the bilateral subset was
significantly higher than that of the right and left hemisphere
subsets (p < 0.001, respectively).

Further, we created a matrix plot using 50 subsets and
constructed features that correspond to the classification
performance of each subtest. Figure 6 shows that CH6, CH7,
CH10, CH13, CH14, and CH16 are effective features. This
indicated that HbO2 in CH6, CH7, and CH10 were higher in
the CL than in the HC, and that the HbO2 in CH13, CH14,
and CH16 were lower in the CL than in the HC. Further, our
findings suggest that the frontal areas of each hemisphere were
intercommunicating, so it was necessary to include subsets from
both hemispheres to yield better classification performance.

DISCUSSION

In this study, we examined the potential of melodic CITs
to evaluate cognitive alterations in chronic liver disease. Our
behavioral findings indicated that CITs can differentiate changes
in auditory perception and cognition in patients with chronic
liver disease from healthy controls. Correlation analysis using
standard neurocognitive evaluations revealed that CITs had
good criterion validity and potential for measuring cognitive
alterations that occur in chronic liver disease. Then, we applied
SVMs with 5-fold cross validation to the haemodynamic
responses obtained during the CIT performance to classify
cognitive alterations in patients with chronic liver disease. We
exhaustively searched all subsets of the measurement channels
and evaluated each classification performance by repeating the
5-fold cross validation method 20 times. Our findings yielded
an optimal subset for the classification of the haemodynamic
data with 78.35% accuracy. Our results indicated that the subsets

FIGURE 6 | Classification performance for the bilateral hemisphere between

CL and HC. The upper panel (A) represents classification performance for the

best 50 out of 65,565 subsets. The lower panel (B) shows the weight vector of

each channel matched in the subsets. MCC, Matthew Correlation Coefficient.

Red indicates higher HbO2 in the CL, while blue indicates higher HbO2 in

the HC.

obtained bilaterally can better classify the differences that exist
between HC and patients with CL. Also, we found channel
features that could specify between groups. Three channels
(CH13, CH14, CH16) in the left dorsolateral prefrontal cortex
(DLPFC), one channel (CH6) in the right orbitofrontal cortex
(OFC), and two channels (CH7, CH10) in the right frontopolar
area (FP) were important for the classification of CL from HC.
Figure 7 summarizes the channel specific findings and clearly
shows haemodynamic difference existing between groups.

From the behavioral findings, we found poorer overall
CIT performance in the CL than in the HC group, and the
difference was more obvious between CIT2 and CIT3. The
findings indicated that overall auditory cognition deteriorated
in the CL group. Given that CIT1 and CIT2 involve auditory
selective attention and that CIT3 involves auditory alternating
attention, the cognitive threshold of patients with CLD might
be auditory alternating attention (or cognitive flexibility). The
current findings resembled previous findings where selective
attention (Felipo et al., 2012) and cognitive flexibility (Yang et al.,
2018) deteriorated in patients with liver-related diseases. The

Frontiers in Human Neuroscience | www.frontiersin.org 8 October 2020 | Volume 14 | Article 535775

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jo et al. Music for Cognition Classification

FIGURE 7 | Differences of haemodynamic responses between the HC and CL groups.

tasks employed in the previous studies are visual-oriented, so our
findings revealed that the deterioration of selective attention and
of cognitive flexibility exists similarly in an auditory modality.

Additional correlation analyses indicated that CIT can
measure modality-general cognitive abilities and evaluate
auditory cognitive deficits in chronic liver disease. In the CL
and HC groups, the NCT-A and NCT-B highly correlated with
the accuracy and reaction time of CITs. Correlations with DST
were specific to groups. DST-Forward significantly correlated
with accuracy and reaction time in the HC group, but this was
not significant for the CL group (except for the accuracy of
CIT3 and CIT total). DST-Backward significantly correlated
with accuracy only in the HC group—not for the CL group.
DST measures auditory working memory (DST-Forward) and
auditory executive function (DST-Backward; Soltani et al., 2018).
The current findings might indicate that the HC group utilized
auditory working memory and executive function appropriately
while performing CITs. The CL group, on the other hand, utilized
these functions limitedly during CIT performance. The findings
from correlation analyses further suggest that dysfunctions in
higher auditory cognition (i.e., processing sequential auditory
information) might be one of the characteristics of auditory
cognitive deficits in the CL group.

From the classification of haemodynamic responses, we found
that the channel features in this study were intriguing. Firstly,
HbO2 values obtained from the left DLPFC (CH13, CH14,
CH16) in the CL group were lower as compared to the HC
group, indicating that patient group consumed less cognitive
resources during the CIT performances than healthy adult group.
DLPFC regions modulate higher order cognitive systems, such
as working memory, decision-making, and problem solving
(Amodio et al., 2004; Felipo et al., 2012; Jao et al., 2015). Also, this
region is progressively impaired as liver disease advances (Chen
et al., 2014), which can be a result of decreased blood flow and
reduced glucose uptake activity in the frontal region (Lockwood
et al., 1991, 2002). Ni et al. reported that patients with liver disease

showed decreased functional coherence in the bilateral prefrontal
cortex as the disease progressed (Felipo et al., 2012; Ni et al.,
2012; Zhang et al., 2012). Taken together, deactivation in the left
DLPFC observed in patients with chronic liver disease seemed to
bring poor CIT performance, which can be indicative of cognitive
alterations and inattention. Current inactivity of HbO2 in the
DLPFC, thus, can be a useful feature to classify patients with
chronic liver disease from healthy adults.

In addition, HbO2 values obtained from the right FP (CH7,
CH10) were greater in the CL group as compared to HC
group. The right frontopolar area, which corresponds to BA10,
is involved in a variety of cognitive performances, ranging from
simple to highly complex tasks (Burgess et al., 2007; Turner
et al., 2008). This area receives projections from almost all
processing levels in the superior temporal gyrus (Poremba et al.,
2004; Kusmierek and Rauschecker, 2009; Kikuchi et al., 2010),
and is known for its engagement in abstract representations of
auditory information in organized thought (Medalla and Barbas,
2014). Further, lower activations in DLPFC and greater activation
in FP in CL than HC group together indicated that healthy
adults seemed to assign their cognitive resources on a higher-
order cognitive function while patients with CL placed them in
a more general attention and auditory cognition. The current
findings possibly suggested a compensatory mechanism that
reflects the recruitment and reallocation of cognitive resources
due to the liver disease (Qi et al., 2012). Lastly, HbO2 values
obtained from the CH6 were greater in the CL than HC
group. CH6 receives signals from the FP (BA10), as well as
the OFC (BA11). Note that BA11 is known for its role in
emotional behaviors, especially in evaluating the emotional
valence of external stimuli (Rolls, 2004; Powell et al., 2017).
Huang et al. (2016) for example reported that the level of BA11
activation is indicative of an individuals’ aesthetic experience.
Greater activation CH6 in the CL than in the HC were, thus,
possibly due to our participants’ aversion or appetite for the
auditory stimuli given in CITs rather than features of specific
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alterations that could be used to diagnose cirrhotic chronic
liver disease.

LIMITATION

The results of this study provide new information regarding the
usemultiple prefrontal area channels in the diagnosis of cognitive
alterations in chronic liver disease. Our study preliminarily
utilized auditory/music processing as an evaluation task in
chronic liver disease, but it includes a small sample size (N = 55)
and a skewed female-to-male ratio. Some previous studies have
reported gender difference issues in patients with chronic liver
disease (Tsai et al., 2015; Barreira et al., 2019). This issue remains
controversial, and findings differ depending on the subtypes of
cognitive functions and the types of tasks. In this study, the
comparison of cognitive functions between males and females
was limited by the insufficient sample size. In future upscaled
studies, we will directly address this issue by controlling the
sample size and gender ratio to investigate the possible influence
of gender difference on cognitive functions in chronic liver
disease. It is alsonecessary to confirm that auditory attention is
affected in chronic liver disease and that it has potential as a
biomarker for MHE detection.

Also, there is little doubt that the important aspects of
attention and cognition are associated with other brain regions.
As the full associations between attention and cognition were
not comprehensively covered due to the physical limitations of
our fNIRS device, the caveats of our study should be considered
when inferring its relationship with overall activations in
the cortex. Emergent advances in fNIRS technology that
provide more channels should make it possible to cover
more regions of the brain in future studies to examine
compensatory mechanisms for cognitive alterations in chronic
liver disease.

CONCLUSIONS

In this study, we applied an SVM model with an exhaustive
method, as suggested by Ichikawa et al. (2014), to classify the
haemodynamic responses during auditory perception. This
method was performed successfully and yielded chronic liver
disease-specific channel features. Given that the majority of
assessment stimuli are visual, these findings implicated the
importance of auditory processing in evaluating cognitive
alterations in chronic liver disease (Mehndiratta et al., 1990;
Sawhney et al., 1997; Saxena et al., 2001; Moon et al., 2012).

Second, by virtue of recent brain imaging technology, such
as the fNIRS, changes in oxygenated hemoglobin in the
prefrontal areas were examined in a time and cost-effective
manner. There were several channels that differentiated
group-specific cognitive alterations that were reflected in the
auditory/music perception. The left DLPFC and frontopolar
areas played a task-specific role, while the right DLPFC
played a modality- and stimulus-specific role in classification.
Lastly, SVMs combined with an exhaustive search method
was effective in classifying multivariate haemodynamic data
since it allowed us to extrapolate an optimized combination
from all possible combinations. Auditory/music perception
tasks identified cognitive alterations in chronic liver diseases,
which is frequently observed but not yet clearly explained; thus,
this method combined with CITs could potentially serve as a
supplementary evaluation of cognitive functions in the early
detection of HE.
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