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ABSTRACT Pediatric obesity remains a public health burden and continues to increase
in prevalence. The gut microbiota plays a causal role in obesity and is a promising thera-
peutic target. Specifically, the microbial production of short-chain fatty acids (SCFA) from
the fermentation of otherwise indigestible dietary carbohydrates may protect against pe-
diatric obesity and metabolic syndrome. Still, it has not been demonstrated that thera-
pies involving microbiota-targeting carbohydrates, known as prebiotics, will enhance gut
bacterial SCFA production in children and adolescents with obesity (age, 10 to 18 years
old). Here, we used an in vitro system to examine the SCFA production by fecal microbi-
ota from 17 children with obesity when exposed to five different commercially available
over-the-counter (OTC) prebiotic supplements. We found microbiota from all 17 patients
actively metabolized most prebiotics. Still, supplements varied in their acidogenic poten-
tial. Significant interdonor variation also existed in SCFA production, which 16S rRNA se-
quencing supported as being associated with differences in the host microbiota compo-
sition. Last, we found that neither fecal SCFA concentration, microbiota SCFA production
capacity, nor markers of obesity positively correlated with one another. Together, these
in vitro findings suggest the hypothesis that OTC prebiotic supplements may be unequal
in their ability to stimulate SCFA production in children and adolescents with obesity
and that the most acidogenic prebiotic may differ across individuals.

IMPORTANCE Pediatric obesity remains a major public health problem in the United
States, where 17% of children and adolescents are obese, and rates of pediatric “severe
obesity” are increasing. Children and adolescents with obesity face higher health risks,
and noninvasive therapies for pediatric obesity often have limited success. The human
gut microbiome has been implicated in adult obesity, and microbiota-directed therapies
can aid weight loss in adults with obesity. However, less is known about the micro-
biome in pediatric obesity, and microbiota-directed therapies are understudied in chil-
dren and adolescents. Our research has two important findings: (i) dietary prebiotics (fi-
ber) result in the microbiota from adolescents with obesity producing more SCFA, and
(ii) the effectiveness of each prebiotic is donor dependent. Together, these findings sug-
gest that prebiotic supplements could help children and adolescents with obesity, but
that these therapies may not be “one size fits all.”
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Approximately 17% of children in the United States have obesity, and the preva-
lence continues to increase among all ages and populations (1). The prevalence of

pediatric obesity is even higher in Hispanic and African American populations in the
United States, where rates of severe obesity continue to increase (1). Children with
obesity have an increased risk of adverse health events and incur higher health care
costs (2–4). Despite the severity of the pediatric obesity epidemic, current common
treatment strategies centered around lifestyle changes, including behavioral, dietary,
and exercise interventions, often fail or have limited success (5). The high prevalence of
pediatric obesity, coupled with the low success rate of common interventions, high-
lights the need for more efficacious, safe strategies to lower the body mass index (BMI)
in children and adolescents.

The human gut microbiome has emerged as a promising therapeutic target in pediatric
obesity. Over the past decade, differences in gut microbial community composition and
metabolic activity between obese and lean individuals have been observed (6–8). Causal
links have also been established; fecal transplantation can transfer the obesity phenotype
from obese donors to lean recipients and recapitulate some key metabolic changes in
human obesity (9). Multiple mechanisms for this link have been proposed, including
increased energy harvest by obese microbiota (10), activation of enteroendocrine signaling
pathways by short-chain fatty acids (SCFAs) (11–13), modulation of glucose and energy
homeostasis through bile acid signaling (14), and increased local and systemic inflamma-
tion caused by a variety of microbial metabolites (15).

Recent attention in obesity research has been specifically drawn to the role of
microbially derived SCFAs. SCFAs—primarily acetate, propionate, and butyrate—are
produced by enteric microbes as end products of anaerobic fermentation of undi-
gested, microbially accessible dietary carbohydrates, and serve a variety of important
roles in the gut. Of particular interest is the SCFA butyrate, which serves as the primary
nutrient source for colonocytes (16) and functions as a histone deacetylase inhibitor
(17, 18). Through its inhibition of NF-�B signaling in colonocytes, butyrate contributes
to barrier integrity maintenance and reduces levels of intestinal inflammation markers
(19–22). Acetate, propionate, and butyrate also each activate G-protein-coupled recep-
tors (GPRs) that modulate key metabolic hormones, including peptide YY (PYY) and
GLP-1 (12, 23). Consistent with these mechanistic findings, mouse studies have shown
that supplementation with acetate, propionate, butyrate, or some mixture of these can
protect against weight gain, improve insulin sensitivity, and reduce obesity-associated
inflammation (24–29). Given the experimental evidence for SCFA supplementation
having an antiobesogenic effect in a murine system, maintaining high levels of SCFAs
during a weight loss treatment may improve results (27).

If increasing SCFA levels is a potential approach to promote weight loss in children,
prebiotic supplementation may provide an effective and low-risk adjunctive therapy.
Prebiotics are dietary carbohydrates that are indigestible by human-produced enzymes
and thus survive transit to the lower gastrointestinal (GI) tract. Once in the colon,
prebiotics serve as carbon sources for bacterial fermentation, which in turn yield SCFAs
as metabolic end products (30, 31). Multiple types of prebiotics (e.g., fructooligosac-
charides [FOS] and inulin-type fructans) have been tested in children with obesity
ranging from ages 7 to 18 years old. In select cases, these treatments have been
associated with smaller increases in BMI and fat mass (32), and reductions in body
weight z-scores, body fat, and trunk fat (33). Still, other prebiotic trials in children who
are overweight have reported no significant beneficial effects (34).

Interpreting the mixed outcomes of prior prebiotic clinical trials in pediatric obesity
though is complicated by several challenges. First, in vivo studies in pediatric obesity to
date have each used only one prebiotic supplement due to the logistical constraints of
clinical trials (32–34). Trials employing testing only a single type of supplement hinder
the ability to generalize conclusions regarding the efficacy of prebiotics and also make
it challenging to determine whether some prebiotics are inherently more acidogenic
than others. Second, in vivo trials in healthy adults have shown substantial interindi-
vidual variation in the single prebiotic effects on stool SCFA concentration (30, 31, 35).
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Variation in the primary and secondary outcomes could be due to differences in
microbial SCFA production or differences in host physiology, such as SCFA absorption
potential. Third, while SCFA concentrations have been shown to be altered in children
who are overweight or obese (36), changes in fecal SCFAs during dietary intervention
have not been measured in past in vivo studies in pediatric populations. If prebiotics
mediate their effects through SCFAs (33, 34, 37), directly tracking SCFAs could help
determine treatment success. Fourth, in vivo studies in adults, especially those with
obesity, may be confounded by the concurrence of chronic disease and the medica-
tions a person may be taking to treat chronic disease.

In this study, we have taken an in vitro approach to address the limitations of prior
human studies. An in vitro approach facilitates more direct comparisons of different
prebiotic supplements: the higher throughput of in vitro experiments allows wider
variety of prebiotics to be tested, and the effects of these supplements can be tested
on identical microbiota samples, rather than over time within subjects, which is
confounded by microbiota drift over time (38), as well as inconsistencies in dietary
composition. Taking an in vitro approach to studying the effects of prebiotics on gut
microbiota allows a more direct investigation of microbial SCFA production, since we
can study the effects of prebiotic supplementation independent of the effects of host
absorption (39, 40). Using a preclinical in vitro fermentation model, and samples from
adolescents with obesity who have not developed long-term complications, we pur-
sued three specific lines of inquiry: (i) whether different types of prebiotics lead to
differences in SCFA production by gut microbiota from adolescents with obesity, (ii)
whether the effects of prebiotics are shaped by interindividual differences in gut
microbiota structure, and (iii) whether fecal SCFA production is likely to be associated
with protection from obesity.

RESULTS
SCFA production capacity. To measure SCFA production by gut microbiota, we

adapted the in vitro approach of Edwards et al. (41). This method was specifically
designed to study fermentation of starch in the human lower GI tract and has since
been used to measure metabolite production from human stool samples when ex-
posed to prebiotic fiber (42–44). In brief, we homogenized previously frozen feces in
reduced phosphate-buffered saline (PBS; pH 7.0 � 0.1) to create a fecal slurry with a
final concentration of 100 g/liter (Fig. 1). These fecal slurries were then supplied with
each of five prebiotic carbon sources, as well as a carbon-free control, and allowed to
ferment at 37°C in anaerobic conditions for 24 h to approximate colonic transit time
(45). After the incubation period, the concentrations of SCFAs in the samples were
measured by gas chromatography. To control for differences in overall cell viability or
stool slurry nutrient content between donors, we corrected measurements of SCFA
concentration by dividing the treatment SCFA concentration by the control SCFA
concentration.

To validate our assay, we ran a series of experiments using feces from validation
sample sets. We verified that our control-corrected SCFA production data were not
influenced by bacterial abundance (P � 0.38, � � 0.14, Spearman correlation; see
Fig. S1 in the supplemental material). Absolute (not relativized to control) SCFA
concentrations are supplied in the supplement (see Fig. S2 and S3). Since our fermen-
tation experiments used previously frozen fecal samples, we verified that total SCFA
production was strongly correlated between fresh samples and twice freeze-thawed
samples (P � 0.0001, � � 0.75, Spearman correlation; see Fig. S4A). Since we elected to
not provide our fermentation reactions with nutrients in excess of what was contained
in the fecal slurries, we verified that there existed strong correlation in total SCFA
production between PBS-grown and colonic medium-grown cultures (46), both when
supplied with dextrin and inulin (dextrin: P � 0.001, � � 0.68; inulin: P � 0.02, � � 0.51,
Spearman correlations; see Fig. S5). We found that total SCFA production over control
was positively correlated with the pH of starting fecal slurries (P � 0.003, � � 0.46,
Spearman correlation; Fig. 2A). A weaker correlation may exist between SCFA produc-
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tion and the final pH of the fermentation vessels (P � 0.067, � � 0.29, Spearman
correlation; Fig. 2B).

We subsequently applied our assay to fecal microbiota from a cohort of 17 children
(6 male, 10 female, one unknown) ranging in age from 10 to 18 years old (average age,
15.7 years), Tanner stages 2 to 5, and a body mass index (BMI) of 25.9 to 75.3 (average
BMI, 34.9) (see Table S1 in the supplemental material). One patient provided samples
used in all analyses but was lost to follow-up before providing clinical metadata. This
cohort was a subset of a cohort of patients enrolled in the Pediatric Obesity Microbiome

FIG 1 Overview of in vitro fermentation methods.

FIG 2 Relationship between in vitro SCFA production and pH. (A) In vitro total SCFA production over control is positively correlated with the pH
of starting fecal slurries (P � 0.003, � � 0.46; Spearman correlation). (B) Relationship between SCFA production and the final pH of fermentation
vessels (P � 0.067, � � 0.29; Spearman correlation).
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and Metabolism study (47). We found all 17 individuals demonstrated a net gain of
SCFAs relative to the control in at least one prebiotic treatment, which led us to
conclude that all tested cultures were viable and metabolically active (Fig. 3).

Donor and prebiotic both impact SCFA production in vitro. We next tested the
hypothesis that different prebiotics equally promote the production of SCFAs by

FIG 3 In vitro SCFA production by prebiotic (A), donor (B), and individually (C). In a two-way ANOVA of the effects of “donor” and “prebiotic” on “SCFA
concentration/control,” “donor,” “prebiotic,” and their interaction were all statistically significant (P � 0.0001, P � 0.0001, and P � 0.0001, respectively). Shown
is the total SCFA concentration of an in vitro culture after 24 h of anaerobic incubation, divided by the SCFA concentration of the corresponding prebiotic-free
control culture, for each of five prebiotic growth conditions across 17 donors (black dots). Gray diamonds are means, and gray bars are standard deviations.
(Absolute SCFA concentrations are depicted in Fig. S3.)
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performing statistical analysis of SCFA production as a function of the prebiotic type
and individual identity. Our analysis revealed heterogeneity in the efficacy of prebiotic
supplements (two-way analysis of variance [ANOVA], P � 0.001; see Table S2; Fig. 3A),
ranging from inulin, which resulted in a 2.35 mean fold change in total SCFAs, to
galactooligosaccharides (GOS), which resulted in 3.55 mean fold change in total SCFAs.
Frequently, only two or three of the five tested prebiotics resulted in increased total
SCFA production within an individual. Our statistical testing also revealed consistent
patterns between individuals’ gut microbiota in terms of SCFA production (two-way
ANOVA, P � 0.001; see Table S2; Fig. 3B), with mean fold changes in SCFAs over control
ranging from 2.37 to 6.12. Within individuals, the average fold change in SCFA con-
centration in the prebiotic treatments often appeared to be driven by a few strongly
acidogenic prebiotics. Last, our analysis indicated a significant interaction between
prebiotic type and individual identity (two-way ANOVA, P � 0.001; see Table S2;
Fig. 3C). Because our statistical analysis considered technical replicates as separate
experimental conditions, this result suggests the presence of consistent prebiotic/
individual responses across in vitro assay replicate runs—not whether such interactions
are consistent within an individual over time.

SCFA production in vitro predicts the abundance of bacteria in the starting
culture. If interindividual differences in gut microbiota mediated responses to prebiotic
treatment, we would expect that specific bacterial taxa, which varied between individ-
uals, could also be associated with SCFA production. To evaluate this hypothesis, we
used the R package stray (48) to create a Bayesian multinomial logistic normal linear
regression (pibble) model that tested for correlations between in vitro SCFA production
in response to each prebiotic and 16S rRNA community composition of patient stool
used in the fermentations at the genus level. This analysis revealed that SCFA produc-
tion from prebiotics was correlated with the relative abundances of 18 different
bacterial genera (95% credible interval not covering 0; Fig. 4). Of the 13 genera
positively associated with SCFA production, 9 are known or likely fiber degraders
(49–53), one, Akkermansia, is often observed to increase in abundance after prebiotic
treatment (54), and one, Methanobrevibacter, an archaeon hydrogenotrophic methano-

FIG 4 Eighteen genera were found to be credibly associated with SCFA production in at least one of our five prebiotic growth conditions. Shown
are the mean lambda values and 99%, 95%, 80%, and 50% credible intervals for all 18 genera credibly associated with at least one prebiotic
growth condition, plotted on centered log-ratio (CLR) coordinates. Red centers denote associations with 95% credible intervals that do not cover
0. Lambda represents the strength of the effect of each covariate on each taxa. A lambda value of 1 reflects a unit fold change in SCFA
concentration over control as being associated with a unit fold change in the CLR-transformed relative abundance of the genus.
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gen, is known to increase the efficiency of carbohydrate metabolism by the microbiota
(55) (Table 1). Most genera identified by stray were associated with SCFA production in
a limited set of prebiotic treatments. One genus, Lactobacillus, is positively associated
with SCFA production on xylooligosaccharides (XOS) but was negatively associated
with SCFA production on GOS. Overall, the presence of specific associations between
bacterial taxa and different prebiotics supports a model where different individuals vary
in their levels of prebiotic degrading gut bacteria.

Metrics of obesity do not appear to correlate with SCFA production capacity of
stool. Finally, we tested the hypothesis that in vitro SCFA production would be
associated with obesity-related phenotypes. We compared clinical metadata from
individuals, which included BMI, insulin, and HbA1c, with average total SCFA produc-
tion across prebiotics and found no significant correlations in our population (Spear-
man correlation; Table 2). Fecal microbial SCFA production capacity may not be directly
associated with obesity though because rates of host SCFA uptake likely vary, and this
variance may influence host intestinal physiology (56–58). Indeed, in support of the
idea that SCFA absorption rate (which was not measured in this study) shape metabolic
homeostasis and host health, we observed a negative association between fecal SCFA
concentrations and in vitro SCFA production across the range of tested prebiotics
(Fig. 5). Furthermore, if SCFA absorption efficiencies varied by individual, residual fecal
SCFA concentrations may not directly reflect the complete effect of bacterial metabo-
lism on obesity. Consistent with this notion, no significant relationships were apparent
between concentrations of SCFA in patient stool and clinical markers of obesity
measured at enrollment, including BMI, insulin levels, and HbA1c (Table 2), although
this may also be explained by uncontrolled patient parameters.

DISCUSSION

In this study, we found that the microbiota of all tested adolescents with obesity
increased total SCFA production when exposed in vitro to at least one prebiotic. Both
donor and prebiotic were significant factors in determining SCFA production in vitro, as
was their interaction. Our modeling revealed distinct associations between specific
microbial taxa and SCFA production on different prebiotics. We interpret this result as

TABLE 1 Associations between microbial genera and SCFA production on five different prebiotic substrates

Genus

Association with SCFA production

Fiber degrader status ReferenceDextrin XOS GOS FOS Inulin

Akkermansia � Supporter 87
Ruminococcus_2 � Degrader 49
Coprostanoligenes_group � No evidence 88
Parabacteroides � Degrader 50
Butyricimonas � Associated 51
Methanobrevibacter � Supporter 89
Tyzzerella_4 � Degrader 52
Tyzzerella_3 � Degrader 52
Lachnospiraceae_NK4B4 � Degrader 52
Lactobacillus � – Degrader 50
Coprococcus_1 � Degrader 53
Collinsella � No evidence 90
Lachnospiraceae_FCS020 � Degrader 52

TABLE 2 Neither average SCFA production in vitro nor fecal SCFA concentration
correlated with metrics of obesity measured in individuals at the time of enrollmenta

Parameter

BMI Insulin HbA1c

P � P � P �

Avg net SCFA production 0.98 –0.007 0.63 0.13 0.75 0.083
Fecal SCFA concentration 0.65 –0.12 0.61 0.13 0.72 –0.09
aP and � values were determined from Spearman correlations.
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suggesting that the associated bacteria play a role in the fiber fermenting capacity of
the community. We observed no correlations between either stool SCFA concentrations
or in vitro acidogenic capacity of communities and any metrics of obesity (Table 2).

We have recapitulated previous findings that both donor and prebiotic are
important in determining the SCFA production from in vitro prebiotic supplemen-
tation (31, 51, 59), and we found that not all prebiotics appear equally acidogenic
(51). Since our in vitro system removes the host as a potential source of variation,
our data support a gut microbial role for interdonor variation in fecal SCFA
production. In addition, the strength of the interaction between donor and prebi-
otic strongly suggests that prebiotics are not “one size fits all”; rather, inconsistent
results from prior studies of prebiotics in pediatric obesity (32, 34, 60) may be due
to variation in the SCFA production capacity of individuals’ gut microbiota across
the tested prebiotics. Future therapeutic efforts involving prebiotics in patients with
obesity may benefit from stratified or personalized treatments. Nutritional therapies
that are personalized to individuals’ microbiota are already in development (61).

Murine and in vitro studies show that increased signaling through GPCRs, mediated
by acetate, propionate, and butyrate, increases satiety and insulin sensitivity, while
decreasing adipogenesis (12, 23, 62); yet, we did not observe associations between
fecal SCFA levels and metrics of obesity. The effects of SCFA on obesity may be masked
by uncontrolled patient factors, such as differences in caloric intake and variation in
individual nutrient harvest and utilization. In order to observe the effects of SCFA on
obesity, it would be necessary to control for these variable physiological and lifestyle
parameters, which we did not attempt. These patient factors may also have influenced
our inability to observe an association between acidogenic capacity of microbiota and
fecal SCFA concentrations. However, this may also be explained by the potential

FIG 5 Spearman correlations between in vitro SCFA production and SCFA concentration of the starting fecal inoculum. SCFA
production is the average of technical replicates, with the linear regression line plotted.
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uncoupling of fecal SCFA production and fecal SCFA concentration. In vitro, increased
luminal concentrations of butyrate have been shown to upregulate the sodium-
coupled monocarboxylate transporter SLC5A8 (56), and the addition of physiological
mixtures of SCFA has been shown to upregulate the monocarboxylate transporter
SLC16A1 (63), both of which uptake acetate, propionate, and butyrate from the lumen.
Since gut epithelia have the capacity to absorb up to 95% of SCFA before excretion (64),
increased host SCFA uptake (triggered by increased gut bacterial production) could
therefore lead to constant or even decreased fecal SCFA concentrations. This complex
relationship could explain the absence of positive correlations we observed between
stool SCFA levels and the acidogenic capacity of gut microbiota. It may be necessary to
delve further upstream of fecal SCFA concentration by measuring proxies for host SCFA
uptakes, such as the expression of SCFA transporters (SLC5A8 and SLC16A1) and SCFA
receptors (GPR43, GPR41, and GPR109A) (56).

The primary limitations of this study involve constraints common to in vitro culture
studies. First, many factors affecting bacterial SCFA production in vivo are difficult to
replicate in vitro, including the availability of nutrients such as nitrogen, the starting
concentration of SCFAs, the redox state of the environment, and the efficiency of
cross-feeding interactions (65, 66). Different metabolic results between prebiotics may
have occurred if we provided alternative cometabolites or nutrients, in addition to the
tested prebiotics. We chose our culture conditions, namely, a medium-free approach
that does not add any nutrients beyond what is present in the stool, in an effort to
avoid inducing artificial selective conditions within our cultures. Prior experimental
digestion studies have shown that prebiotic response patterns can be recapitulated
across various culture conditions (42, 44). Indeed, we found strong correlation in SCFA
production between cultures grown with our medium-free approach and those grown
in a more conventional medium containing added nitrogen, vitamins, minerals, and
acetate. Further, this approach allowed us to minimize the influence of the host on
measurements of microbiota production of SCFA. We did observe shifts in community
composition during the 24 h fermentations (Fig. S6); however, we remained able to find
statistical associations between SCFA production capacity and prefermentation com-
munity composition. A second set of limitations in this study involves our reliance on
patient collection of stool. Interdonor variation in prebiotic response could have
originated in technical variation between how patients exposed stool to aerobic
conditions (67) or how they froze their samples (68), which in turn could have affected
the fraction of viable microbial cells in stool samples. Still, we found a significant
correlation between in vitro total SCFA production from fresh stool and stool that had
been frozen and thawed twice. Variation in donor prebiotic response could also have
biological origins due to physiological differences between people (e.g., efficiency of
food digestion, consistency of stool [69]) or differences in diet, which can lead to
variation in stool microbial load and nutrient content (70). Rather than control for a
myriad of different sources of variation whose origins we did not measure, we chose
the straightforward approach of standardizing donor samples by employing a consis-
tent concentration of stool slurry (5% [wt/vol] stool in PBS) in our experiments.

Future work to address these limitations could test multiple stool samples per
subject to confirm whether the observed variation in prebiotic response is durable
between individuals over time. Future studies could also examine the correlation
between the metabolic effects of prebiotic supplementation in vitro and in vivo using
randomized human trials that couple human prebiotic supplementation, in vivo mea-
surement of SCFA production, and in vitro tests of microbiota metabolic activity. It
would also be useful for such studies to explore the impact of prebiotic supplemen-
tation on host physiology, both in vitro and in vivo. Specifically, the effects of prebiotic
supplementation on colonic epithelial barrier integrity, SCFA receptor (GPR41, GPR43,
and GPR109A) expression, and SCFA transporter (MCT1 and SMCT1) expression could
provide greater insight into the health impacts of prebiotic supplementation, as well as
explain why fecal SCFA concentrations may not mirror the metabolic capacity of gut
microbiota.
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MATERIALS AND METHODS
Cohort. Stool was collected from human donors under a protocol approved by the Duke Health

Institutional Review Board (Duke Health IRB Pro00074547) for a prospective longitudinal cohort study
and biorepository. Participants whose samples were used in this study were treatment-seeking adoles-
cents with obesity who were newly enrolled in a multidisciplinary weight management program. All
subjects received family-based intensive lifestyle modification. Based on clinical necessity, some partic-
ipants also were placed on a low-carbohydrate diet, medications to facilitate weight loss, or underwent
weight loss surgery (see Table S3). Due to the low number of patients assigned to each treatment arm,
we did not attempt to base any analyses on patient treatment plan. Patients were 10 to 18 years old, with
a BMI � 95th percentile. None had antibiotic use in the 1 month prior to enrollment, used medications
known to interfere with the intestinal microbiome, or had other significant medical problems. Stool
samples used in this study were from enrollment, 3-month, 4.5-month, and 6-month follow-up visits (see
Table S3). The clinical metadata used for correlations was collected at enrollment, 3 months, and
6 months. The metadata collected nearest to the stool sample collection date was used in our analyses.

Stool collection. Patients collected intact stool samples in the clinic or at home using a plastic stool
collection container (Fisher Scientific, 02-544-208) and were asked to immediately store this container in
their home freezer. Patients then returned the sample by either bringing it to the study team or
scheduling a home pickup within 18 h of stooling. Stool was transported frozen in an insulated container
with an ice pack. Upon receipt in the lab, samples were placed on dry ice until transferred to a – 80°C
freezer for long-term storage. All patient samples were frozen at – 80°C within 19 h of stooling (range,
0.08 h to 18.83 h; median, 11.42 h), except for one which was stored 44.03 h after stooling. The time
between stooling and freezing at – 80°C did not have a significant effect on average SCFA production
(P � 0.58, � � �0.15, Pearson correlation). Stool samples for analysis were processed by removing
containers from – 80°C storage and thawing on ice in a biological safety cabinet until soft enough to
aliquot. Thawed containers of stool were opened to atmosphere for a maximum of 10 min while samples
were aliquoted. After primary aliquoting, the remaining stool was transferred to an anaerobic chamber
(COY Laboratory Products, 5% hydrogen, 5% CO2, 90% nitrogen) and further portioned into �2-g
aliquots for this study. These aliquots were then stored as solid stool pellets at – 80°C until used for this
study.

In vitro fermentation. See Fig. 1 for an overview of in vitro fermentation methods. Aliquoted
stool was thawed at room temperature in an anaerobic chamber. Once thawed, stool was weighed
and placed into a polyethylene filter bag with 0.33-mm pore size (Whirl-Pak B01385), and 10 ml of
anaerobic 1� PBS was added for each gram of stool, resulting in a 10% (wt/vol) fecal slurry, similar
to previous studies (41, 42, 71, 72). During our validation experiments, a medium designed to
simulate colonic contents was used in place of 1� PBS to create stool slurries (46). The filter bag was
then closed and placed into a stomacher (Seward Stomacher 80) where the contents were homog-
enized on the medium speed setting for 60 s. The liquid fraction was removed from the downstream
side of the filter membrane, and the solid fraction was discarded. A 1-ml aliquot of this liquid fraction
was removed for analysis of the SCFA concentration to determine the SCFA concentration of the
starting stool sample. During our validation experiments, two separate 1-ml aliquots of this liquid
fraction were removed: one was used to estimate relative bacteria abundance of starting fecal
slurries using total extracted DNA concentration, as has been previously published (73), and the
remaining aliquot was used to determine the pH of the starting fecal slurry using a handheld pH
meter (Elite pH Spear; Thermo Fisher Scientific). The remaining liquid fraction was incubated in
duplicate across six different treatments, either supplemented with inulin (Now Foods Inulin Powder,
part 2944), fructooligosaccharides (FOS; Cargill, part 100047199), galactooligosaccharides (GOS;
Bimuno Powder), xylooligosaccharides (XOS; BioNutrition prebiotic with Llife-Oligo, part 359), wheat
dextrin (Benefiber Original), or unsupplemented. For each reaction, 1 ml of 10% fecal slurry was
placed in one well of a 24-well cell culture plate. Each well was then delivered 1 ml of 1% (wt/vol)
prebiotic solution in 1� PBS or 1 ml of 1� PBS without prebiotic. During our validation experiments,
prebiotics were dissolved in colonic medium instead of 1� PBS. The resulting fermentation
conditions were therefore 5% fecal slurry with 0.5% prebiotic (wt/vol). A 5% fecal slurry was selected
because its fermentative capacity has been previously demonstrated to be insensitive to small
variations in concentration and is feasible to work with using this method (42). A 0.5% final
concentration of prebiotic in the context of a 5% fecal slurry is analogous to an average adult
consuming 20 g of dietary fiber per day, assuming an average daily stool mass of 200 g (74).
Fermentation reactions were carried out in an anaerobic chamber at 37°C for 24 h. After fermenta-
tion, 1 ml of medium was taken from each reaction vessel for SCFA quantification. During our
validation experiments, a separate 1-ml aliquot was taken for pH measurement.

Simulation of freeze-thaws experienced by study samples. To test the effects of freeze-thaw
cycles on in vitro SCFA production, we collected fresh, whole fecal samples from four healthy adults who
were not patients in the study cohort. Informed consent was obtained from volunteers and the protocol
was approved by the Duke Health Institutional Review Board. Samples were brought into an anaerobic
chamber after voiding. Once in anaerobic conditions, these samples were divided into three aliquots.
One aliquot was processed immediately following the same in vitro fermentation protocol used in our
study. The other two aliquots were transferred to – 80°C storage. After a minimum of 24 h, one of these
two aliquots was removed from the freezer and thawed at room temperature for 2 h, before being
returned to – 80°C for an additional minimum of 24 h. Each of these frozen aliquots was thawed and
processed following the same in vitro fermentation protocol. This allowed direct comparison of samples
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that had been used in fermentations immediately after voiding to those that had been frozen and
thawed one and two times.

Medium preparation. To validate our methods, namely, our use of a 5% fecal slurry in PBS, without
supplementation of other nutrient components, we compared SCFA production with our methods to
SCFA production when stool was instead resuspended in a medium designed to simulate the large
intestine. We used a slightly modified medium derived from Gamage et al. (46). The media contained the
following (per liter): peptone, 0.5 g; yeast extract, 0.5 g; NaHCO3, 6 g; hemin solution (0.5% [wt/vol] hemin
and 0.2% [wt/vol] NaOH), 100 �l; L-cysteine HCl monohydrate, 0.53 g; bile salts (glycocholic acid and
taurocholic acid), 0.5 g (Ward’s Science, 470300-380); vitamin supplement (ATCC MD-VS), 1 ml; K2HPO4,
0.228 g; KH2PO4, 0.228 g; (NH4)2SO4, 0.228 g; NaCl, 0.456 g; MgSO4, 0.0456 g; CaCl2, 0.0460 g; trace
mineral supplement (ATCC MD-TMS), 1 ml; and glacial acetic acid, 287 �l. The pH of the medium was
adjusted to 7.0 � 0.1.

Quantification of SCFA. The SCFA concentration of fecal slurries and fermentation vessels was
determined following a protocol adapted from Zhao et al. (75). First, a 1-ml aliquot of either 10% fecal
slurry in PBS or the fermentation vessel contents was obtained. To this, 50 �l of 6 N HCl was added to
acidify the solution to a pH below 3. The mixture was vortexed and then centrifuged at 14,000 relative
centrifugal force for 5 min at 4°C to remove particles. Avoiding the pellet, 750 �l of this supernatant was
passed through a 0.22-�m spin column filter. The resulting filtrate was then transferred to a glass
autosampler vial (VWR, part 66009-882).

Filtrates were analyzed on an Agilent 7890b gas chromatograph equipped with a flame ionization
detector and an Agilent HP-FFAP free fatty-acid column (25 m � 0.2 mm [inner diameter] � 0.3 �m film).
A volume of 0.5 �l of the filtrate was injected into a sampling port heated to 220°C and equipped with
a split injection liner. The column temperature was maintained at 120°C for 1 min, ramped to 170°C at
a rate of 10°C/min, and then maintained at 170°C for 1 min. The helium carrier gas was run at a constant
flow rate of 1 ml/min, giving an average velocity of 35 cm/s. After each sample, we ran a 1-min postrun
at 220°C and a carrier gas flow rate of 1 ml/min to clear any residual sample. All C2:C5 short-chain fatty
acids were identified and quantified in each sample by comparing to an 8-point standard curve that
encompassed the sample concentration range. Standards contained 0.1, 0.2, 0.5, 1, 2, 4, 8, and 16 mM
concentrations of each SCFA.

DNA extraction, PCR amplification, and sequencing. We performed 16S rRNA gene amplicon
sequencing on human stool samples to determine microbiota community composition. DNA was
extracted from frozen fecal samples with a Qiagen DNeasy PowerSoil DNA extraction kit (ID 12888-100).
Amplicon sequencing was performed using custom barcoded primers targeting the V4 region of the 16S
gene (76), using published protocols (76–78). The sequencing library was diluted to a 10 nM concen-
tration and sequenced using an Illumina MiniSeq and a MiniSeq Mid Output kit (FC420-1004) with
paired-end 150-bp reads.

Identifying sequence variants and taxonomy assignment. We used an analysis pipeline with
DADA2 (79) to identify and quantify sequence variants, as previously published by Silverman et al. (80).
To prepare data for denoising with DADA2, 16S rRNA primer sequences were trimmed from paired
sequencing reads using Trimmomatic v0.36 without quality filtering (81). Barcodes corresponding to
reads that were dropped during trimming were removed using a custom python script. Reads were
demultiplexed without quality filtering using Python scripts provided with Qiime v1.9 (82). Bases
between positions 10 and 150 were retained for the forward reads and between positions 0 and 140
were retained for the reverse reads. This trimming, as well as minimal quality filtering of the demulti-
plexed reads, was performed using the function fastqPairedFilter provided with the DADA2 R package
(v1.8.0). Sequence variants were inferred by DADA2 independently for the forward and reverse reads of
each of the two sequencing runs using error profiles learned from all 20 samples. Forward and reverse
reads were merged. Bimeras were removed using the function removeBimeraDenovo with default
settings. Taxonomy was assigned using the function assignTaxonomy from DADA2, trained using version
123 of the Silva database.

Modeling microbial composition data. To associate microbial genera to SCFA production on
different prebiotics, the sequence variant table was amalgamated to the genus level using the R
package phyloseq (82). Genera that were observed with at least three counts in at least three
samples were retained. This filtering step retained 99.3% of the sequence variant counts and a total
of 97 genera.

To associate microbial composition to SCFA production on different prebiotics, we used Bayesian
multinomial logistic-normal linear regression, implemented in the R package stray as the function pibble
(83). We chose this method to account for uncertainty due to counting and compositional constraints as
expressed in Silverman et al. (80) and Grantham et al. (84). Our regression model was defined for the jth
sample by the covariate vector:

xj � �1, xj(Inulin), xj(GOS), xj(XOS), xj(Dextrin)�T

where xj(Inulin) is the amount of total SCFA produced by the community in sample j as assessed by our
in vitro assay and the preceding 1 represents a constant intercept. The regression model priors required
that four hyperparameters—gamma, theta, xi, and upsilon— be specified. We set the hyperparameter
theta to a D � Q matrix of zeros (where D � 97 is the number of sequence variants and Q � 5 is the
number of covariates) representing our prior assumption that, on average, the association between each
prebiotic and each taxon is zero.
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We set the hyperparameter gamma to be the matrix:

�5 0 0 0 0

0 2 .6 .6 .6

0 .6 2 .6 .6

0 .6 .6 2 .6

0 .6 .6 .6 2

�
which was chosen to reflect the following prior information: (i) the relative scale of gamma11 to gammakk

(for) k � �2,�,5� implies that we have little knowledge regarding the mean composition between
individuals, but that we conservatively expect that the association between SCFA production and
microbial composition is small comparatively; (ii) the value of 0.6 states that, on average across genera,
we assume that the effects of each prebiotic are correlated with an average correlation of 0.3; (iii)
in concert with our prior choices for xi and upsilon (below), the scale of gamma represents our
assumption that the technical noise in our community measurements is smaller (by a factor of) 	e2

than the magnitude of the biological variation between samples. This later prior regarding technical
versus biological variation was informed by Silverman et al. (80). All prior choices were further
investigated using prior predictive checks (85). To reflect a weak prior assumption that the absolute
abundance of each taxon is uncorrelated we choose upsilon � D � 3 and xi to be the (D – 1) � (D –
1) matrix with elements xiii � (upsilon – D) and xiij � (upsilon – D)/2 for j 
 i (86). While the model
fit by stray and our corresponding priors were specified with respect to additive log-ratio coordi-
nates, we utilized theory from compositional data analysis to transform these results into centered
log-ratio coordinates for interpretation (80). Credible intervals and figures reflect 2,000 samples from
the posterior distribution of the corresponding multivariate regression model.
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