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Lung macrophages play important roles in the maintenance of homeostasis, pathogen
clearance and immune regulation. The different types of pulmonary macrophages and
their roles in lung diseases have attracted attention in recent years. Alveolar macrophages
(AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived
alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major
macrophage populations in the lung and have unique characteristics in both steady-state
conditions and disease states. The different characteristics of these three types of
macrophages determine the different roles they play in the development of disease.
Therefore, it is important to fully understand the similarities and differences among these
three types of macrophages for the study of lung diseases. In this review, we will discuss
the physiological characteristics and unique functions of these three types of
macrophages in acute and chronic lung diseases. We will also discuss possible
methods to target macrophages in lung diseases.
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INTRODUCTION

In recent years, our understanding of lung immune cell heterogeneity has advanced significantly
with the emergence of new technologies, such as single-cell RNA sequencing (scRNA-seq). The
COVID-19 pandemic also made us painfully aware of the impact respiratory viral infections can
have and sparked interest in the cellular and molecular mechanisms of lung immunity. Lung
macrophages, including AMs and IMs, are important innate immune cells involved in the normal
physiological functions of lung tissue and some acute and chronic diseases, such as infections and
fibrosis (1–3). The microenvironment of the alveoli is different from that of other sites, making TR-
AMs different from IMs and other tissue macrophages. Due to their different origins, AMs can be
subdivided into TR-AMs and Mo-AMs. Unique growth factors and receptors in the steady state
restrict the plasticity of TR-AMs, rendering them hyporesponsive to inhaled particles and dust (4).
Following insults, newly recruited Mo-AMs move to the alveoli, join the AM pool and develop their
own features, while the monocyte lineage is more plastic than mature AMs (5, 6). Early
inflammatory Mo-AMs may be associated with immune disorders such as cytokine storms in
some infectious diseases, and late profibrotic Mo-AMs are associated with lung fibrosis (6–9). By
summarizing recent studies of lung macrophages, we concluded that TR-AMs function as sentinels
that maintain immune balance while the characteristics and functions of Mo-AMs are mainly
dependent on the lung microenvironment. Homeostatic maintenance, immune surveillance,
org September 2021 | Volume 12 | Article 7539401
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phagocytosis and inflammatory resolution may be performed
by these three types of macrophages together or separately and
these cells may communicate to maintain the immune balance
(10–13). Defining the exact role of different lung macrophages
in pathology and diseases may help to identify the cause and find
appropriate therapeutic strategies.
MACROPHAGE SUBSETS IN THE LUNG

The characteristics and functions of different types of macrophages
in various organs are gradually being discovered (14–18). Location
and origin are the two main factors that determine the
characteristics of lung macrophages (19). The lung contains the
following two different macrophage subsets based on anatomical
position and function: AMs and IMs. AMs exist in the alveolar
cavity, while IMs exist in the interstitium (20, 21). When infection
or injury occurs, monocytes enter the alveolar cavity and develop
into Mo-AMs (Figure 1) and they differ substantially from TR-
AMs in both phenotypic and metabolic characteristics in the first
few days (9, 22–24). Thus, AMs contain two distinct
subpopulations as follows: TR-AMs and Mo-AMs. TR-AMs seem
to have lower responsiveness and limited plasticity, while Mo-AMs
are more likely to be remodeled by the microenvironment (5, 6).
The different characteristics of these two types of macrophages
determine their distinct functions in lung diseases (19, 25, 26). Due
to the widespread use of single-cell and tracer technologies, the
subpopulations and physiological characteristics of IMs are
gradually being elucidated, and their roles in lung diseases such
as fibrosis and infections are also beginning to be discovered. IMs
can also be divided into TR-IMs and Mo-IMs according to their
Frontiers in Immunology | www.frontiersin.org 2
origins. However, little is known about the differences in the
functions and characteristics of these two types of IMs, so the
present review will discuss TR-IMs and Mo-IMs together.
RESIDENT ALVEOLAR MACROPHAGES:
TERMINALLY DIFFERENTIATED SENTINELS

Physiological Characteristics
TR-AMs reside in the alveolar cavity and have important
functions in the turnover of pulmonary surfactant and the
removal of dead cells from the alveoli (27–29). TR-AMs
originate from yolk sac-derived erythromyeloid progenitors
and fetal liver monocytes (30–32). Many factors are involved
in AM maturation and self-maintenance (32–35), among which
GM-CSF and TGF-b are the most important (Figure 1).
Defective production of GM-CSF may affect the process of AM
maturation, thereby rendering mice more susceptible to
pathogens (36). Several transcription factors, such as Bhlhe40
and Bhlhe41, also regulate alveolar macrophage self-renewal and
identity. Decreased proliferation is observed in Bhlhe40/Bhlhe41-
deficient alveolar macrophages (37). AM development, maturation,
and regeneration are also regulated by epigenetic factors, such as
histone deacetylase 3 (38). Basophils can also regulate AM
development by promoting the transition of naive macrophages
toward the AM signature (39).

Studies have shown that TR-AMs can maintain self-renewal
independent of monocytes at the steady state via proliferation
(40, 41). However, in some states, such as injury or infection, TR-
AMs are depleted, and Mo-AMs help restore the AM pool. These
FIGURE 1 | Macrophage subsets in the steady state and in defense. There are two populations of macrophages in the physiological state and three populations of
macrophages in the injury and inflammatory states. In the steady-state condition, the maturation and self-maintenance of TR-AMs rely on GM-CSF and TGF-b. When
injury occurs, monocytes recruit to the alveolar lumen and develop into macrophages, constituting a second group of alveolar macrophages and causing tissue
damage by releasing cytokines. TR-AMs can indirectly affect the functions of Mo-AMs and other myeloid cells by inducing epithelial cells to release GM-CSF (12).
Whether there is a direct interaction between TR-AMs and Mo-AMs is still unclear.
September 2021 | Volume 12 | Article 753940
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recruited Mo-AMs can acquire a resident AM phenotype a few
weeks later, but some transcriptional characteristics are still
different because of their monocyte origin (5, 24, 42). It
remains unclear why Mo-AMs do not fully acquire the
characteristics of TR-AMs in the same environment, and the
functional differences between such Mo-AMs and TR-AMs
remain unclear. Other studies have demonstrated that AMs
can refill their niche independent of blood monocytes even
after insult. Hashimoto et al. (40) found that TR-AMs repopulate
through local proliferation after nongenotoxic ablation and
genotoxic insult. Lai et al. (43) also found that TR-AMs restore
their numbers through self-renewal during blood-stage malaria,
which was distinct from splenic red pulp macrophages and hepatic
Kupffer cells. The different results of these studies may be due to the
degree of AM depletion and the severity of inflammation (6).
When AMs are not severely depleted, they can be restored through
proliferation with minimal contribution from circulating
monocytes. In some conditions where AMs are substantially
depleted, however, the remaining AMs are too few to repopulate
in a short time, resulting in the recruitment of monocytes to help
restore their numbers.

Because most experimental mice live in a specific pathogen-
free (SPF) environment while humans live in an environment
with bacteria and dust, the situation becomes more complicated
in regard to human lung macrophages. The AM pool in adults
may contain multiple types of macrophages, especially after they
experience multiple infections and lung diseases in their early
life. The origin and self-renewal capability of human AMs remain
unclear due to the lack of reliable markers and limitations in
sampling and study methods. Using humanized mice, Evren et al.
(44) found that blood CD14+ monocytes give rise to CD206+

CD169+ resident AMs and IMs. Using single-cell technology,
Byrne et al. (45) found that macrophages in transplanted lungs
are predominantly recipient-derived, implying that AM cannot
fully self-renew in the transplanted state. Thus, in addition to self-
renewal, resident AMs may be replenished by peripheral
monocytes in humans, and TR-AMs and Mo-AMs may exist at
the same time (46).

Infections and Lung Injury
TR-AMs are the first line defense against pathogens.
Phagocytosis is an important mechanism by which TR-AMs
defend against bacterial infections. Aging, smoking and severe
systemic diseases, such as trauma and sepsis, impair the
phagocytosis of TR-AMs, thereby reducing their ability to fight
pathogens (47–49). Neupane et al. (50) found that TR-AMs
move between alveoli to phagocytose inhaled bacteria and TR-
AM migration is crucial for bacterial clearance, which is
impaired during viral infection, rendering the lung susceptible
to secondary bacterial infections. Additional studies need to
confirm whether TR-AMs move within the alveolar lumen, but
at least one group of AMs is sessile and attached to the alveolar
wall (13). It is also unknown whether the TR-AMs move toward
the bacteria or whether the bacteria encounter the TR-AMs and
are engulfed. Equipped with several pathogen-recognition
receptors, TR-AMs are quickly activated and release several
cytokines and chemokines after the onset of infections.
Frontiers in Immunology | www.frontiersin.org 3
However, TR-AMs are less inflammatory than monocytes and
neutrophils (9). Depleting TR-AMs can reduce cytokines in the
early phase but have less impact on subsequent cytokine release,
such as IL-6 and TNF-a, but it has less effect on subsequent
proinflammatory processes (51, 52). TR-AMs are less plastic, and
proinflammatory TR-AMs and anti-inflammatory TR-AMs may
exist at the same time and can be distinguished by the expression
of CXCL2 (53). Despite their function in the initiation of
inflammation, TR-AMs also play an important role in
inflammatory recovery and injury repair by clearing apoptotic
cells, also called efferocytosis, and releasing resolving mediators
(54–56). Apoptotic cells, such as neutrophils, express “eat me”
signals, and macrophages recognize these signals through the MeR
tyrosine kinase (MeRTK) receptor, integrins, scavenger receptors
and complement receptors (54). Efferocytosis reduces NO
production and tissue injury through the PPAR-d and PPAR-g
pathways (57). Various lipid mediators secreted by macrophages
during efferocytosis, such as lipoxin, resolvin and protectin, also
promote inflammation resolution by the 15-lipoxygenase pathway
(58). TR-AMs also promote inflammation resolution and tissue
repair by secreting a series of factors, such as TGF-b and IL-10, as
well as promoting the secretion of GM-CSF by alveolar epithelial
cells in LPS-induced lung injury (11, 60, 61). During pathological
states, the process of efferocytosis may be impaired. In acute
respiratory distress syndrome (ARDS) mice, apoptotic neutrophil
clearance is impaired and can be reversed by activating AMP-
activated protein kinase (AMPK) or neutralizing high-mobility
group box 1 (HMGB1) (62). Some pathogens, such as Klebsiella
pneumoniae and Staphylococcus aureus, can also increase tissue
damage by inhibiting the efferocytosis of AMs (63, 64).

TR-AMs can protect bodies from the damaging effect of
bacteria and viruses, such as Staphylococcus aureus, Klebsiella
pneumonia and influenza (65–67). Depleting AMs significantly
reduces the survival rate and increases lung injury severity.
However, some other pathogens, such as Pseudomonas
aeruginosa and respiratory syncytial virus (RSV), can induce AM
pyroptosis or necroptosis, thereby causing severe inflammation and
increasing lung injury severity (68, 69). Some intracellular bacteria,
such as Mycobacterium tuberculosis, can infect TR-AMs and, thus,
mediate the spread of M. tuberculosis from the alveoli to the lungs
(70). TR-AMs may also be related to nonpathogen-induced lung
injuries, such as ventilator-induced lung injury, and a reduction in
TR-AMs reduce the severity of ventilator-induced lung injury (71).
Therefore, the role of TR-AMs in infections is complex and difficult
to define in terms of good or bad, and their role depends on
specific pathogens.

Type II Inflammation
Atopic diseases, such as allergies and asthma, as well as certain
infections caused by parasitic helminths, can induce type II
immune responses (72). The type II immune response is
mainly regulated by T helper 2 (TH2) cells. TH2 cells mainly
secrete the IL-4, IL-5 and IL-13 cytokines and stimulate type II
immunity (72). Although airway type II immune responses are
mainly mediated by cells like eosinophils, mast cells and
basophils, lung macrophages can participate in type II
inflammation and affect disease progression (73, 74). Unlike
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many other macrophages, TR-AMs are hyporesponsive to the
canonical type 2 cytokine, IL-4, and parasitic worm infection (75).
The reason may be due to the unique lung microenvironment that
limits the plasticity of TR-AMs and restricts TR-AMs to a “M2”-
like phenotype. Removal of TR-AMs from the alveolar niche
restores their ability to respond to type 2 cytokine stimulation
(75). Despite their hyporesponsiveness to the canonical type 2
cytokine in vivo, TR-AMs can suppress asthmatic lung
inflammation caused by house dust mites in mice (25, 76).
Depleting TR-AMs decreased IL-27 levels and exacerbated type
II inflammation caused by IL-13 and house dust mite allergens
(77). TR-AMs can alleviate type II inflammation in many ways.
Antigen-bearing TR-AMs can promote the development of
Foxp3+ regulatory T cells, which contribute to airway tolerance
and prevent the development of asthmatic lung inflammation
(78). Apoptotic cell engulfment in TR-AMs promotes the
production of the regulatory T cell-inducing molecule retinoic
acid, which impacts the development of allergen-induced
asthmatic airway inflammation (76). Intrinsic TGF-b1 in TR-
AMs is essential for TR-AMmaturation and is also involved in the
control of allergic reactions (59). TGF-b1-deficient AMs expressed
enhanced levels of monocyte-attractant chemokines and displayed
augmented type II inflammation to house dust mite (59). Lung
macrophage mannose receptor (MRC1/CD206) also have
functions in protection against allergen-induced lung
inflammation and Mrc1-/- mice had an exacerbated lung
inflammation that caused by allergen (79).

Secondary Infection and Trained Immunity
TR-AMs may also be related to secondary infection and trained
immunity. After primary infection, the body may become more
susceptible to bacterial infections. RSV infection stimulates the
local production of growth arrest–specific 6 (Gas6), thereby
converting TR-AMs into the M2 type, which impacts their
ability to defend against secondary bacterial infections (80).
Frontiers in Immunology | www.frontiersin.org 4
After sepsis and severe trauma, TR-AMs are induced by
secondary immunosuppressive signals of signal-regulatory
protein a, and they are epigenetically altered, leading to long-
term lung immunoparalysis (49). However, Yao et al. (81) found
that respiratory viral infection induces long-lasting memory
AMs that are programmed to express high MHC II levels,
increase glycolytic metabolism and produce more neutrophil
chemokines. These memory AMs are induced by CD8+ T cells
(81). After influenza infection, some TR-AMs were replaced by
Mo-AMs, which can protect the body from Streptococcus
pneumoniae infection (42). This phenomenon can also be
observed in a model where the pathogen of the first infection
is bacteria. After recovery from Streptococcus pneumoniae
infection, TR-AMs were reprogrammed and protected against
another pneumococcal serotype (82). It is unclear why TR-AMs
exhibit a completely different phenotype and function after the
initial infection. The severity of the initial infection may be one of
the reasons. Severe systematic infections such as sepsis can cause
AMs to develop immune paralysis states where the phagocytosis
and proinflammatory ability of AMs are impaired (83, 84). While
some local mild infections can make AMs more likely to be
activated in subsequent infections (81, 82) (Figure 2). However,
both the protective effect and dysfunction of TR-AMs may be
restricted to a particular model. Further investigations are
required to determine how different pathogens induce unique
microenvironments and how these microenvironments
differentially affect AMs and lead to long-term changes in AM.
MONOCYTE-DERIVED ALVEOLAR
MACROPHAGES: FANNING THE FLAMES

In homeostasis, two types of monocytes exist in the lung as
follows: classical monocytes (Ly6ChiCX3CR1lo–midCCR2+) and
FIGURE 2 | The role of Macrophages in secondary infection and trained immunity. After a mild infection caused by a specific pathogen such as adenoviruse, TR-
AMs upregulate MHC II expression in response to CD8+ T lymphocytes and are rapidly activated in secondary infections (81). Mo-AMs that persists in the alveolar
cavity after primary infection are also more likely to be activated and form part of trained AMs. After recovery from severe infections, TR-AMs are paralyzed with
reduced phagocytosis and are more susceptible to secondary infections.
September 2021 | Volume 12 | Article 753940
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non-classical/patrolling monocytes (Ly6CloCX3CR1hiCCR2-)
(85). Non-classical monocytes primarily function to scavenge
damaged cells and debris from the luminal side of the vascular
endothelium as well as the parenchyma of tissues, while classical
monocytes are the main recruited monocytes in inflammation
(85, 86). During inflammation or injury, TR-AMs, epithelial cells
and other innate cells release cytokines and chemokines, and
classical monocytes are then recruited to the lungs where they
differentiate into macrophages (Figure 1). Mo-AMs have a
limited ability of self-maintenance (40, 87) and may undergo
apoptosis at the late stage of inflammation (26). The remaining
Mo-AMs can acquire the phenotype of AMs and exist for a long
time, while some expressed genes still show changes. In addition
to inflammation and injury states, Mo-AMs may also contribute
to the AM pool in some steady states. Fate-mapping studies have
shown that there is a substantial contribution of monocytes to
the AM compartment in older mice (30, 88). This might be due
to age-related depletion of TR-AMs (45, 47).

Local microenvironmental cues generated by tissue cells are
increasingly recognized as critical determinants of resident
macrophage identity. Newly recruited Mo-AMs are more
plastic than TR-AMs and can be more easily instructed by the
local microenvironment. Due to their monocyte origin, Mo-AMs
are more likely to be remodelled by the microenvironment than
TR-AMs. Newly arrived Mo-AMs may quickly acquire an
inflammatory phenotype in an inflamed lung and further
promote the development of inflammation. In the late stage of
lung injury, a resolving environment can also instruct Mo-AMs
to a pro-resolving phenotype and promote the resolution of
inflammation. Similarly, the pro-fibrotic effect of Mo-AMs may
be due to the early changes of the lung microenvironment, which
imprint a pro-fibrotic phenotype on Mo-AMs.

Infections and Lung Injury
In pulmonary viral and bacterial infections, Mo-AMs play an
important role in the clearance of pathogens through
phagocytosis and inflammatory responses. However, the strong
proinflammatory effects of newly recruited Mo-AMs usually
exacerbate lung injury. Mo-AMs can cause alveolar epithelial
cell apoptosis and lung injury by releasing tumor necrosis factor-
related apoptosis-inducing ligand and some inflammatory
cytokines, such as TNF-a (89–92). The level of inflammatory
Mo-AMs may also be related to the severity of diseases such as
COVID-19 (93–95). The increased number of monocytes and
Mo-AMs in COVID-19 patients may lead to cytokine storms,
which can cause tissue damage, affect the adaptive immune
response and increase mortality (96–99). In the LPS-induced
lung injury model, different studies may have obtained opposite
results on the role of monocytes and Mo-AMs, with some studies
showing that they are important factors in causing injury and
others finding that they promote recovery from inflammation,
possibly because of the selection of time and choice of
experimental method or mouse type (10, 11, 100).

At the later stage of infection, a gradual resolution in
inflammation converts proinflammatory Mo-AMs to a pro-
repair phenotype, which, in turn, promotes inflammatory
resolution. Continuing persistence of inflammatory Mo-AMs
Frontiers in Immunology | www.frontiersin.org 5
may impair the process of recovery (92). However, it remains
unknown how inflammatory Mo-AMs gradually disappear from
the alveoli and whether apoptosis or migration occurs. The
mechanism of how proinflammatory Mo-AMs transfer into a
pro-repair phenotype is also under debate. Efferocytosis has been
shown to promote macrophages to exhibit a proresolution
phenotype. After phagocytosing too many apoptotic cells, the
phenotype of macrophages further changes from the M2 type to
a nonphagocytic CD11b-low phenotype, which plays a role in
promoting inflammation resolution (58, 101). These macrophages
have significantly different transcriptional characteristics than M2
macrophages and that they express high levels of IFNb-related
genes (102). This type of macrophage promotes the elimination of
bacteria by secreting IFNb, which promotes the apoptosis of
inflammatory neutrophils through the STAT3 pathway, thereby
enhancing efferocytosis and further promoting phenotypic changes
in other macrophages (102). Because many studies on macrophage
efferocytosis do not distinguish their origin, it remains unknown
which type of macrophages play the main role of phagocytosis of
apoptotic cells, whether their phagocytic ability is the same and
which cells mainly promote the repair of damage. After recovery
from infections, some Mo-AMs join the AM pool. These Mo-AMs
display a unique functional, transcriptional and epigenetic profile,
and they produce increased IL-6, which protects the lung from
subsequent Streptococcus pneumoniae challenge (42). However,
influenza-experienced resident AMs remain largely similar to
naive AMs (42). Thus, the circumstances under which pathogens
induce long-term changes in TR-AMs or substantial replenishment
of different functional Mo-AMs remain to be explored.

Type II Inflammation and Fibrosis
Studies have found that Mo-AMs can aggravate type II
inflammation, which is contrary to TR-AMs. Depleting Mo-
AMs can alleviate type II inflammation and fibrosis (25, 103).
However, Machiels et al. (104) identified Mo-AMs as having a
positive role in type II inflammation after long-term training of
lung immunity. The Mo-AMs that replace TR-AMs can block
the ability of dendritic cells to trigger an HDM-specific response
by the TH2 subset of helper T cells (104). Importantly, the role of
Mo-AMs in lung fibrosis has been gradually revealed. Using
scRNA-seq, Aran et al. (105) found CX3CR1+ SiglecF+

macrophages to be a source of Pdgf-aa in the fibrotic niche.
These CX3CR1+ SiglecF+ macrophages may be of monocyte
origin and acquire a TR-AM profile (105). Fastrès et al. (106)
also used scRNA-seq to characterize macrophage/monocyte cell
populations in the BALF from dogs with canine idiopathic
pulmonary fibrosis (CIPF) (107) and found that monocyte-
derived macrophages were enriched in profibrotic genes in
CIPF. Misharin et al. (6) found that during lung fibrosis, AMs
are partially depleted and replaced by Mo-AMs. These Mo-AMs
persist in the lung over the lifespan and drive lung fibrosis. The
self-maintenance and persistence of these pathogenic Mo-AMs
are controlled by macrophage colony-stimulating factor receptor
signaling (7). Selective deletion of Mo-AMs can improve fibrosis
(7, 8, 108). These studies indicate that monocyte-derived cells
more easily acquire profibrotic phenotypes and, therefore,
promote fibrosis. However, it remains unclear how profibrotic
September 2021 | Volume 12 | Article 753940
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environments imprint Mo-AMs. Considering that many studies
involve monocyte-derived macrophages containing monocyte-
derived IMs, it remains unknown whether they act individually
or together.

LUNG INTERSTITIAL MACROPHAGES:
OBSCURITY IN THE PAST

Physiological Characteristics
IMs, which are differentiated from AMs by their localization,
remain less studied. Due to new transgenic tools and single-cell
technology, the localization and function of IMs has become
increasingly clear. Different subpopulations of IMs exist and
reside in different anatomical sites. However, the exact locale of
IMs is still not clear and requires additional studies. Gibbings
et al. (109) identified the following three types of IMs by using
flow cytometry in the steady state: CD11clo MHCIIlo IMs (IM1),
CD11clo MHCIIhi IMs (IM2) and CD11c+ MHCIIhi IMs (IM3).
All three IMs expressed high levels of CX3CR1 and and Csf1r
(109). Compared to IM3 cells, IM1 and IM2 cells express higher
levels of CD206, Lyve-1 and CD169 but lower levels of CCR2 and
CD11c. BM chimeras and parabiotic mice demonstrate that IM3
more readily replenishes circulating precursor cells than IM1
and IM2 (109). Using CX3CR1-GFP reporter mice and
immunostaining for MerTK, they found that IMs are located
within the bronchial interstitium and not the alveolar interstitium
(109). Chakarov et al. (110) identified two groups of IMs as
follows: Lyve1lo MHCIIhi and Lyve1hi MHCIIlo IMs. Lyve1lo

MHCIIhi macrophages were mostly found surrounding the
nerves and were mainly involved in inflammation and antigen
presentation, while Lyve1hi MHCIIlo macrophages were often
closely associated with blood vessels and were mainly involved
in wound healing and tissue repair. Schyns et al. (111) also found
two subsets of IMs: CD206+ and CD206−IMs. CD206+ IMsmainly
exist in bronchial interstitium and express high level of
chemokines and anti-inflammation-related genes while CD206−

IMs are mainly exist in alveolar interstitium and express high level
of antigen representation and proinflammation-related genes.
Based on the above studies, at least two populations of IMs
exist, namely, Lyve1lo MHCIIhi CD206− IMs and Lyve1hi

MHCIIlo CD206+ IMs, which reside in different areas of lung
tissue and have distinct characteristics and functions (Table 1).

The origin of IMs is not clarified mainly due to the lack of
reliable markers that could be used for lineage tracing
Frontiers in Immunology | www.frontiersin.org 6
experiments. Yolk sac macrophages and fetal liver monocytes
may be the main origins of IMs before birth (112). Unlike TR-
AMs, IMs can be gradually replaced by circulating monocytes
after birth (112). Therefore, adult IMs may constitute a
heterogeneous group of cells, comprising embryonically
derived TR-IMs and bone marrow monocyte derived Mo-IMs.
However, it remains unknown whether TR-IMs and Mo-IMs
have different characteristics and functions in steady and
pathogenic states similar to TR-AMs and Mo-AMs. Novel
methods to distinguish these two types of IMs are needed. It
also remains unclear whether there is a group of self-renewing
IMs. Schyns et al. (111) found that CD206+ IMs have a longer life
cycle, and CD206− IMs may be derived from Ly6Clo patrolling
monocytes, which are defined as CD64+ CD16.2+ monocytes.
Ural et al. (113) found a population of tissue-resident interstitial
macrophages in the vicinity of sympathetic nerves in the
bronchovascular bundle. These nerve- and airway-associated
macrophages are derived from the yolk sac, are self-renewing
and do not require CCR2+ monocytes for development or
maintenance (113). Keerthivasan et al. (114) also identified a
proliferative Ki67+ IM subpopulation using scRNA-seq. In
contrast, using fate mapping and parabiotic mouse models,
Chakarov et al. (110) demonstrated that both groups of IMs
are replaced by blood monocytes after birth.

Inflammation and Infections
IMs may take part in the inflammation process and regulate
immune reactions. After intraperitoneal (i.p.) LPS administration,
the proportion of IMs gradually increase during the course of
inflammation (106). IMs and inflammatory monocytes (iMos)
exhibit robust and largely overlapping changes in gene expression
(106). In addition to proinflammatory cytokines, IMs are quickly
induced to express genes for anti-inflammatory cytokines, active
oxygen scavengers and matrix metallopeptidases after i.p. LPS
administration (106). In contrast to i.p. delivery, AMs are the
most responsive lung macrophages after intranasal (i.n.) LPS
administration with few acute changes in gene expression
observed in IMs and iMos (106). The lung tissue environment
may also have an impact on the immune regulation function of
IMs, and IMs may interact with other nearby cells. In response to
inflammatory injury, IMs switch to an anti-inflammatory
phenotype to maintain lung homeostasis, which is regulated by
Rspondin3 secreted by endothelial cells (115). IMs also have
functions in type II inflammation and parasite infections. IMs
TABLE 1 | Markers and functions of lung macrophages.

Cell type Population Markers Functions References

TR-AM CD64+ MerTK+ F4/80+ SiglecFhi CD11chi

CD11blo CD206hi
homeostasis maintenance, pathogen phagocytosis, inflammation
initiation, inflammation resolution

(5, 26, 42,
49)

Mo-AM CD64+ MerTK+ F4/80+ SiglecF- CD11c-

CD11bhi CD206lo
pathogen phagocytosis, pro-inflammation, cytokines secretion (8, 26, 42,

49)
IM Lyve1lo

MHCIIhi
CD64+ MerTK+ F4/80+ SiglecF- CD11c-

CD11bhi CD206lo CX3CR1hi
inflammation and antigen presentation (110, 111,

113)
Lyve1hi

MHCIIlo
CD64+ MerTK+ F4/80+ SiglecF- CD11c-

CD11bhi CD206hi CX3CR1lo
wound healing and tissue repair (110, 111,

113)
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can expand under the stimulation of bacterial CpG DNA and
produce IL-10 to reduce allergic reactions (116). IMs have also
been found to produce high levels of IL-10 to inhibit LPS-induced
maturation and migration of DCs (117). Nippostrongylus
brasiliensis infection induces expansion of RELMa+ lung IMs
but not AMs. RELMa+ lung interstitial macrophages are necessary
for reducing severe lung injury in primary and secondary
infection (118).

Fibrosis
The role of IMs in lung fibrosis has been gradually discovered,
but the exact role is still unclear. During lung fibrosis, both
interstitial and alveolar macrophages are detected in clinical and
preclinical radiation-induced lung fibrosis (RIF). Depletion of
IMs using colony-stimulating factor receptor-1 (CSF1R)
neutralizing antibody effectively reduces fibrosis in vivo, while
depletion of TR-AMs has no effect on the RIF score (119). The
arginase-1 expression level in IMs is significantly higher than that in
AMs both in the physiological state and in RIF (119). Other studies
on monocyte-derived macrophages indicate a possible role of IMs
in promoting fibrosis. Depletion of SiglecFlo CD11bhi macrophages,
depletion of Cx3cr1+ cells or use of CCR2-deficient mice can reduce
pulmonary fibrosis (7, 120–122). All these cell depletion methods
may cause the loss of IMs. However, Chakarov et al. (110) found
that the absence of Lyve1hiMHCIIlo IMs exacerbates experimental
lung and heart fibrosis, demonstrating their protective role in
fibrosis. This result suggests the role of origin in IM functions.
Lyve1hiMHCIIlo IMs that express high levels of CD206 and CD169
are more likely to be resident IMs and may play a positive role in
fibrosis. However, monocyte-derived IMs may have a profibrotic
role similar to Mo-AMs. It remains unknown whether the origin
determines the destiny of IMs.
TARGETING MACROPHAGES IN
LUNG DISEASES

Targeting macrophages has been studied in tumor and
autoimmune diseases (123–125). Targeting tumor-associated
macrophages and related factors has been partially applied in
the clinic (126). In various diseases of the lung, targeting
macrophages may be a new strategy, especially for infectious
diseases such as COVID-19 and pulmonary fibrosis.
Macrophage-targeted antibiotics or prodrugs to the lung are
used to treat specific pathogens that infect macrophages (127,
128). Because Mo-AMs are important pathogenic factors in
severe infections and pulmonary fibrosis, direct or indirect
targeting of Mo-AMs may be a new approach for the future
treatment of infectious and fibrotic diseases. Direct clearance of
Mo-AMs in mice can effectively reduce infection-induced lung
injury and pulmonary fibrosis, and this approach can be
optimized for clinical application. Since direct clearance of
monocytes or Mo-AMs may have an unexpected impact on
the human body, indirect targeting of monocytes and Mo-AMs
may be a better option. Researchers can block certain factors or
pathways to reduce the proinflammatory nature of macrophages
Frontiers in Immunology | www.frontiersin.org 7
or to promote their conversion to an anti-inflammatory
phenotype. For example, in the treatment of COVID-19,
targeting GM-CSF can reduce the proinflammatory properties
of macrophages (129). Moreover, blocking the CCL2-CCR2 axis
may be another method to stop the extensive recruitment of
monocytes and Mo-AMs (130). In addition, compared to that of
Mo-AMs, the number of TR-AMs is significantly reduced in
severe infection and fibrosis. Immunomodulatory effects may be
achieved by supplementing TR-AMs or promoting their
proliferation, and timely restoration of TR-AMs also prevents
the development of fibrosis after Mo-AMs occupy the niche.
CONCLUDING REMARKS

Recent findings have revealed different subtypes of lung
macrophages that play important roles in both homeostatic
and disease states. TR-AMs are long-lived cells shaped by the
microenvironment and have immunosuppressive functions in
the steady state and less plasticity in the defense state. TR-AMs
play an indispensable role in fighting pathogens as they activate
the inflammatory response in the early stages and promote the
recovery of inflammation in the late stages. However, whether
TR-AMs are truly self-renewing and whether TR-AMs have
motility properties remain controversial. The differences
between mouse AMs and human AMs are unknown, and the
origin of human TR-AMs and the composition of the human
AM pool remain to be further discovered. It is also unclear
whether sustained pathogen and dust exposure leads to a
predominantly monocytic origin of human lung macrophages.
Derived from monocytes, Mo-AMs are more easily instructed by
the environment than TR-AMs, and they are associated with
cytokine storms and immune imbalance in severe infections (e.g.,
COVID-19). Timely regression of inflammatory macrophages
and their conversion to an anti-inflammatory phenotype is
essential for normal recovery from inflammation. Thus,
interfering with excess inflammation, Mo-AMs may be a
potential mechanism to correct the immune imbalance. In the
recovery period, how Mo-AMs convert to a pro-resolving
phenotype and whether they undergo apoptosis or migration
are unknown. After primary infection, the function of Mo-AMs
in trained immunity are other controversial issues. Considering
the pro-fibrotic function of Mo-AMs, it remains to be
determined whether Mo-AMs infiltrating the infected lung
receive different instructions than the those infiltrating a
fibrotic lung, and methods to change the microenvironment to
alter Mo-AMs require more research in the future. Studies on
IMs are lacking, and these cells may play essential roles in
immune regulation, the type II inflammatory response and
pulmonary fibrosis. It is important to accurately group IMs
and determine their location and to clarify how the location
and origin affect their function. It is also important to understand
if IMs of different locations and origins have different functions
in lung disease as well as how the microenvironment of lung
tissue affects the function of IMs. When studying IMs, it is
important to consider how to avoid contamination by other cells,
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such as Mo-AMs. In future studies, distinguishing different
macrophages in lung infections and noninfectious diseases may
help better understand macrophages and diseases.
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129. Bonaventura A, Vecchié A, Wang TS, Lee E, Cremer PC, Carey B, et al.
Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies.
Front Immunol (2020) 11:1625. doi: 10.3389/fimmu.2020.01625

130. Merad M, Martin JC. Pathological Inflammation in Patients With COVID-
19: A Key Role for Monocytes andMacrophages.Nat Rev Immunol (2020) 20
(6):355–62. doi: 10.1038/s41577-020-0331-4

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Hou, Xiao, Tang and Xie. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
September 2021 | Volume 12 | Article 753940

https://doi.org/10.1038/mi.2015.34
https://doi.org/10.1038/ni.3857
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41590-019-0582-z
https://doi.org/10.1038/s41590-019-0582-z
https://doi.org/10.3389/fimmu.2020.611749
https://doi.org/10.1165/rcmb.2017-0154OC
https://doi.org/10.1165/rcmb.2016-0361OC
https://doi.org/10.1126/science.aau0964
https://doi.org/10.1126/science.aau0964
https://doi.org/10.1038/s41467-019-11843-0
https://doi.org/10.1242/dev.129122
https://doi.org/10.1126/sciimmunol.aax8756
https://doi.org/10.1016/j.immuni.2021.06.012
https://doi.org/10.1038/s41590-020-0764-8
https://doi.org/10.1016/j.immuni.2017.02.016
https://doi.org/10.1172/JCI39717
https://doi.org/10.1126/sciimmunol.aau3814
https://doi.org/10.1183/13993003.02120-2017
https://doi.org/10.1165/rcmb.2017-0154OC
https://doi.org/10.4049/jimmunol.167.8.4368
https://doi.org/10.1002/path.1667
https://doi.org/10.1016/j.addr.2017.04.010
https://doi.org/10.1111/imm.12910
https://doi.org/10.1016/j.cca.2019.10.034
https://doi.org/10.1038/nrd.2018.169
https://doi.org/10.1038/nrd.2018.169
https://doi.org/10.1016/j.biomaterials.2018.10.017
https://doi.org/10.1016/j.jconrel.2018.08.014
https://doi.org/10.3389/fimmu.2020.01625
https://doi.org/10.1038/s41577-020-0331-4
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Diversity of Macrophages in Lung Homeostasis and Diseases
	Introduction
	Macrophage Subsets in the Lung
	Resident Alveolar Macrophages: Terminally Differentiated Sentinels
	Physiological Characteristics
	Infections and Lung Injury
	Type II Inflammation
	Secondary Infection and Trained Immunity

	Monocyte-Derived Alveolar Macrophages: Fanning the Flames
	Infections and Lung Injury
	Type II Inflammation and Fibrosis

	Lung Interstitial Macrophages: Obscurity in the Past
	Physiological Characteristics
	Inflammation and Infections
	Fibrosis

	Targeting Macrophages in Lung Diseases
	Concluding Remarks
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


