
RESEARCH ARTICLE Open Access

Ventricular strain analysis in patients with
no structural heart disease using a vendor-
independent speckle-tracking software
Hongmei Xia1, Darwin F. Yeung2, Cristina Di Stefano3, Stephen S. Cha4, Patricia A. Pellikka2, Zi Ye2,
Jeremy J. Thaden2 and Hector R. Villarraga2*

Abstract

Background: Ventricular strain measurements vary depending on cardiac chamber (left ventricle [LV] or right
ventricle [RV]), type of strain (longitudinal, circumferential, or radial), ventricular level (basal, mid, or apical),
myocardial layer (endocardial or epicardial), and software used for analysis, among other demographic factors such
as age and gender. Here, we present an analysis of ventricular strain taking all of these variables into account in a
cohort of patients with no structural heart disease using a vendor-independent speckle-tracking software.

Methods: LV and RV full-thickness strain parameters were retrospectively measured in 102 patients (mean age 39 ±
15 years; 62% female). Within this cohort, we performed further layer-specific strain analysis in 20 subjects. Data
were analyzed for global and segmental systolic strain, systolic strain rate, early diastolic strain rate, and their
respective time-to-peak values.

Results: Mean LV global longitudinal, circumferential, and radial strain values for the entire cohort were −
18.4 ± 2.0%, − 22.1 ± 4.1%, and 43.9 ± 12.1% respectively, while mean RV global and free wall longitudinal
strain values were − 24.2 ± 3.9% and − 26.1 ± 5.2% respectively. Women on average demonstrated higher
longitudinal and circumferential strain and strain rate than men, and longer corresponding time-to-peak
values. Longitudinal strain measurements were highest at the apex compared with the mid ventricle and
base, and in the endocardium compared with the epicardium. Longitudinal strain was the most
reproducible measure, followed closely by circumferential strain, while radial strain showed suboptimal
reproducibility.

Conclusions: We present an analysis of ventricular strain in patients with no structural heart disease using
a vendor-independent speckle-tracking software.
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Background
Strain and strain rate are sensitive measures of myocar-
dial function that allow early detection of systolic dys-
function even before changes in ejection fraction (EF)
[1–6]. However, strain measurements vary depending on
cardiac chamber (left ventricle [LV] or right ventricle
[RV]), type of strain (longitudinal, circumferential, or ra-
dial), ventricular level (basal, mid, or apical), myocardial
layer (endocardial or epicardial), software used for ana-
lysis, and demographic factors such as age and gender
[7–18].
Previous studies have reported reference values for

strain, taking some but not all of these parameters into
account [7, 10–13, 16–21]. Furthermore, many of these
studies were performed in healthy subjects and therefore
do not include the population of patients we encounter
in practice who are referred for echocardiography for a
clinical indication.
Here, we present an analysis of ventricular strain using

a vendor-independent speckle-tracking software in a sin-
gle cohort of patients who were referred for echocardi-
ography but were found to have no overt evidence of
structural heart disease.

Methods
Study population
We retrospectively screened 106 patients who were
identified as having “normal echocardiograms” in our in-
stitutional echocardiography database between April
2009 and January 2014. The echocardiograms screened
therefore represented a convenience sample of studies in
which the interpreting cardiologist deliberately labeled
the study “normal” to draw attention to the lack of any
identifiable abnormality found using conventional echo-
cardiographic parameters. These patients would there-
fore demonstrate the following based on the American
Society of Echocardiography guidelines: normal ven-
tricular size, wall thickness, and function including nor-
mal LV diastolic function; absence of ventricular wall
motion abnormalities; estimated right ventricular systolic
pressure within normal limits; no evidence of valvular
stenosis; no more than physiologic regurgitation;
normal-sized great vessels; no evidence of constriction;
no more than physiologic pericardial effusion; and no
evidence of congenital heart disease [22–26]. Exclusion
criteria included a history of cardiovascular disease, evi-
dence of cardiomyopathy on echocardiogram, non-sinus
rhythm, or suboptimal 2D imaging quality.
Patients were referred for echocardiography for a var-

iety of clinical indications, which fall under three broad
categories: Group 1 patients were those who were re-
ferred for cardiac symptoms (chest pain, dyspnea, palpi-
tations, or syncope), an abnormal electrocardiogram, or
for a baseline evaluation prior to chemotherapy initiation;

Group 2 patients were those who had a family history of car-
diomyopathy including hypertrophic cardiomyopathy, car-
diac amyloidosis, idiopathic dilated cardiomyopathy, or non-
compaction cardiomyopathy; and Group 3 patients were
those who had systemic conditions or prior exposures in
which screening for cardiomyopathy is recommended in-
cluding systemic amyloidosis, hypereosinophilia, muscular
dystrophy or suspected mitochondrial disorders, or prior
chemotherapy or radiation therapy (Supplementary Table 1).

Image acquisition and strain analysis
All patients underwent a transthoracic echocardio-
graphic examination with a standard commercially avail-
able ultrasound system [Vivid 7, General Electric (GE)
Medical Systems, Fairfield, Connecticut] and a 1.5–4.3
MHz M4S transducer. Mean frame rates were 54.4 ±
10.9 Hz for grayscale imaging. Strain measurements were
performed offline with the vendor-independent 2D Car-
diac Performance Analysis speckle-tracking software
(Image Arena version 4.6, TomTec Imaging Systems,
Unterschleissheim, Germany) from archived studies in
Digital Imaging and Communications in Medicine
(DICOM) format (Figs. 1 and 2).
Full-thickness strain measurements were performed

for all patients in the cohort. The points in the cardiac
cycle in which the ventricles reached maximum and
minimum volumes represented end-diastole and end-
systole respectively. LV longitudinal strain parameters
were measured from the apical 4-chamber, 2-chamber,
and 3-chamber views (Fig. 1). Circumferential and radial
strain parameters were measured from the parasternal
short-axis view at the mid-papillary level (Figure 2) as
described in previous studies [12, 16, 17]. The LV was
divided into six segments in each view. Full-thickness
LV global longitudinal, circumferential, and radial sys-
tolic strain measurements were further compared be-
tween men and women, and between pre-defined age
categories (< 40, 40–59, or ≥ 60 years of age).
RV longitudinal strain parameters were measured from

the modified RV-focused apical 4-chamber view. Global RV
longitudinal strain was evaluated by averaging peak strain
values of six segments: three from the RV free wall and
three from the RV septum. RV free wall longitudinal strain
was averaged from the three free wall segments only.
Measurements for each subject included global and

segmental myocardial strain parameters, including peak
systolic strain, peak systolic strain rate, peak early dia-
stolic strain rate, and their respective time-to-peak
values. Global longitudinal, circumferential, and radial
strain parameters were calculated by averaging the peak
strain values.
In addition to full-thickness strain analysis, we per-

formed layer-specific strain analysis in 20 randomly se-
lected patients within the cohort. Three layer-specific
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measurements were performed per subject: full-thickness,
endocardial-only, and epicardial-only (Figures 1 and 2).
The endocardial tracking boundary remained the same for
the full-thickness and endocardial-only measurements.
Analysis was performed in the same cardiac cycle for each
of the layer-specific measurements.

Reproducibility
The global full-thickness strain measurements of the 20
patients who underwent layer-specific strain analyses
were repeated by the same investigator (H.X.) several

months after the initial analysis to determine intra-
observer variability and performed by a second investiga-
tor (Z.Y.) to assess inter-observer variability.

Statistical analysis
Data were summarized as mean ± standard deviation.
Deformation parameters were compared between the
different myocardial layers using one-way repeated mea-
sures analysis of variance (ANOVA). A P value < 0.05
was considered statistically significant. When the P value
was statistically significant, the paired t test was used to

Fig. 1 Layer-specific strain analysis of the left ventricle. Longitudinal strain measurements were obtained from the apical 4-chamber (A4C), 2-chamber
(A2C), and 3-chamber (A3C) views. Circumferential and radial strain measurements were obtained from the parasternal short-axis (PSAX) view at the
papillary muscle level. Full-thickness measurements were performed by tracing an inner border at the endocardium and an outer border at the
epicardium. Endocardial-only strain measurements were performed using the same inner endocardial border as the full-thickness measurements.
Epicardial-only measurements were performed by approximating the same outer epicardial border as the full-thickness measurements

Xia et al. BMC Cardiovascular Disorders          (2020) 20:274 Page 3 of 11



identify the pairwise difference. Differences between sub-
groups based on age were assessed with the Tukey-
Kramer honestly significant difference test and between
subgroups based on sex with the Student t test. Shapiro-
Wilks test was chosen for testing the normality of the
data. Intra-class correlation coefficients (ICCs) with 95%
confidence intervals (CIs) were used to evaluate intra-
observer and inter-observer variability. All statistical
analyses were performed with JMP version 10.0 software
(SAS Institute Inc., Cary, North Carolina).
This study was approved by the Mayo Clinic Institu-

tional Review Board.

Results
Baseline characteristics
Baseline characteristics are presented in Table 1. Of the
106 patients screened, four patients were excluded due

to suboptimal image quality. Full-thickness strain ana-
lysis was performed in the remaining 102 patients in the
cohort of whom 63 (62%) were female with a mean age
of 39 ± 15 years. Among the 20 patients who underwent
further layer-specific strain analysis, 10 (50%) were fe-
male with a median age of 36 ± 13 years.

Left ventricular full-thickness strain
Table 2 displays the mean full-thickness LV global longi-
tudinal, circumferential, and radial strain, systolic strain
rate, early diastolic strain rate, and respective time-to-
peak measurements for patients overall and when strati-
fied by age and sex. Mean LV global longitudinal, cir-
cumferential, and radial strain measured − 18.4 ± 2.0%,
− 22.1 ± 4.1%, and 43.9 ± 12.1%, respectively. Women
displayed higher mean LV longitudinal and circumferen-
tial systolic strain and longer mean LV longitudinal,

Fig. 2 Left ventricular strain curves. Average and segmental longitudinal strain curves were obtained from the apical 4-chamber (A4C), 2-chamber (A2C), and 3-
chamber (A3C) views. Average and segmental circumferential and radial strain curves were obtained from the parasternal long-axis view at the level of the
papillary muscle. Global longitudinal and circumferential strain measurements were derived from the nadir of the average longitudinal and circumferential strain
curves respectively. Global radial strain measurements were derived from the peak of the average radial strain curve
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circumferential, and radial time-to-peak strain compared
with men. There was no consistent association between
age and the various strain measurements, with LV longi-
tudinal early diastolic strain rate being the only param-
eter that showed a statistically significant decrease with
increasing age.

Right ventricular strain
Mean RV global and free wall longitudinal systolic
strain, systolic strain rate, and early diastolic strain rate
are outlined in Table 3. Mean RV global and free wall
longitudinal systolic strain measured − 24.2 ± 3.9% and −
26.1 ± 5.2%, respectively. As with LV strain, mean RV
global and free wall longitudinal systolic strain, systolic
strain rate, and early diastolic strain rate were higher in
women than in men and there was no consistent associ-
ation with age.

Left ventricular layer-specific strain
Table 4 demonstrates mean LV global systolic strain,
strain rate, and respective time-to-peak values depending
on the layer analyzed for the 20 patients in whom layer-
specific strain analysis was performed. Mean longitu-
dinal, circumferential, and radial systolic strain, systolic
strain rate, and early diastolic strain rate were lower in
the epicardial-only layer compared with the full-
thickness and endocardial-only layers (P ≤ 0.02). There

Table 1 Baseline characteristics (n = 102)

Characteristics Full-Thickness Analysis

Clinical

Age (years) 39 ± 15

Female 63 (62%)

Body mass index (kg/m2) 25.8 ± 5.0

Heart rate (bpm) 73 ± 14

Systolic blood pressure (mmHg) 115 ± 15

Diastolic blood pressure (mmHg) 71 ± 10

Echocardiographic

LV end-diastolic diameter (mm) 47 ± 4

LV end-systolic diameter (mm) 30 ± 3

LV ejection fraction (%) 64 ± 4

E velocity (m/s) 0.8 ± 0.2

A velocity (m/s) 0.5 ± 0.1

Septal e’ velocity (m/s) 0.11 ± 0.03

E/A ratio 1.6 ± 0.6

Septal E/e′ ratio 7.6 ± 1.9

RV systolic pressure (mmHg) 25 ± 4

Abbreviations: A Late mitral inflow velocity, E Early mitral inflow velocity, e’
Mitral annulus tissue velocity, LV Left ventricular, RV Right ventricular
The proportion of female subjects is expressed as number (%). Continuous
data are expressed as mean ± standard deviation

Table 2 Full-thickness left ventricular strain analysis

Variable All subjects
(n = 102)

Men
(n = 39)

Women (n = 63) P Value

Longitudinal

S (%) −18.4 ± 2.0 − 17.4 ± 1.5 − 19.0 ± 2.0 < 0.001

SRs (1/s) −0.99 ± 0.12 −0.95 ± 0.09 −1.02 ± 0.12 0.004

SRe (1/s) 1.06 ± 0.20 0.99 ± 0.15 1.10 ± 0.21 0.008

S-TP (ms) 378.7 ± 43.4 367.7 ± 40.9 385.7 ± 43.8 0.04

SRs-TP (ms) 196.3 ± 30.7 189.9 ± 33.5 200.4 ± 28.2 0.09

SRe-TP (ms) 502.9 ± 50.5 492.6 ± 48.8 509.4 ± 50.8 0.11

Circumferential

S (%) −22.1 ± 4.1 −20.5 ± 3.9 − 23.1 ± 3.9 0.002

SRs (1/s) −1.40 ± 0.29 −1.37 ± 0.29 −1.42 ± 0.30 0.35

SRe (1/s) 1.39 ± 0.35 1.26 ± 0.33 1.47 ± 0.34 0.003

S-TP (ms) 374.4 ± 47.4 360.9 ± 43.0 383.0 ± 48.3 0.02

SRs-TP (ms) 217.0 ± 38.4 210.2 ± 34.0 221.4 ± 40.6 0.16

SRe-TP (ms) 498.8 ± 54.4 491.1 ± 47.8 503.7 ± 58.1 0.26

Radial

S (%) 43.9 ± 12.1 43.7 ± 11.5 44.0 ± 12.6 0.89

SRs (1/s) 2.17 ± 0.62 2.17 ± 0.64 2.17 ± 0.62 0.98

SRe (1/s) −2.07 ± 0.73 −1.91 ± 0.65 −2.17 ± 0.76 0.09

S-TP (ms) 381.1 ± 66.1 364.3 ± 62.7 391.9 ± 66.5 0.04

SRs-TP (ms) 204.1 ± 41.7 192.4 ± 33.7 211.6 ± 44.7 0.02

SRe-TP (ms) 507.2 ± 62.9 502.3 ± 61.7 510.3 ± 64.0 0.54

Abbreviations: S Systolic strain, SRe Early diastolic strain rate, S-TP Time-to-peak
strain, SRe-TP Time-to-peak early diastolic strain rate, SRs Systolic strain rate,
SRs-TP Time-to-peak systolic strain rate
Continuous data are expressed as mean ± standard deviation

Table 3 Full-thickness right ventricular strain analysis

Variable All subjects
(n = 102)

Men
(n = 39)

Women (n = 63) P Value

Longitudinal (global)

S (%) −24.2 ± 3.9 − 22.3 ± 3.4 −25.4 ± 3.8 0.001

SRs (1/s) −1.4 ± 0.3 −1.3 ± 0.3 −1.5 ± 0.3 0.01

SRe (1/s) 1.5 ± 0.4 1.3 ± 0.3 1.6 ± 0.5 0.001

S-TP (ms) 389.8 ± 53.0 379.5 ± 54.3 396.4 ± 51.5 0.12

SRs-TP (ms) 213.7 ± 41.4 205.7 ± 38.4 218.8 ± 42.7 0.13

SRe-TP (ms) 510.4 ± 58.7 499.7 ± 53.5 517.2 ± 61.2 0.15

Longitudinal (free wall)

S (%) −26.1 ± 5.2 −24.5 ± 4.4 −27.1 ± 5.4 0.01

SRs (1/s) −1.6 ± 0.4 −1.5 ± 0.3 −1.6 ± 0.5 0.07

SRe (1/s) 1.9 ± 0.8 1.6 ± 0.8 2.0 ± 0.8 0.01

S-TP (ms) 395.5 ± 78.2 384.7 ± 64.6 404.4 ± 72.8 0.25

SRs-TP (ms) 229.5 ± 61.3 224.6 ± 60.3 232.7 ± 62.2 0.52

SRe-TP (ms) 510.32 ± 75.9 502.1 ± 80.7 515.6 ± 72.8 0.41

Abbreviations: S Systolic strain, SRe Early diastolic strain rate, S-TP Time-to-peak
strain, SRe-TP Time-to-peak early diastolic strain rate, SRs Systolic strain rate,
SRs-TP Time-to-peak systolic strain rate
Continuous data are expressed as mean ± standard deviation
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was no significant difference in strain measurements be-
tween the full-thickness and endocardial-only layers.

Left ventricular segmental strain
Mean segmental LV longitudinal and circumferential
strain parameters corresponding to the different layers
are presented in Table 5. Similar to the global strain
analysis, segmental longitudinal and circumferential
strain measurements were lowest in the epicardium
compared with the full-thickness and endocardial-only
layers (P < 0.001), which showed no significant difference
between them (P > 0.05). In contrast, the segmental ra-
dial strain parameters demonstrated poor intra- and
inter-observer variability based on the suboptimal intra-
class correlation coefficients and are therefore not pre-
sented in Table 5 but available for review in Supplemen-
tary Table 2.

Left ventricular strain by ventricular level
Longitudinal systolic strain and systolic strain rate were
highest in the apex compared with the mid and basal LV
in the endocardial-only and full-thickness layers (P <

0.001) but not in the epicardial-only layer (Table 6).
There was no statistically significant difference in layer-
specific longitudinal systolic strain and systolic strain
rate between the mid and basal LV.

Reproducibility analysis
The intra-observer variability and inter-observer variabil-
ity for the various global full-thickness strain measure-
ments are presented in Table 7. Intra-class correlation
coefficients were the highest for global longitudinal
strain measurements, followed closely by circumferential
strain measurements, and the lowest for global radial
strain measurements.

Discussion
We have presented an analysis of ventricular strain per-
formed within a real world cohort of patients with no
structural heart disease using a vendor-independent
speckle-tracking software. We measured longitudinal, cir-
cumferential, and radial systolic strain, strain rate, and re-
spective time-to-peak values both globally and based on
several parameters including age, sex, wall segment,

Table 4 Layer-specific global left ventricular strain analysis (n = 20)

Variable Full-thickness Endocardial-only Epicardial-only P Value Intra-class correlation coefficient (95% confidence interval)

Longitudinal

S (%) −19.2 ± 2.2 − 19.1 ± 2.1 −16.5 ± 1.6a < 0.001 0.97 (0.71–0.94)

SRs (1/s) −1.0 ± 0.1 −1.1 ± 0.1 −0.9 ± 0.1a < 0.001 0.97 (0.76–0.95)

SRe (1/s) 1.1 ± 0.3 1.1 ± 0.3 0.9 ± 0.2a < 0.001 0.97 (0.85–0.97)

S-TP (ms) 380.1 ± 42.6 381.8 ± 43.4 373.5 ± 41.5 0.22 0.97 (0.84–0.99)

SRs-TP (ms) 197.5 ± 29.3 201.4 ± 32.6 194.7 ± 32.0 0.59 0.91 (0.83–0.96)

SRe-TP (ms) 499.4 ± 46.6 500.2 ± 45.5 496.9 ± 47.7 0.86 0.98 (0.96–0.99)

Circumferential

S (%) −23.6 ± 3.9 −23.7 ± 3.9 − 16.7 ± 4.2a < 0.001 0.96 (0.50–0.89)

SRs (1/s) − 1.5 ± 0.3 − 1.5 ± 0.3 − 1.1 ± 0.3a < 0.001 0.96 (0.71–0.94)

SRe (1/s) 1.5 ± 0.3 1.4 ± 0.3 1.0 ± 0.3a < 0.001 0.94 (0.49–0.89)

S-TP (ms) 367.3 ± 40.4 365.8 ± 41.6 381.5 ± 44.5 0.44 0.71 (0.43–0.87)

SRs-TP (ms) 223.4 ± 32.2 220.6 ± 32.4 219.7 ± 43.3 0.97 0.74 (0.52–0.89)

SRe-TP (ms) 486.2 ± 41.1 483.0 ± 40.0 497.3 ± 55.0 0.57 0.73 (0.48–0.88)

Radial

S (%) 39.8 ± 10.8 50.9 ± 22.9b 33.9 ± 11.1c < 0.001 0.69 (0.18–0.82)

SRs (1/s) 1.8 ± 0.5 2.2 ± 0.7b 1.9 ± 0.7 0.02 0.71 (0.40–0.90)

SRe (1/s) −1.7 ± 0.7 − 2.4 ± 1.5b −1.6 ± 0.8 0.01 0.60 (0.08–0.80)

S-TP (ms) 382.6 ± 46.9 414.0 ± 70.6 408.7 ± 58.5 0.18 0.66 (0.30–0.84)

SRs-TP (ms) 212.1 ± 53.0 201.4 ± 62.7 202.3 ± 47.0 0.85 0.52 (0.19–0.82)

SRe-TP (ms) 501.1 ± 47.6 491.3 ± 54.7 510.8 ± 58.1 0.34 0.81 (0.63–0.92)

Abbreviations: S Systolic strain, SRe Early diastolic strain rate, S-TP Time-to-peak strain, SRe-TP Time-to-peak early diastolic strain rate, SRs Systolic strain rate, SRs-TP
Time-to-peak systolic strain rate
Continuous data are expressed as mean ± standard deviation
a P < 0.001 when compared with full-thickness and endocardial-only groups
b P < 0.05 when compared with full-thickness group
c P < 0.01 when compared with full-thickness and endocardial-only groups
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ventricular level, and myocardial layer, while providing in-
formation on the reproducibility of these measurements.
Full-thickness mean LV global longitudinal, circumferen-
tial, and radial systolic strain measured − 18.4 ± 2.0%, −
22.1 ± 4.1%, and 43.9 ± 12.1% respectively, while mean RV
global and free wall longitudinal systolic strain measured
− 24.2 ± 3.9% and − 26.1 ± 5.2% respectively.
Our results were generally similar to those found in pre-

vious studies with some differences. In a meta-analysis of
2597 healthy subjects from 24 studies, average values of
LV global longitudinal, circumferential, and radial strain
overlapped with our findings and were reported to be −
19.7% (95% CI − 20.4% to − 18.9%), − 23.3% (95% CI −
24.6% to − 22.1%), and 47.3% (95% CI 43.6% to 51.0%)

[21]. Differences in characteristics of patients included in
the meta-analysis as well as differences in vendor software
used for the strain analyses could account for the corre-
sponding differences in results [27–31].
On the other hand, in a study of 549 healthy subjects

enrolled in 22 European institutions in whom strain was
measured using the same vendor-independent 2D Car-
diac Performance Analysis software by TomTec, LV glo-
bal longitudinal strain was similar at − 22.5 ± 2.7% while
absolute global circumferential and radial strain values
were much higher at − 31.9 ± 4.5, and 37.4 ± 8.4% re-
spectively compared to our study [18]. This could be re-
lated to the differences in method used to measure
circumferential and radial strain. While we analyzed

Table 5 Layer-specific segmental left ventricular longitudinal and circumferential strain analysis (n = 20)

Variable Full-thickness Endocardial-only Epicardial-only P Value Intra-class correlation coefficient(95% confidence interval)

Segmental longitudinal S (%)

Anterior −19.8 ± 3.1 −19.6 ± 3.1 −17.1 ± 2.8a < 0.001 0.96 (0.82–0.96)

Anteroseptal − 19.1 ± 3.1 −19.1 ± 2.9 −16.5 ± 2.4a < 0.001 0.90 (0.68–0.93)

Inferior − 19.8 ± 3.2 −19.7 ± 3.3 −17.0 ± 3.0a < 0.001 0.94 (0.78–0.95)

Lateral − 19.8 ± 3.0 −19.6 ± 2.9 −15.9 ± 3.2a < 0.001 0.94 (0.65–0.92)

Posterior −18.2 ± 3.1 − 18.2 ± 3.2 −15.0 ± 1.9a < 0.001 0.94 (0.70–0.93)

Septal − 19.1 ± 2.6 − 19.0 ± 2.3 − 16.2 ± 2.5a < 0.001 0.89 (0.58–0.91)

Segmental longitudinal SRs (1/s)

Anterior − 1.1 ± 0.2 − 1.1 ± 0.2 − 0.9 ± 0.2a < 0.001 0.94 (0.80–0.96)

Anteroseptal − 1.1 ± 0.2 − 1.1 ± 0.2 −1.0 ± 0.2a < 0.001 0.92 (0.77–0.94)

Inferior −1.1 ± 0.2 −1.1 ± 0.2 − 0.9 ± 0.2a < 0.001 0.91 (0.74–0.94)

Lateral − 1.1 ± 0.2 −1.1 ± 0.2 − 0.9 ± 0.2a < 0.001 0.94 (0.68–0.93)

Posterior − 1.1 ± 0.2 −1.1 ± 0.2 −0.9 ± 0.2a < 0.001 0.93 (0.67–0.93)

Septal − 1.1 ± 0.2 −1.1 ± 0.1 − 0.9 ± 0.2a < 0.001 0.84 (0.56–0.90)

Segmental circumferential S (%)

Anterior −24.6 ± 7.0 −24.7 ± 6.7 − 15.3 ± 5.0a < 0.001 0.92 (0.53–0.90)

Anteroseptal − 24.9 ± 6.0 − 25.2 ± 6.4 − 16.9 ± 5.2a < 0.001 0.94 (0.60–0.91)

Inferior − 23.7 ± 5.9 − 23.7 ± 6.4 − 18.8 ± 6.8a < 0.001 0.90 (0.73–0.94)

Lateral − 22.7 ± 6.6 −22.7 ± 6.4 − 15.2 ± 5.2a < 0.001 0.92 (0.63–0.92)

Posterior − 23.9 ± 7.4 − 23.5 ± 7.5 − 16.4 ± 4.9a < 0.001 0.92 (0.66–0.93)

Septal −22.0 ± 5.8 −22.3 ± 5.7 − 17.7 ± 6.5a < 0.001 0.84 (0.59–0.91)

Segmental circumferential SRs (1/s)

Anterior − 1.5 ± 0.5 − 1.5 ± 0.5 −1.0 ± 0.4a < 0.001 0.86 (0.54–0.90)

Anteroseptal −1.6 ± 0.5 −1.6 ± 0.5 −1.1 ± 0.5a < 0.001 0.95 (0.75–0.94)

Inferior −1.6 ± 0.5 −1.6 ± 0.5 −1.2 ± 0.5a < 0.001 0.95 (0.82–0.96)

Lateral −1.4 ± 0.4 −1.4 ± 0.4 −1.0 ± 0.4a < 0.001 0.83 (0.50–0.89)

Posterior, 1/s −1.5 ± 0.6 −1.5 ± 0.6 −1.1 ± 0.5a < 0.001 0.96 (0.82–0.96)

Septal, 1/s −1.4 ± 0.5 −1.4 ± 0.4 −1.2 ± 0.5b 0.009 0.86 (0.70–0.93)

Abbreviations: S Systolic strain, SRs Systolic strain rate
Continuous data are expressed as mean ± standard deviation
a P < 0.001 when compared with full-thickness and endocardial-only groups
b P < 0.05 when compared with full-thickness and endocardial-only groups
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strain at the level of the papillary muscle, that study also
included the basal and apical levels for analysis as well.
The results of our analysis confirm a number of char-

acteristics of ventricular systolic strain that have been
shown previously in separate studies but have infre-
quently been demonstrated within the same cohort, as
we have done in this study. First, absolute values of the
various ventricular strain parameters are higher in
women than in men [7, 11, 13, 16–18] and in the RV
compared with the LV [12]. Furthermore, systolic strain
parameters are higher in the endocardium than in the
epicardium and in apex compared with the base when
measured in the endocardial layer [7, 9, 10, 14, 16, 17].

Compared to the base, the apex is smaller and is subject
to less wall stress, which may result in relatively higher
global longitudinal strain [9]. In addition, global longitu-
dinal systolic strain is the most reproducible measure of
strain, followed closely by global circumferential systolic
strain, whereas global radial systolic strain demonstrates
suboptimal intra- and inter-observer variability [12]. Ra-
dial strain may be less reproducible than longitudinal
strain since the spread of myocardium is smaller in this
direction resulting in fewer speckles to track and there-
fore making them more vulnerable to the impact of un-
certain boundaries. Furthermore, unlike longitudinal
strain, circumferential and radial strain represents myo-
cardial fiber displacement that is not occurring parallel
to the ultrasound beam [32].
The impact of age on strain measurements is less

clear. In our study, there was no statistically significant
difference in full-thickness LV or RV systolic strain or
systolic strain rate between the three age categories ex-
amined. Statistical significance was only found in the LV
early diastolic strain rate and RV time-to-peak systolic
strain rate, which given the isolated nature of these find-
ings, have unclear clinical significance. These findings
may be due to our small sample size. Nevertheless, prior
studies have also demonstrated conflicting results re-
garding the influence of age on strain, with one study
showing no significant correlation [33] while several
other studies suggested a decline in LV or RV longitu-
dinal or radial systolic strain and systolic strain rate with
age [11, 12, 34].
More recent studies suggest that there may be a more

complex interaction between age and strain, depending
on the type of strain as well as the level and layer within
the ventricle [7, 17, 18]. Longitudinal systolic strain
appears to generally decrease with age whereas

Table 6 Layer-specific left ventricular longitudinal strain analysis by ventricular level (n = 20)

Variable Full-thickness Endocardial-only Epicardial-only P Value Intra-class correlation coefficient(95% confidence interval)

Level-specific longitudinal S (%)

Basal −18.1 ± 2.1 −18.2 ± 2.0 −16.4 ± 2.0a < 0.001 0.90 (0.68–0.93)

Mid − 18.2 ± 2.4 −18.1 ± 2.4 − 16.7 ± 2.1b < 0.001 0.96 (0.86–0.97)

Apical − 21.6 ± 3.1c − 21.3 ± 3.2c − 16.8 ± 2.1b < 0.001 0.91 (0.23–0.83)

P value < 0.001 < 0.001 0.09

Level-specific longitudinal SRs (1/s)

Basal −1.01 ± 0.16 − 1.03 ± 0.15 −0.97 ± 0.16a 0.06 0.92 (0.82–0.96)

Mid −0.99 ± 0.14 − 1.00 ± 0.14 −0.91 ± 0.11a < 0.001 0.96 (0.86–0.97)

Apical − 1.21 ± 0.26c −1.20 ± 0.16c −0.95 ± 0.16b < 0.001 0.87 (− 0.11–0.75)

P value < 0.001 < 0.001 0.07

Abbreviations: S Systolic strain, SRs Systolic strain rate
Continuous data are expressed as mean ± standard deviation
a P < 0.005 when compared with full-thickness and endocardial-only
b P < 0.001 when compared with full-thickness and endocardial-only groups
c P < 0.001 when compared with basal and mid left ventricular levels

Table 7 Intra- and inter-observer variability of global full-
thickness left ventricular strain

Intra-class correlation coefficient(95% confidence interval)

Variable Intra-observer variability Inter-observer variability

Longitudinal

S 0.998 (0.994–0.999) 0.996 (0.989–0.998)

SRs 0.995 (0.988–0.998) 0.982 (0.956–0.993)

SRe 0.964 (0.913–0.986) 0.994 (0.984–0.997)

Circumferential

S 0.997 (0.994–0.999) 0.993 (0.983–0.997)

SRs 0.994 (0.984–0.997) 0.975 (0.940–0.990)

SRe 0.967 (0.919–0.987) 0.967 (0.919–0.987)

Radial

S 0.857 (0.751–0.933) 0.845 (0.727–0.927)

SRs 0.906 (0.782–0.961) 0.898 (0.818–0.953)

SRe 0.808 (0.668–0.909) 0.871 (0.477–0.918)

Abbreviations: S Systolic strain, SRe Early diastolic strain rate, SRs Systolic
strain rate

Xia et al. BMC Cardiovascular Disorders          (2020) 20:274 Page 8 of 11



circumferential and radial systolic strain measurements
appear to increase [17, 18]. However, longitudinal sys-
tolic strain does not appear to uniformly decrease within
the ventricle and instead decreases more in the base and
increases more in the apex with age [7, 17]. Regional
variability in strain and differences in the mean age of
subjects in a given cohort could partly account for differ-
ences in age-related changes in strain observed between
studies. Of note, in the meta-analysis of 24 studies that
reported normal ranges of LV systolic strain, only two
included subjects with a mean age of ≥65 years [21].
Given the increasing proportion of patients aged ≥65
years referred for echocardiography, more precise
characterization of strain in this population would be a
worthwhile area of further investigation.
Similarly, use of the vendor-independent 2D Cardiac

Performance Analysis software (TomTec Imaging Sys-
tem, Munich, Germany) is under-represented in studies
that report normal reference ranges for strain despite its
increasing use in clinical practice and research. Among
the 28 data sets included in the meta-analysis outlining
normal ranges of LV strain, 23 of them used EchoPAC
software (GE Healthcare, Milwaukee, WI) and none of
the remaining 5 data sets used the 2D Cardiac Perform-
ance Analysis software for strain analysis [21]. To date,
only one other study has presented normal ranges of LV
strain using this software and these patients were healthy
subjects referred to various institutions in Europe [18].
Our study not only increases the representation of this
software in reporting reference ranges of LV strain but
also provides measurements of systolic and early dia-
stolic strain rates, respective time-to-peak values, layer-
specific strain, and RV longitudinal global and free wall
systolic strain in a North American cohort, which has
not been described previously.

Limitations
The present study must be interpreted with the follow-
ing limitations in mind. The sample size of our study
was small. Strain analysis was performed retrospectively.
Patients in our cohort had a clinically justified reason to
be referred for echocardiography, which may introduce
selection bias. We could not fully exclude patients with
non-cardiac comorbidities that could have potentially in-
fluenced myocardial deformation in some way. Our im-
ages were acquired using the Vivid 7 GE ultrasound
system and analyzed using TomTec Imaging Systems,
which could limit the generalizability of the findings.
Furthermore, our strain measurements could have been
slightly different if another definition of end-diastole or
end-systole were chosen. However, such differences
would likely be negligible in our cohort of patients with
no regional wall motion abnormalities. In addition, the
speckle-tracking software used in this study follows an

algorithm that relies predominantly on the inner bound-
ary traced even when both an inner and outer boundary
are provided, which explains the similar strain measure-
ments between the full-thickness and endocardial-only
layers. As well, for our analysis of layer-specific strain,
the mid-myocardial layer was not assessed individually
as it was difficult to isolate the mid-myocardial layer
without significant overlap with the endocardial and epi-
cardial layers. Nevertheless, a prior study demonstrated
good agreement in global longitudinal strain by default
vendor layer in the mid myocardium for the GE plat-
form and the endocardium for TomTec [35]. Finally,
concomitant measurements of ventricular strain using
other modalities such as magnetic resonance imaging or
sonomicrometry were not available for comparison as
this was beyond the scope of our study. Instead, we
aimed to demonstrate the expected range of ventricular
strain measured by 2D speckle-tracking echocardiog-
raphy in patients without structural heart disease.

Conclusions
We performed an analysis of ventricular strain in a cohort
of patients with no evidence of structural heart disease
using the vendor-independent 2D Cardiac Performance
Analysis software by TomTec. Women demonstrate
higher absolute values of strain than men. Longitudinal
strain is the most reproducible measure of strain while ra-
dial strain is the least reproducible. Strain is highest at the
apex and in the endocardium. Further study is warranted
to clarify the role of age on strain, particularly in elderly
individuals who represent the majority of patients referred
for cardiovascular evaluation. Our study provides refer-
ence ranges for various parameters of strain that may be
encountered in a real world cohort of patients referred for
echocardiography.
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