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Identifying rates at which birders engage with different species can inform the impact
and efficacy of conservation outreach and the scientific use of community-collected
biodiversity data. Species that are thought to be “charismatic” are often prioritized in
conservation, and previous researchers have used sociological experiments and digital
records to estimate charisma indirectly. In this study, we take advantage of community
science efforts as another record of human engagement with animals that can reveal
observer biases directly, which are in part driven by observer preference. We apply a
multistage analysis to ask whether opportunistic birders contributing to iNaturalist
engage more with larger, more colorful, and rarer birds relative to a baseline approx-
imated from eBird contributors. We find that body mass, color contrast, and range
size all predict overrepresentation in the opportunistic dataset. We also find evidence
that, across 472 modeled species, 52 species are significantly overreported and 158
are significantly underreported, indicating a wide variety of species-specific effects.
Understanding which birds are highly engaging can aid conservationists in creating
impactful outreach materials and engaging new naturalists. The quantified differences
between two prominent community science efforts may also be of use for researchers
leveraging the data from one or both of them to answer scientific questions of interest.
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Birds have received special attention in conservation (1), and investigations into stated
preferences for birds have found that species traits—color, pattern, and shape—influence
their perceived charisma (2–4). Sociological experiments studying animal charisma have
relied on stated preferences to find correlations between hypothetical “willingness to pay”
or “empathy” for a species’ conservation and species’ size, color, and aesthetic appeal (5–
7). Recognizing the increasing availability of digital records of public engagement with
animals that reveal preferences, an emerging field of “culturomics” uses Google search
results, Wikipedia article activity, and records of digital engagement to identify charismatic
species and traits (8–10). Others have taken advantage of revealed-preference data for birds
from Google search results and the Common Breeding Bird Monitoring Scheme (11) and
eBird data (12) to similarly investigate the public’s perception of different birds.

Online community science platforms, which collect data contributed by volunteers,
provide a more direct way to study people’s engagement with species in the wild. Commu-
nity scientists, sometimes called “citizen scientists,” volunteer contributions to scientific
databases as self-guided nonprofessionals. Two biodiversity platforms in particular are of
great interest for investigating bird charisma and engagement on a large scale. eBird, an app
for hobbyist birders that has generated one of the world’s largest biodiversity databases,
has recorded over 550 million records in North America to date (13). Many of these
records come from over 46 million “complete checklists” and thus represent a rigorous
reporting protocol, with reliable information on when species were not detected alongside
when they were detected as well as the inclusion of sampling metadata. Another popular
platform is iNaturalist, a nature app designed to encourage public engagement with all
species. The primary goal of iNaturalist is to “connect people to nature” (14). The app
allows an observation of any species at any time or place to be entered, so reporting rates
depend on relative interest in different species among other factors.

Biodiversity records such as those aggregated on online community science platforms
are important for informing species distribution models (15–17). Complete checklists
from eBird are lauded as appropriate for species distribution modeling (18, 19), whereas
opportunistic records such as from iNaturalist are known to contain particular biases
(20, 21). These biases are often characterized as noise, but they may actually contain
a strong signal of the habits and preferences of opportunistic naturalists. In this paper,
we estimate those biases in relation to eBird and thereby analyze public engagement
with species traits such as size and color contrast while controlling for phylogenetic
relatedness, taxonomic order, and distribution characteristics such as abundance and range
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Fig. 1. We conceptualize community science reporting as a filtering process.
eBird complete checklist observations pass through two conceptual filters: 1)
presence and 2) detectability. In iNaturalist, a hypothetical report must pass
through an additional filter, 3) engagement, which represents the factors that
lead an observer to report one bird over another, encompassing human-
driven differences in these data, including the bird’s perceived charisma, the
birder’s skill level, logistical obstacles to recording the detection, and spatial
sampling effort.

size. By harnessing two huge but very different community science
datasets, we gain insight into how humans engage with biodiver-
sity they encounter in the wild.

We construct a conceptual model to relate eBird and iNatural-
ist’s data-generating processes and show how they can be studied
to characterize observer biases (Fig. 1). Imagine an iNaturalist user
who notices a bird, takes a picture of it, and submits the photo to
iNaturalist. For this event to occur, three separate conditions must
be satisfied. First, the species must be present in the environment.
We call this condition the “presence” filter, and characterizing
this process is the main goal of most species distribution models
that use community science data. Second, the bird itself must be
visible or audible to a skilled observer—this is the “detectability”
filter, which is controlled for in ecological studies as imperfect
detection and includes factors like the species’ loudness, visibility,
and distinctiveness. Were this a complete checklist in eBird,
the process would stop here, because all detected birds must
be reported under the complete-checklist protocol. However, in
iNaturalist, a third event must occur: The observer must record
an audio clip or, far more commonly, take a photo and upload it
to iNaturalist. In practice, an observer might ultimately not report
a species for a number of reasons: The observer may fail to notice
or identify the bird due to skill or experience level; documenting
the observation may be logistically challenging; or, the observer
may find it uninteresting or otherwise not worth documenting.
We call the factors that lead an observer to engage with one bird
over another the “engagement” filter.

We hypothesized two main types of bias that could drive
variation in the engagement filter. The first, photogenic bias, refers
to sampling differences due to aesthetic preferences of observers.
One component of photogenic bias relates to relevant aspects
of species charisma, such as size and color. Another component
of photogenic bias is logistical: Particular bird species might be
overreported by virtue of being easier to document rather than
more charismatic. Since iNaturalist observations are almost always
associated with photos, this could lead to a difference between
the datasets. The second type of bias, novelty bias, may occur
where users in iNaturalist preferentially report species that are
new to them or that they observe infrequently. Other biases may
also occur. For example, observers might engage differently with

species based on what habitats or locations the observer engages
with, which may vary between the two datasets at a scale finer
than was feasible to analyze in this study. Characterizing the
engagement filter, visible as deviations in iNaturalist reporting
rates relative to eBird, is the main goal of this study.

Results

We estimated an overreporting index with uncertainty for each
of 472 species of interest. This index is interpreted as the typical
deviation across space in iNaturalist relative to eBird reporting
rates, and its value is the difference in the typical log odds-
scale reporting rate of a species in each dataset. For example, an
overreporting index of ln(2) (∼0.693) means that the odds that
a new observation in iNaturalist is the species are twice the odds
that a new observation in eBird is the species. After controlling
the false discovery rate, 210 species’ overreporting indexes were
significantly different from zero, giving evidence that iNaturalist
and eBird reporting rates were meaningfully different for many
species. A significantly negative overreporting index means iNat-
uralist observers engaged with the bird at a lower rate than eBird
observers, while a significantly positive one means they engaged
with the bird at a higher rate. Fig. 2 shows the most extreme over-
and underreported birds. The most overreported birds are each
some combination of large (wild turkey), well known for their
appeal (burrowing owl), or considered especially beautiful (Indian
peafowl). The Indian peafowl may be particularly overreported
in iNaturalist due to a technical rule that some eBirders may be
following, namely that captive birds are not countable. Examining
the least overreported birds, we notice that they are smaller birds,
waders and gulls, or have large ranges (crow), characteristics we
investigate in a more formal analysis next.

We hypothesized that differences at the species level, repre-
sented by the third filter layer (Fig. 1), could be driven by a variety
of mechanisms. Fig. 3 shows the relationship between overre-
porting indexes and the species traits that relate to the proposed
biases. We found a statistically significant relationship between
the overreporting index and size, color, and number of hexagons
(hexes) containing observations of the species (a proxy for range
size) in a meta-analysis of species-level effects incorporating uncer-
tainties. We did not find a statistically significant relationship (in
the presence of other covariates) between the overreporting index
and reporting rate (a proxy for overall prevalence). This means
that opportunistic birders in the contiguous United States engaged
more with larger, more colorful, and more range-limited birds
more often than would be expected based on the corresponding
species’ detection rates in eBird.

While accounting for phylogenetic structure across species we
found a 0.31 effect size on scaled log mass with a 95% CI
of (0.15, 0.47), 0.12 for scaled color (0.04, 0.19), −0.13 for
scaled log number of hexes where reported (−0.25, −0.03), and
−0.08 for scaled log proportion of eBird checklists where reported
(−0.19, 0.03). See SI Appendix, Table S1 for more interpretation.
The independent random effect dominates the phylogenetically
structured random effect in magnitude, suggesting there is not
much phylogenetic structure in the residual variance. If one is not
interested in relationships to the phylogeny, one might fit the same
models without accounting for phylogenetic structure. We present
the results of this analysis ignoring phylogeny, which are similar
but slightly less conservative, in SI Appendix, Table S5.

We tested sensitivity of results to the choice to exclude low in-
formation species associated with extreme overreporting indexes.
Including these indexes meaningfully changed the results of the
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Fig. 2. Species overreporting indexes. (A) Counts of bird overreporting indexes by significance level, controlling the false discovery rate (FDR) to account for
multiple comparisons. The odds of appearing in iNaturalist for the most underreported species (B) were between 0.002 and 0.13 as small as in eBird, while the
odds for the most overreported species (C) were roughly 1.6 to 45 as large as in eBird. The bottom axis shows the overreporting index on the log scale as used
elsewhere in this paper. The top axis shows the index on the real scale. For each species, the index is plotted with its 95% CI.

meta-analysis, indicating that the choice to exclude low informa-
tion species was well motivated (SI Appendix, Tables S2 and S6).

We accounted for phylogeny at the species level in the meta-
analysis, but it can also be helpful to visualize relationships at

the order level for improved interpretation. We identified five
taxonomic orders whose typical overreporting indexes were sig-
nificantly different from zero after correcting for multiple testing
(Fig. 4). Owls and gamefowl tend to be relatively large, which may
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Fig. 3. Species overreporting indexes plotted against four traits—(A) log mass, (B) color contrast (higher values indicate greater color contrast), (C) log range
size, and (D) log reporting rate (prevalence)—whose associations were studied in a meta-analysis. Vertical error bars show 95% CIs of indexes not adjusted for
multiple testing.
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Pigeons and Doves (n=7)
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Fig. 4. The predicted effect of order, representing the typical overreporting index for that group of species, excluding low-information outliers. Colors indicate
the results of a false discovery rate-controlling significance test. Box plots show the range of estimated overreporting indexes in each group.

explain their overreporting. However, many waders and gulls are
large, and this order is underreported, along with songbirds and
doves.

Discussion

When using community science data to study biodiversity, the
inescapable fact of variation between users and across platforms is
often ignored or treated as noise that at best adds uncertainty and
at worst causes biased estimation. However, when studying peo-
ple’s relationships to animals rather than the animals themselves,
with an eye toward using this knowledge to inform conservation
efforts (22), the paradigm flips, and variation across platforms
becomes the data-generating process of interest. For this task,
community science is not merely a source of noisy data, but also a
unique and invaluable source of information about how members
of the public engage with the natural world.

The iNaturalist dataset in particular is ideal for characteriz-
ing naturalists’ biases. Because iNaturalist is open to all living
organisms, anything like eBird’s complete checklist protocol is
impossible, as an observer will likely detect hundreds of species
of plants, animals, and fungi for every individual they choose to
report. iNaturalist therefore forces its users to constantly discern
which organisms they consider noteworthy and which to ignore.
Therefore, differences between iNaturalist and eBird data are
partially driven by the human element of choice.

To obtain estimates of birder engagement with 472 bird species,
we modeled variation in iNaturalist reports across species relative

to the eBird baseline. To increase confidence that any findings
reflect true differences in reporting behaviors, we included four
critical layers of statistical rigor intended to estimate unbiased re-
porting rates and accurately estimate uncertainty: spatially explicit
models for each dataset so neither one serves as a noisy predictor
of the other, a quasi-binomial error distribution to account for
remaining variation, a parametric bootstrap on the overreporting
index to accurately quantify uncertainty to propagate forward, and
a phylogenetically explicit meta-analysis to account for potential
lack of independence between species. Callaghan et al. (23) give a
simpler analysis from regressing one dataset against the other.

In the wild, opportunistic birders engage more with species
whose traits have been identified as charismatic in artificial con-
texts such as surveys (5–7). In particular, this study reinforces the
concept of the charismatic megafauna, the idea that larger species
are more interesting, sympathetic, or accessible to members of
the public (24–26). The finding that more range-restricted birds
are overrepresented is also consistent with the hypothesis that
iNaturalist users may optimize for lengthening their “life list,” the
list of unique species they have ever observed on the app (27),
or want assistance identifying species that are new to them. The
strong relationship we find between size and overreporting is also
consistent with the hypothesis that iNaturalist users engage more
with birds that are easier to photograph. Logistical constraints
around photography are likely not the only drivers of variation,
as hinted by the fact that the American crow, a common, large,
and relatively bold bird, is quite easy to photograph but is strongly
underreported.
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Three taxonomic orders—songbirds, waders and gulls, and
pigeons and doves—were associated with underreporting. Song-
birds, a group that comprised more than 40% of the species stud-
ied, are a phenotypically diverse group, so it is difficult to speculate
why they may be overall underreported, but their general small
size, ubiquity, and difficulty to identify may all contribute to their
underreporting. Traits that are harder to quantify than those we
studied might contribute to these three taxa being underreported:
Gulls, pigeons, and some songbirds (such as American crows,
European starlings, and chimney swifts) might be considered
nuisances in urban or agricultural settings, and opportunistic
observers might ignore nuisance species; many species in these
three groups flock, which could drive engagement; and species
may use space differently; for example, shorebirds may congregate
in locations that contain few iNaturalist observations.

Nature photography and film making have played a large role
in conservation by bringing biodiversity to the attention of the
public (28, 29). As camera lenses and photos have become ubiq-
uitous in our culture, conservation sites and museums have lever-
aged this fact, using Instagram and other social media platforms
to understand and further engage visitors, both by producing
aesthetically compelling imagery and by encouraging visitors to
take and share their own photographs (30, 31). iNaturalist takes
advantage of commonplace camera phones to provide users with
automatic identifications of their observations (32) and a platform
on which to document and share their experiences. The logistics
and charisma dimensions of this engagement bias, seen through a
camera lens, are likely correlated, and we were not able to disentan-
gle them within this framework. However, because photographs
and imagery play a large role in modern communication and social
media, logistical obstacles to photographing a bird may play a
large role in how that bird is known or perceived by community
members and therefore patterns in logistical bias may themselves
be of interest.

We have argued that these engagement results are interesting
in part because of their implications for birders’ preferences,
i.e., the perceived charisma of the species we studied. How-
ever, the role of perceived charisma in effective conservation is
complicated. While charismatic species are often used for public
outreach as “flagship species,” this may be associated with the
misallocation of conservation resources as the species in greatest
need are not always those deemed charismatic (6). A similar
imbalance is present in community science data; the “gotta catch
’em all” commodification of nature associated with birding life
lists can be at odds with the scientific pursuits that these data
inform (33). As our overreporting indexes show, people do engage
differently with different species. These differences can inform
effective outreach and fundraising even while conservationists
maintain preference-blind standards in prioritizing species for
conservation management (34). Conservationists may also tailor
outreach materials, arguments, and experiences to best align with
people’s levels of engagement, whether by focusing on high en-
gagement or by identifying engagement gaps where species are
ignored.

It is important to note that neither eBird nor iNaturalist is
uniformly used or accessible across user demographics, so these
results can only reveal the behaviors of people who are already
engaging with nature through these community science platforms,
who have self-selected based on a general interest in birds, and
who are not blocked from engaging with nature due to economic
disadvantage or other systemic barriers. Future work could in-
vestigate the engagement filter in further subpopulation analyses
(e.g., children, urban areas) (35, 36). Since bird plumage varies
seasonally, an investigation of the engagement filter variation

across seasons may also be of interest to clarify the relationship
between color and charisma (37).

Quantifying the difference between eBird and iNaturalist may
also be of interest to scientists using the data from these sources
in downstream analyses of species abundance. Future work could
include evaluating and improving modeling with community data
using these quantified differences between the two datasets. For
example, many hierarchical ecological models have a latent abun-
dance or occurrence layer and an imperfect detection layer. Our
overreporting index could be used directly in a model informing
the imperfect detection layer. For statistical methods that do not
explicitly model the detection process, our relative reporting rates
can play a role similar to a different sampling effort for the two
datasets: The indexes we estimated could help calibrate iNaturalist
detection rates across species. Our methods could be repurposed
to create a difference index to calibrate detection or reporting
between any two data sources.

We analyzed the differences in these two datasets with data
aggregated over time, at a large spatiotemporal scale. Studies on
smaller spatiotemporal scales could obtain more tailored estimates
using the methods we describe. High-engagement species may dif-
fer across regions or communities. Similarly, downstream analyses
may call for detection or sampling effort corrections estimated
at more local scales. By tuning the methods with select hex size
and data filters, a set of tailored overreporting indexes could be
obtained for a variety of contexts.

By treating observer biases as signal rather than noise, we
estimated overreporting indexes characterizing community sci-
entists’ rates of engagement with over 400 species of US birds.
We identified individual species that birders either engage with
preferentially or ignore as well as species traits and taxonomic
groups associated with these patterns. This work has the potential
to inform conservation decision making and improve models of
bird species distributions.

Materials and Methods

eBird and iNaturalist Preprocessing and Data Structures. In August 2020
we downloaded the eBird Basic Dataset and extracted all complete checklists (13).
We also obtained all iNaturalist research grade observations of bird species from
the Global Biodiversity Information Facility (38). For both datasets, we considered
only observations made in the contiguous 48 United States and Washington, DC
on or before 31 December 2019. We excluded checklists obtained in 2020 or
later to avoid accidentally capturing changes in observer behavior related to the
COVID-19 pandemic (39, 40). We associated species across the two datasets using
the R package taxalight (41).

We aggregated observations to a spatial grid of regular hexagonal cells
covering the contiguous United States such that spatial grid cells had a long
radius (center to vertex) of 20 km. In each “hex,” a count was obtained for the
number of times each species was detected. The total number of observations in
each hex was calculated as the sum of the species observation events in that hex.
For consistency with iNaturalist, an eBird checklist that reported more than one
species was counted as a series of separate species observation events (a checklist
with three species reported constituted three observations). If a species was ob-
served multiple times on a checklist, this counted as only one species observation
event. This framework ignores species counts on each checklist to focus on species
encounter rates in the creation of the overreporting index and is intended to
homogenize procedures across the two datasets as iNaturalist does not report
species counts. By aggregating over time we assumed that the primary variation
is spatial. We accounted for secondary variation elsewhere in the modeling
approach.

We subselected species according to the following criteria: First, to capture
spatial variability in sampling, we considered only species that were observed one
or more times in at least 100 different hexes in eBird in the contiguous United
States, ensuring a minimally well-informed baseline of detection across space
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for all species. Second, we considered only species in the EltonTraits database
(42). We eliminated “pelagic specialists” according to EltonTraits, expecting the
sampling process generating these data to be fundamentally different from that
of terrestrial birds.

Species-Level Spatial Analysis. We first estimated a typical overreporting
index characterizing each species. The unit of analysis for the first stage was
yijk , the count of reports of species j reported at the ith spatial hex in dataset k
(either eBird or iNaturalist). We modeled the number of “successes” in a binomial
random draw yijk as yijk ∼ Binom(Cik , Rijk). Here Cik is the known number of
“attempts,” which we define for the presence-only iNaturalist data to be the total
number of iNaturalist observations across all bird species in spatial hex i and for
the eBird checklist data to be the total number of species observation events on
all of the eBird checklists in spatial hex i. (Note that for eBird, a single checklist
on which five different species are observed would be considered five species
observation events, rather than one, to match the iNaturalist sampling schema.)
Rijk is the reporting rate that we model as a function of location i for each species
j and dataset k combination.

We used a quasi-binomial generalized additive model (GAM) with a logit
link to capture spatial variability via a multidimensional tensor-product smooth
of the longitude and latitude coordinates of the hexes (43). The motivation for
this approach was twofold. First, we anticipated that many differences between
the datasets could be due to spatial heterogeneity in sampling. Both eBird and
iNaturalist are highly spatially variable with different hotspots, meaning that
sampling intensity differs by dataset and a spatially explicit analysis is called
for. We chose a pragmatic resolution (20-km hexagons) that addressed spatial
variation while remaining computationally feasible to estimate, and as a conse-
quence smaller-scale variation in sampling is in the engagement filter of interest.
A spatially explicit approach is also necessary since user habits may themselves be
spatially nonindependent. To obtain accurate CIs on parameter estimates, spatial
autocorrelation in the data-generating process must be accounted for. Second,
we anticipated extrabinomial, nonspatial variability across units (e.g., temporal,
weather conditions, observer variability, etc.). We chose a quasi-binomial ap-
proach as a way to account for this in the uncertainty quantification.

A GAM was fitted for each species and dataset combination. The basis dimen-
sions were chosen to use 20× 20 knots. We fitted all models and then iteratively
increased knots by 5 in each axis until the model passed a hypothesis test of
whether the basis dimension for a smooth was adequate using a P-value cutoff
α= 0.1 (given in the R function mgcv::gam.check).

From the quasi-binomial GAMs, we obtained estimates of the spatially smooth
surface of the reporting rate at each hex, in each dataset. We calculated the over-
reporting index as the median predicted difference in log-scale reporting rates
across hexes for each species. We used the median predicted difference rather
than the mean as the median is a more robust summary across all hexes when a
few hexes have large and uncertain differences that would distort the mean. To
obtain accurate CIs on the overreporting index, we used a parametric bootstrap
approach, making random draws of the spatial surface and recomputing the
index each time, to obtain an estimate of uncertainty for each index. Each species’
overreporting index represents the typical deviation in the iNaturalist reporting
rate relative to the eBird baseline for that species.

To assess which overreporting indexes were significantly different from zero,
we used a P-value threshold that was adjusted to account for the fact that we
made multiple comparisons (one for each species). We used a false discovery rate
controlling method to ensure that across comparisons the false positive rate was
no more than 0.05 (44).

Cross-Species Meta-Analysis. We used a meta-analysis to ask whether species
traits can help explain differences in birder engagement measured by overreport-
ing indexes. A meta-analysis allowed us to propagate the uncertainty estimated

in the first stage of the analysis (45). The median differences in reporting rates for
all of the species, along with their SEs, became the response in this stage of the
analysis.

To investigate the effect of size, we retrieved species’ log mass from the
EltonTraits dataset (42). To represent how colorful or striking a bird is, we used an
index of maximum color contrast originally developed by Schuetz and Johnston
(12). We used two covariates as proxies of different aspects of rarity: the number
of hexes a species is reported in (a proxy for size of effective range) and the
proportion of all eBird checklists where the species was found (a proxy for overall
prevalence). We centered and scaled these covariates for log mass, maximum
color contrast, log range size, and log prevalence.

We also considered species’ level of risk for extinction as a potential covariate
(SI Appendix, Tables S3 and S4). However, many of the birds most at risk fail to
appear in our dataset due to the sample size filters we put in place, mentioned
above. Therefore, the results presented in this paper reveal conservation insight
at medium levels of risk rather than the most extreme.

In the meta-analysis we also incorporated phylogenetic structure to account
for the possibility that phylogenetically closer species have more similar reporting
indexes due to evolutionary nonindependence of unmodeled but important
traits (46). We obtained multiple phylogenetic trees from BirdTree.org (47). We
then obtained a consensus tree including branch edges using the R package
phytools (48). Finally, we computed a variance–covariance matrix based on this
consensus tree using the R package ape (49). We allowed for both a random effect
for species with this variance–covariance structure and an unstructured random
effect for species.

We fitted a second meta-analysis including only the effect of taxonomic order
and excluding phylogenetic structure to obtain estimates of each order’s mean
overreporting index with properly propagated error (50).

Models for nine species failed to fit (SI Appendix) and were therefore dropped
from the second-stage analysis. Three of these failed to pass a test for adequate
knots with a basis dimension of 35 × 35, above which computation became
infeasible. Six of these failed to converge in under 24 h, which was chosen as
a practical cutoff.

We removed 49 species that had overreporting indexes outside the range
−10 to 10 from the meta-analysis stage. Values less than −10 or greater than
10 arose in cases where, among the union of hexes where a species was reported
in either dataset, one dataset reported no observations in over half of those
hexes. Because the reporting index uses median differences in log reporting
rates, it could not be reliably estimated, nor its uncertainty reliably quantified for
the meta-analysis step, in these cases. After these two filters, 424 species were
included in the meta-analysis. To test the sensitivity of results, we repeated the
meta-analysis including the extreme overreporting indexes.

Data Availability. Phylogenetic tree data (47) and the code used to process the
data, perform the analyses, and make the figures have been deposited on Github
(https://github.com/sastoudt/charismatic-birds). eBird data are freely available to
download from https://ebird.org/data/download or from the Global Biodiversity
Information Facility (51). We used version ebd relAug-2020 directly from eBird.
Previously published data were used for this work (12, 38, 42, 52).
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