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Background: About 10—20% of patients with Coronavirus disease 2019 (COVID-19) infection progressed
to severe illness within a week or so after initially diagnosed as mild infection. Identification of this
subgroup of patients was crucial for early aggressive intervention to improve survival. The purpose of
this study was to evaluate whether computer tomography (CT) - derived measurements of body
composition such as myosteatosis indicating fat deposition inside the muscles could be used to predict
the risk of transition to severe illness in patients with initial diagnosis of mild COVID-19 infection.

Keywords:
Myosteatosis
Body composition

Predictive modeling Methods: Patients with laboratory-confirmed COVID-19 infection presenting initially as having the mild
Transition risk common-subtype illness were retrospectively recruited between January 21, 2020 and February 19, 2020.
Coronavirus disease 2019 (COVID-19) CT-derived body composition measurements were obtained from the initial chest CT images at the level

of the twelfth thoracic vertebra (T12) and were used to build models to predict the risk of transition. A
myosteatosis nomogram was constructed using multivariate logistic regression incorporating both
clinical variables and myosteatosis measurements. The performance of the prediction models was
assessed by receiver operating characteristic (ROC) curve including the area under the curve (AUC). The
performance of the nomogram was evaluated by discrimination, calibration curve, and decision curve.
Results: A total of 234 patients were included in this study. Thirty-one of the enrolled patients transi-
tioned to severe illness. Myosteatosis measurements including SM-RA (skeletal muscle radiation
attenuation) and SMFI (skeletal muscle fat index) score fitted with SMFI, age and gender, were signifi-
cantly associated with risk of transition for both the training and validation cohorts (P < 0.01). The
nomogram combining the SM-RA, SMFI score and clinical model improved prediction for the transition
risk with an AUC of 0.85 [95% CI, 0.75 to 0.95] for the training cohort and 0.84 [95% CI, 0.71 to 0.97] for
the validation cohort, as compared to the nomogram of the clinical model with AUC of 0.75 and 0.74 for
the training and validation cohorts respectively. Favorable clinical utility was observed using decision
curve analysis.

Abbreviations: COVID-19, Coronavirus disease 2019; MuLBSTA score, Multilobular infiltration, hypo-Lymphocytosis, Bacterial coinfection, Smoking history, hyper-Tension
and Age Score; CRP, C-reaction protein; CK, Creatine kinase; LDH, Lactate dehydrogenase; SM-RA, Skeletal muscle radiation attenuation; SMFI, Skeletal muscle fat index; AST,
Aspartate transferase; SMI, Skeletal muscle index.
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Conclusion: We found CT-derived measurements of thoracic myosteatosis to be associated with higher
risk of transition to severe illness in patients affected by COVID-19 who presented initially as having the
mild common-subtype infection. Our study showed the relevance of skeletal muscle examination in the
overall assessment of disease progression and prognosis of patients with COVID-19 infection.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Coronavirus disease 2019 (COVID-19) has affected millions of
patients causing a pandemic worldwide and has overwhelmed the
health care capacity [1—6]. COVID-19 has caused varying severity of
illness among the individuals affected by this viral infection [7—10].
The Chinese Management Guideline for COVID-19 indicated four
subtypes of infection including light, common, severe and critical
subtypes according to the severity of the infection ranging from
mild to severe illness [11]. Patients with mild illness and common
subtypes of the COVID-19 infection presented with mild to mod-
erate symptoms of respiratory infection including fever and cough
and most patients with mild illness had relatively good prognosis
[8]. However, about 10—20% of patients would ultimately progress
to severe illness including both the severe and critical subtypes
during a period of about 3—10 days after initial diagnosis as having
the mild illness, resulting in mortality rates ranging from 30% to
50% [6,7,9,10,12,13]. Considering the relative lack of effective
treatment and demand for intensive care for patients with severe
illness [6,14,15], early identification of patients with COVID-19 who
would transition to severe illness would be essential for formu-
lating treatment plan and informing on prognosis.

Prior studies have identified several risk factors associated with
disease severity and high risk of death in patients with COVID-19,
including age, a higher MuLBSTA score (Multilobular infiltration,
hypo-Lymphocytosis, Bacterial coinfection, Smoking history, hyper-
Tension and Age Score) [9,16], the presence of viral RNA in the blood
[17], and abnormally expressed cytokines such as c-reaction protein
(CRP), creatine kinase (CK) and lactate dehydrogenase (LDH)
[3,7—10,12,18]. However, because of the overlap of these clinical
factors between patients with the mild illness and those with se-
vere illness, none of the identified risk factors could effectively
predict the risk of transition to severe illness in individual patients
with COVID-19, especially when the illness was at an early stage
with limited available clinical information. There is an unmet need
to identify the transition risk at an early stage to facilitate aggres-
sive treatment for those with high risk for developing severe illness.

Myosteatosis indicating fat deposition inside the muscles is
defined as abnormal distribution of inter and intra-myocellular
adipose tissue, which is related to reduced muscle quality, phys-
ical fitness and muscle function [19—21]. Computed tomography
(CT) is one of common methods for accessing myosteatosis with a
radiological marker termed skeletal muscle radiation attenuation
(SM-RA) [21—23]. Cumulative evidence suggests that myosteatosis
is associated with susceptibility, severity, and prognosis of a variety
of conditions such as cancer, aging, sarcopenia [19,22—29] and viral
pneumonia [30]. However, there is still a paucity of knowledge
regarding the clinical impact of pre-treatment baseline body
composition assessment such as CT-derived myosteatosis in pa-
tients with COVID-19.

The current study assessed myosteatosis on the archived chest
CT images acquired as part of work up for COVID-19 infection for
patients during the initial outpatient clinical visit. We hypothesize
that the CT-derived measurements of myosteatosis could be
effective in predicting the risk of transition to severe illness in

patients with COVID-19 who presented as the mild common-
subtype COVID-19 infection. Identifying the patients with high
risk of transition to severe COVID-19 infection should be helpful in
assisting clinical decision making and in prioritizing aggressive
treatment for those who may progress to severe illness.

2. Materials and methods
2.1. Study design and participants

Patients with laboratory-confirmed COVID-19 infection pre-
senting initially as having the mild common-subtype illness at
admission between Jan 21, 2020 and Feb 19, 2020 were retro-
spectively identified from the six designated hospitals for treating
patients with COVID-19 in Hunan province, P.R. China. Reverse-
transcription polymerase chain reaction (RT-PCR) assays for labo-
ratory confirmation of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) were performed in accordance with the
World Health Organization (WHO) guidance [31]. CT-derived
myosteatosis measurements such as skeletal muscle radiation
attenuation (SM-RA) were obtained from the initial chest CT images
at the level of the twelfth thoracic vertebra (T12) and were used to
build models to predict the risk of transition. Details of the patient
recruiting process and exclusion criteria were shown in Fig. 1. In-
formation on the six participating hospitals was presented in
Supplementary Table 1.

The illness severity of COVID-19 was defined according to the
Chinese Management Guideline for COVID-19 (version 7.0) [11],
which indicated four subtypes of infection including light, com-
mon, severe and critical subtypes ranging from the mild to severe
illness. Results (positive or negative) of laboratory tests of blood
were made based on cut-off values of the testing equipment.

This multicenter retrospective study was approved by the
Institutional Review Board (IRB) in all participating hospitals (IRB#:
202002019), and written informed consents were waived due to
the retrospective nature of this study.

2.2. Data collection

Information on the demographics, clinical data, laboratory
values, outcome data and chest CT images were abstracted from
medical records. We only included the available data prior to hos-
pital admission for analysis. This data was reviewed by two clini-
cians (L.Z and FX) and a third researcher (X.Y) adjudicated any
difference in interpretation between the two primary reviewers.

2.3. Chest CT image analysis and body composition measurement

Patients' chest CT images acquired during the initial outpatient
clinical visit prior to or at admission were retrieved from the hos-
pitals’ Picture Archiving and Communication Systems (PACS,
Carestream, Canada). The time span between the chest CT scans
and the confirmed COVID-19 infection was 6 hours to 4 days as
some patients underwent repeated pharyngeal swab nucleic acid
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A Patients with COVID-19 infection confirmed by real-time
reverse transcription-polymerase chain reaction (RT-PCR)
enrolled from the six designated hospitals (H1-6)
(n=272)

Excluded:
3 missing clinical data

6 missing chest computed tomography (CT) images

17 with mild-subtype COVID-19 infection

4 with severe-subtype infection before admission
8 had suboptimal CT images with motion artifacts

Patients included in the final
analysis (n=234)
No-severe group (Group 0): n=203
Severe group (Group 1):  n=31

Training cohort: n=115 Independent validation cohort: n= 119

(H4. n=35: H5, n=31; H6, n=53 )
(Group 0, n=104: Group 1, n=15)

(H1, n=36; H2, n=14; H3, n=65;)
(Group 0, n=99; Group 1,n=16 )
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Fig. 1. Study enrollment and cluster projections of patients with COVID-19 (A) Flow-chart demonstrating the patients’ recruiting process (B) Sankey diagram showing the scmap
cluster projections of the patients with COVID-19 in the six designated hospitals (H1—H6), gender/age composition, and case severity distribution.

tests for confirmation of COVID-19 infection. All axial CT images
were reconstructed to a thickness of 3 mm. Detailed information on
the chest CT scanning protocols were included in Supplementary
Table 2.

One axial unenhanced image from each chest CT scan at the
level of the twelfth thoracic vertebra level (T12) was selected. The
chest/abdominal wall and back muscles including the psoas, par-
aspinal, transversus abdominis, rectus abdominis, internal oblique
muscles, and external oblique muscles were manually segmented
on the selected axial image for each scan. Body composition mea-
surements were performed on the segmented image using a
workstation (Advantage Windows workstation 4.6, GE Healthcare,
Milwaukee, Wisconsin, USA).

Multiple parameters for body composition including the skel-
etal muscle area (SMA) (—29—150Hu), septocutaneous muscle fat
area (SMFA) (—190~-30Hu), myosteatosis area (MyoA)
(—30—30Hu), skeletal muscle radiation attenuation (SM-RA), pro-
portion of skeleton muscle fat (PSMF), proportion of myosteatosis
muscle (Pmyo), proportion of skeleton muscle (PSM), and mean CT
value of myosteatosis muscle (CT_Myo) were measured in a similar
method as previously reported in literature [22,23]. In addition,
additional parameters including the skeletal muscle index (SMI)
and septocutaneous muscle fat index (SMFI) were calculated by
normalizing the measured muscle area to the square vertical length
from the anterior edge of the first thoracic vertebra to the anterior
superior edge of the tenth thoracic vertebra on the CT images (cm?/
m?). The ratio of the volume of lung lesions including overall lesion,
ground-glass opacity and consolidation, to the volume of the entire
lung was measured using Intelligent Evaluation System of Chest CT
for COVID-19 (YITU Healthcare, Shanghai, China). CT image analysis
and prediction modeling were presented in Fig. 2.

Since there were no established cutoff values based on T12 level
measurements for diagnosing thoracic myosteatosis in the litera-
ture, we therefore identified our own cut-off values for myo-
steatosis for the T12-muscle-index in a similar approach as other
researchers for a similar cohort size [22,23,32]. Given the modest
sample size of our cohort that might be insufficient for cut-point
analysis through optimal stratification, we determined our cut-off
values based on tertiles stratified by gender. This method was
more reasonable for comparison between groups, especially for
subjects with lower/higher values or values around the cutoff. Cut-
off values were set at the lowest tertile of SMI and SM-RA for
diagnosing myosteatosis [22,23,32].

2.4. Reproducibility of CT body composition measurements

Two radiologists performed their independent segmentations of
30 randomly chosen patients' chest CT images. The inter-observer

(reader 1 versus reader 2) and intra-observer (reader 1 twice)
correlation coefficient (ICC) values were evaluated. The final con-
sistency was evaluated by the following criteria applied to the ICC
value: less than 0.20 indicating poor reproducibility, 0.21-0.40
indicating fair reproducibility, 0.40—0.60 indicating moderate
reproducibility, 0.61—0.80 indicating good reproducibility and
0.81—1.00 indicating excellent reproducibility. The inter-observer
ICCs of CT body composition measurements between reader 1
(first time) and reader 2 ranged from 0.951 to 1.000. The intra-
observer ICC of reader 1's two measurements ranged from 0.981
to 1.000. As a result, the body composition measurements obtained
by reader 1 were used in the subsequent data analysis.

2.5. Development of an individualized prediction model

Patients (n = 234) were randomly assigned to the training
cohort (n = 118) and the independent validation cohort (n = 116)
with a 1:1 ratio. The univariate logistic regression analysis in the
training cohort was performed to determine the association be-
tween myosteatosis and clinical/laboratory variables, and the risk
of transition to severe illness. Candidate predictors were selected
from the univariate analysis (P < 0.05) and then underwent
multivariate logistic regression using the likelihood ratio test, with
Akaike's information criterion (AIC) as the stopping rule to select
the correlated factors. The minimums of the AIC corresponded to
the optimal combination of factors. Considering the potential as-
sociation among SMFI, age and gender, a new factor termed SMFI
score was fitted based on these three factors. A model for predicting
risk of transition to severe illness based on clinical data without
myosteatosis parameters was constructed. Subsequently, a new
model combining the myosteatosis parameters with the clinical
model was developed. A nomogram was generated to provide the
clinicians with a quantitative tool to predict individual probability
of the transition risk. Comparison of the performance data for the
two models was performed.

2.6. Model performance and nomogram validation

The calibration of the nomogram was evaluated by calibration
curves (Hosmer—Lemeshow H test), and the diagnostic efficiency
was evaluated with the receiver operating characteristic (ROC)
curve. The performance of nomogram was tested in the validation
cohort. Using the logistic regression formula established in the
training cohort, the total points for each patient in the validation
cohort were calculated, and the area under the curve (AUC) and
calibration curve were derived. To estimate the prediction error, we
tested the proposed model further using a 1000-iteration bootstrap
analysis for both the training and validation cohorts. For each
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Fig. 2. Workflow of data analysis including chest CT image segmentation, clinical/myosteatosis feature selection, model building and performance testing. Abbreviations: SMA,
skeletal muscle area; SMFA, septocutaneous muscle fat area; MyoA, myosteatosis area; PSMF, proportion of skeleton muscle fat; Pmyo, proportion of myosteatosis muscle; PSM,
proportion of skeleton muscle, SM-RA, skeletal muscle radiation attenuation; CT_Myo, mean CT value of myosteatosis muscle; SMI, skeletal muscle index; SMFI, septocutaneous
muscle fat index; LR, Logistic regression; ALT, alanine aminotransferase; AST, aspartate transferase; RBT, Routine blood test; CK, creatine kinase; LDH, lactate dehydrogenase; PTC/

PCT, Procalcitonin.

repetition, a random subset of 70% patients from the training or the
validation cohort was selected and the corresponding AUC values
were calculated. Decision curve analysis was performed to evaluate
the clinical usefulness of the nomogram in the validation cohort.

2.7. Statistical analysis

All statistical analysis was conducted with R software (version
3.5.2; http://www.Rproject.org). Univariate analysis for clinical
features was implemented by Chi-square test (categorical variable)
or Mann—Whitney U test (continuous variable), as appropriate to
compare differences between the patients with severe illness and
the patients with no-severe illness. Nomogram construction and
calibration plots were performed using the “rms” package of R
software. The statistical significance levels were all two-sided with
statistical significance set at 0.05.

3. Results
3.1. Patient characteristics

A total of 234 patients with COVID-19 who presented initially
having the mild common-subtype infection were included in this
study and 31 of them transitioned to severe illness during hospi-
talization. All patients were randomly assigned to the training
cohort (n = 118) and the validation cohort (n = 116) at a 1: 1 ratio
(Fig. 1).

Patient characteristics for both cohorts and the comparison
between the patients with severe illness and the patients with no-
severe illness were presented in Table 1. Significant differences
between the cohorts were found for male patient's age (P = 0.001),
symptom including dyspnea and diarrhea (P < 0.05), comorbidities
including coronary heart disease, diabetes mellitus, hypertension
and chronic obstructive pulmonary disease (COPD) (all P < 0.05),
physiological measures of oxygen saturation (SpO;), laboratory
markers including aspartate transferase (AST), creatine kinase (CK),

C-reactive protein (CRP), D-dimmer and procalcitonin (all P < 0.05)
(Table 1). There were no statistical differences (P > 0.05) between
the training cohort and the validation cohorts in the clinical vari-
ables, indicating a reasonable classification.

3.2. Comparison of myosteatosis measurements between the
patients with severe and no-severe illness

The characteristics for both severe and no-severe cohorts were
shown in Table 1. When compared to the no-severe cohort, the
patients with severe illness showed significantly higher SMFI and
higher incidence of myosteatosis with P < 0.05 (Table 1).

3.3. Identifying risk factors for transition to severe illness

In univariate analysis, myosteatosis (reduced SM-RA), sarcope-
nia (reduced SMI), age, lymphopenia, leukocytosis, reduced SpO,
(less than 96%), and elevated values of CRP, CK and AST, d-dimer,
and procalcitonin were also associated with higher risk of transi-
tion to severe illness (Supplementary Table 3). Multivariate logistic
regression analysis showed that the reduced SM-RA, SPO, (<96%),
and elevated values of CRP, CK and SMFI-score were independent
predictors for transition to severe illness (Supplementary Fig. 1).

3.4. Prediction model performance

The clinical model built with the SPO,, CRP and CK achieved a
modest efficiency with an AUC of 0.75 (95% CI:0.63—0.88) for the
training cohort, and 0.74 (95%Cl: 0.61—0.88) for the validation
cohort, respectively. After addition of the CT-derived myosteatosis
measurements to the clinical model, the prediction performance of
the combined model was significantly improved (Delong test,
P = 0.002 for the training cohort versus P = 0.04 for the validation
cohort), with an AUC of 0.85 (95%CI: 0.75—0.95) for the training
cohort and 0.84 (95%Cl: 0.71—0.97) for the validation cohort, as well
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Table 1

Demographic, clinical, laboratory, and chest CT findings of patients with COVID-19 included in the study.
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Characteristic Total Patients with severe Patients with no-severe P Value® Training Cohort  Validation Cohort P
(n=234) illness (n = 31) illness (n = 203) (n=118) (n=116) Value®
Demographics and clinical characteristics
Gender 0.184
Male 133 (56.8) 23(74.2) 110 (54.2) 43 (36.4) 8 (50.0)
Female 101 (43.2) 8(25.8) 93 (45.8) 5(63.6) 8 (50.0)
Age (y)*
Male 41.0 (5.0 56 (26—80) 40 (5.0-75.0) 0.775 40.0 (5.0-80.0)  46.0 (7.0—75.0) 0.533
—80.0)
Female 47.0 (2.0 54.5 (33.0-76.0) 45.0 (2.0-81.0) 0.629 50.0 (22.0-81.0) 45.0 (2.0-74.0) 0.096
—81.0)
Both 445 (2.0 45.0 (26.0—80.0) 43.0 (2.0-81.0) 0.001** 43.0 (5.0-81.0) 45.5(2—75.0) 0.119
—81.0)
Comorbidity
Coronary heart disease 5(2.1) 3(9.7) 2(1.0) 0.014* 1(0.8) 4(34) 0.356
Diabetes 18(7.7) 7 (22.6) 11 (54) 0.003** 9 (7.6) 9(7.8) 1.000
Hypertension 25 (10.7) 7 (22.6) 18(8.9) 0.047*  11(9.3) 14 (12.1) 0.639
COPD 7 (3.0) 4(12.9) 3(1.5) 0.004** 2 (1.7) 5(4.3) 0429
Chronic liver disease 9(3.8) 0(0.0) 9 (4.4) 0.488 5(4.2) 4(3.4) 1.000
Chronic kidney disease 0(0.0) 0(0.0) 0(0.0) eseceees 0(0.0) 0(0.0) eccccee
Cancer 4(1.7) 1(3.2) 3(1.5) 1.000 2(1.7) 2(1.7) 1.000
Overall comorbidity
1 and more comorbidity 0(21.4) 12 (38.7) 38 (18.7) 0.022* 24 (20.3) 26 (22.4) 0.820
2 and more comorbidity 3(5.6) 6(19.4) 7 (34) 0.001* 5(4.2) 8(6.9) 0.547
Disease
Fever (>37.5C) (n, %) 164 (50.4) 25 (80.6) 139 (68.5) 0.243 82 (69.5) 82 (70.7) 0.954
cough 163 (69.7) 26 (83.9) 137 (67.5) 0.101 84 (71.2) 79 (68.1) 0.711
Dyspnea 25(10.7) 7 (22.6) 18 (8.9) 0.047* 14 (11.9) 11 (9.5) 0.705
Myalgia 18(7.7) 2(6.5) 16 (7.9) 1.000 6(5.1) 12 (10.3) 0.206
Fatigue 58 (24.8) 6(19.4) 52 (25.6) 0.597 33(28.0) 25 (21.6) 0.325
Headache 31(13.2) 2 (6.5) 29 (14.3) 0.361 13 (11.0) 18 (15.5) 0411
Nausea and/or vomiting 16 (6.8) 3(9.7) 13 (6.4) 0.771 9 (7.6) 7 (6.0) 0.823
Diarrhea 19(8.1) 7(22.6) 12 (5.9) 0.005** 7 (5.9) 12 (10.3) 0.319
Asymptomatic 22 (9.4) 1(3.2) 21(10.3) 0.350 12 (10.2) 10 (8.6) 0.856
SPO2 (<96%) 31(13.2) 11 (35.5) 20 (9.9) <0.001** 17 (14.4) 14 (12.1) 0.738
Time from illness onset to out- 3.0 (0.0 4.6 (3.4) 4.1 (3.5) 0.464 43 (3.5) 4.1 (3.4) 0.656
patients (days) —19.0)
Time from illness onset to hospital 5.0 (0.0 6.2 (3.3) 59 (4.1) 0.688 5.6(3.8) 6.2 (4.2) 0.283
admission (days) —20.0)
Laboratory findings
White blood cell count, x 10° per L 0.147 0.863
<4 90 (38.4) 12 (38.7) 78 (38.4) eseccee 44 (37.3) 46 (39.7) eccccce
4-10 131(56.0) 15 (48.4) 116 (57.1) 68 (57.6) 63 (54.3)
>10 13 (5.6) 4(12.9) 9 (44) eecesee 6 (5.2) 7 (6.0) cececes
Lymphocyte count x 10° per L
<0.8 5(19.2) 8(25.8) 7(18.2) 0.452 5(21.2) 0(17.2) 0.549
ALT (>40) 44 (18.8) 8(25.8) 6(17.7) 0.410 1(17.8) 3(19.8) 0.818
AST (>40) 31(13.2) 11 (35.5) 0(9.9) <0.001** 18 (15.3) 3(11.2) 0471
Lactate dehydrogenase (elevated) 136 (58.1) 10(32.3) 8 (43.3) 0.332 4(62.7) 2 (53.4) 0.192
CRP 100 (42.7) 23 (74.2) 7 (37.9) <0.001** 49 (41.5) 1 (44.0) 0.806
Creatine kinase (elevated) 34 (14.5) 9(29.0) 5(12.3) 0.029* 0(16.9) 4(12.1) 0.382
D-dimer (elevated) 61 (26.1) 14 (45.2) 47 (23.2) 0.0173** 31 (26.3) 0(25.9) 1.000
Procalcitonin 30(12.8) 8(25.8) 2(10.8) 0.02%* 7 (14.4) 3(11.2) 0.172
CT chest imaging findings
Lesion type
Consolidation 163 (69.7) 26 (83.9) 137 (67.5) 0.065 76 (64.4) 87 (75.0) 0.078
Ground-glass opacity 231(98.7) 31(100) 200 (98.5) 0.496 117 (99.2) 114 (98.3) 0.551
Reticular or stripe 131 (56.0) 25 (80.6) 117 (57.6) 0.015* 71 (60.2) 71 (61.2) 0.871
Bilateral pulmonary infiltration 195(83.3) 31 (100) 164 (80.8) 0.008** 98 (83.1) 7 (83.6) 0.907
Multi-lobe infiltration 187 (77.0) 30(96.8) 157 (77.3) 0.012* 95 (80.5) 2 (79.3) 0.819
Proportion of lesion volume to whole lung
Overall lesions 8.56 (0.02  20.08 (1.26—71.96) 6.95 (0.02—-66.48) 0.801 8.56 (0.02—71.96) 8.65 (0.02—50.94) 0.528
—71.96)
Ground-glass opacity 6.86 (0.01  16.90 (1.10—55.43) 5.84 (0.01-59.65) 0.834 6.91 (0.02—59.65) 6.83 (0.01-43.45) 0.536
—59.65)
Consolidation 1.13 (0.0 3.15(0.15-27.92) 0.88 (0.00—15.93) 0.569 0.91 (0.00-27.92) 1.51(0.00-15.93) 0.552
—27.92)
Body composition
SMI 242 (153  25.4(20.5-40.2) 23.7 (15.3—37.3) 0.021* 24.8(154-33.8) 23.7(153—-40.2) 0.273
—40.2)

(continued on next page)
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Table 1 (continued )
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Characteristic Total Patients with severe Patients with no-severe P Value® Training Cohort  Validation Cohort P

(n=234) illness (n = 31) illness (n = 203) (n=118) (n=116) Value®

SMFI 3.6 (0.2 5.0 (1.3—10.9) 3.4(0.2—-11.9) <0.001** 3.4 (0.20—10.9) 3.8 (0.61-11.9) 0.259
-11.9)

SM-RA 41.8 (26.8  37.0 (27.1-53.1) 43.0 (26.8—60.2) 0.007** 43.1 (27.1-60.2) 40.8 (26.8—54.7) 0.184
—60.2)

Sarcopenia eccccce 5(16.1) 73 (36.0) 0.029* 37 (314) 41 (35.3) 0.518

Myosteatosis ececece 18 (58.1) 59 (29.1) 0.001** 34 (28.8) 43 (37.1) 0.179

Note. —Unless otherwise indicated, data are numbers of patients, and data in parentheses are percentages. # age is presented as median (minimum ~ maximum). P Value®:
comparing the group with severe illness and the group with no-severe illness; P Value®: comparing between the training cohort and the validation cohort. The symbol * for
P < 0.05 and the symbol ™" for P < 0.01 suggest a significant difference between the severe group and the no-severe group. Abbreviations: COPD, chronic obstructive pulmonary
disease; ALT, alanine aminotransferase; AST, aspartate transferase; CRP, c-reaction protein; SMI, skeletal muscle index; SMFI, Skeletal muscle fat index; SM-RA, skeletal muscle

radiation attenuation.

as a good performance of consistence (bootstrap, Training cohort:
0.85 + 0.04; Validation cohort: 0.84 + 0.03) (Figs. 3A, B and 3C).

In order to evaluate the impact of diabetes on disease progres-
sion in COVID-19 infection, we added diabetes into the final logistic
regression model. Our adjusted model with addition of diabetes as
a risk factor for differentiating patients with higher-risk of transi-
tion to severe disease performed similarly to the original model
without diabetes, with AUC of 0.86 (95% CI: 0.77—0.95) and AUC of
0.85 (95% CI: 0.75—0.95) respectively (Supplementary Fig. 2). There
were no significant differences in the performance of these two
models with and without addition of diabetes as a predictor
(Delong's test, P = 0.1239).

The calibration curve of the nomogram for the probability of
transition to severe illness showed good agreement between pre-
diction and observation for both cohorts (Fig. 3D, and E). The
Hosmer—Lemeshow H test yielded a nonsignificant statistical
evaluation for the training (P = 0.6802) cohort and the validation
cohort (P = 0.481), suggesting no departure from perfect fit. The
boost plots for myosteatosis nomograms were presented in
Supplementary Fig. 3.

The decision curve analysis for the nomogram was presented in
Fig. 4. The decision curve showed that if the threshold probability of
a patient or a doctor was greater than 5%, using the nomogram to
predict severe illness status in COVID-19 patients added more
benefit than either the diagnose-all-patients scheme or the
diagnose-none scheme. After exceeding the threshold of ~10%, the

combined model showed more clinical benefits than the clinical
model alone.

4. Discussion

In this study, we found CT-derived thoracic myosteatosis mea-
surements to be independent predictors for progression to severe
illness in patients with COVID-19 who were initially diagnosed as
having the mild common-subtype infection. Our prediction model
combining CT-derived myosteatosis measurements and the clinical
laboratory data obtained from the first clinic visit showed satisfying
performance in differentiating the patients with higher risk of
transition to severe COVID-19 infection from those with lower risk
of transition. In addition, our myosteatosis nomogram showed
promising results to be used as a potential tool for assessing COVID-
19 infection in clinical practice.

Our findings of thoracic myosteatosis predicting progression of
COVID-19 infection were generally in line with prior studies
regarding the adverse implication of myosteatosis. Published
literature has shown that myosteatosis is positively associated with
the increased severity of the patient's disease, longer hospital stays,
more complications, earlier postoperative recurrence, and worse
prognosis [19,21—25]. Recent studies have reported that myo-
steatosis was often associated with a weak physical state of the
patients [20,21], and may contribute to an increased risk of devel-
oping severe symptoms [33] and viral pneumonia [24]. We
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Fig. 3. Myosteatosis nomogram, ROC curves and calibration curves for predicting the risk of transition to severe illness (A) Myosteatosis nomogram developed in the training cohort
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Fig. 4. Decision curve analysis of the myosteatosis nomograms for the combined
model and the clinical model alone. The y-axis measures the net benefit. The blue line
represents the decision curve for the clinical model. The pink line represents the de-
cision curve for the combined model with addition of CT myosteatosis features to the
clinical model. The black line represents the assumption that no patients had the risk if
transition to severe illness and the green line represents all patients would transition
to severe illness.

speculate that the patients with myosteatosis in our cohort impli-
cated relatively poor physical fitness, thus being more susceptible
to severe COVID-19 infection.

We found that patients in the group with severe illness not only
had a higher rate of myosteatosis, but also had a higher SMFI value
indicating more subcutaneous adipose tissue deposition in the
thoracic muscles. Increased adipose tissue in the muscles has been
related to obesity, which is an important underlying factor associ-
ated with myosteatosis [34]. The adverse impact of obesity on
immune responses and infection such as viral influenza pneumonia
has been reported [30,35]. Obesity could affect the immune
response by regulating leptin, whose signaling plays an important
role in virus-related adaptive immune response [36]. In addition,
obesity promotes the activation of immune cells and increases the
production of pro-inflammatory cytokines, which has been pro-
posed as the underling mechanism for rapid transition to severe
disease, multi-organ dysfunction, and even death in various dis-
eases [36]. We therefore speculate that the patients progressing to
severe illness may have underlying subclinical muscular atrophy
and obesity as indicated by their higher SMFI values, predisposing
them to severe COVID-19 infection.

The underlying pathophysiological mechanism regarding the
association between myosteatosis and progression of COVID-19
infection is not clear. We speculate that myosteatosis with weak-
ening thoracic muscle in our cohort may have resulted in a
diminished effort for coughing, which may partly be responsible for
disease progression. Coughing is the most direct protective mech-
anism against lung infections, requiring coordinated activation and
movement of respiratory muscles and internal laryngeal muscles
[22,37]. A prior study of healthy older men and women has showed
that reduced muscle strength was significantly associated with
decreased lung function, implying the inter-dependence between
muscle strength and vital capacity lung function [38]. We hypoth-
esize that myosteatosis with reduced muscle quality in our patients
may have weaken the protective coughing mechanism against
pneumonia, thus increasing the risk of transition to severe COVID-
19 infection. Since most patients may have similar muscle mass,
therefore diminished muscle quality rather than quantity as re-
flected by myosteatosis may have played a role in the transition to
severe COVID-19 infection.

The satisfying performance of our prediction model may be due
to incorporation of important clinical and laboratory variables such
as age, SPO,, and CK [7—10,39]. Our study results were consistent

Clinical Nutrition xxx (XXxX) XXX

with others indicating these variables being relevant to COVID-19
infection. For example, age has been shown to be an important
risk factor for poor prognosis in patients with COVID-19 and older
patients tend to have more severe infection with higher mortality
rate [7—9]. In addition, myosteatosis becomes more severe with the
aging process [19,23,39,40]. Reduced SPO2 (<96%) usually suggests
a significant impairment of lung exchange function and potential
hypoxemia, which has been reported to be associated with severity
of COVID-19 [12] and community acquired pneumonia [41]. We
found a significant higher incidence of reduced SPO, in patients
with more severe COVID-19 infection (35.5%) when compared to
the patients with the mild infection (9.9%), suggesting that early
decline of SPO, could be an indicator for severe infection. As a
marker for systemic inflammatory response, CK has been reported
to be associated with higher risk of disease progressing in patients
with influenza A (H1N1) viral pneumonia [42], and in patients with
severe COVID-19 infection [7,9,12]. Recent studies have reported
that elevated CK was commonly seen in patients with COVID-19,
indicating possible damage to skeletal muscle and cardiac muscle
[7—10,12]. Therefore, it was not surprising to see our model per-
formance improved after incorporating these known factors asso-
ciated with COVID-19 infection to the modeling process.

Chest CT has been frequently performed on patients with
COVID-19 infection to assess pulmonary pathology. We also iden-
tified several imaging findings of COVID-19 infection such as lung
consolidation, ground-glass opacity, and pulmonary infiltration,
etc. However, for the purpose of CT-derived myosteatosis mea-
surements, the chest CT scans in our study did not extend down to
the L3 level per routine standard clinical imaging protocol and the
L3 level has been used for assessing body composition in prior
literature [22,23]. Nevertheless, all our chest CT scans included the
T12 level, which should be the ideal level for assessing thoracic
body composition. We therefore used the CT images at the T12 level
for our study of myosteatosis in patients with COVID-19 infection.

Our study did not show diabetes as a significant predictor for
transition to severe illness in our cohort of patients with COVID-19
infection. There are several potential explanations. First, our result
may partly be due to our imbalanced sample size with relatively
small cohort of patients in the severe illness group (n = 31 out of a
total of 234 patients), which may have resulted in less ideal opti-
mization of predictive modeling. Second, diabetes mellitus is a
complex metabolic disease causing hyperglycemia and encom-
passing various aspects of insulin resistance and metabolic
derangement. In this retrospective study, we did not have the data
to delve into the details of diabetes for our patients such as the
types of diabetes (type 1 or type 2), the duration and treatment
regimen of diabetes, history of diabetic complications, etc. Instead,
only limited information was abstracted from retrospective chart
review as whether the patients had history of diabetes. This
approach may have hindered our effort to assess the impact of
confounding factors for transition to severe illness in patients with
COVID-19 infection. Nevertheless, this study provided pilot data for
hypothesis generating to continue our research. Our new multi-
center study is underway to investigate the association between
body composition and COVID-19 infection focusing on compre-
hensive analysis of confounding factors such as insulin resistance,
diabetes, and metabolic syndrome.

The impact of body composition and metabolic derangement on
disease progression cannot be underestimated. CT-derived myo-
steatosis parameters such as SM-RA and SMF to indicate fat infil-
tration in the muscle have been shown to be strongly correlated
multiple factors including insulin resistance, diabetes, obesity, ag-
ing, cancer, hypertension, and cardiovascular disease [19,22—29].
Coincidentally, these factors have been reported to be relevant for
severity and prognosis of COVID-19 infection [6,7,9,10,12,13]. We



X.Yi, H. Liu, L. Zhu et al.

speculate that myosteatosis may be a phenotype that is common
for various pathological conditions such as diabetes and COVID-19
infection. The CT-derived myosteatosis parameters such as SM-RA
and SMFI may be the imaging features reflecting these patholog-
ical conditions. Therefore, it should not be surprising that SM-RA
and SMFI played key roles in predicting the transition risk of
COVID-19 infection in our final model. Our study provided pre-
liminary data to support the notion for potentially using the CT-
derived myosteatosis parameters as imaging biomarkers of dis-
ease progression impacted by confounding factors such as diabetes
in COVID-19 infection.

There were limitations to this study. First, this was a multi-
center retrospective study which may make the case selection
bias inevitable. We made effort to decrease this bias through
adaptation of the Chinese Management Guideline for COVID-19 and
enrolling all patients with the same mild common-subtype infec-
tion. Second, patients were retrospectively enrolled from six
COVID-19 designated hospitals and their chest CT images were
acquired from different CT scanners with varying imaging param-
eters. Therefore, subtle differences in CT-derived myosteatosis
measurements may be present and we did not have the statistical
power to consider the effect of different scanners on myosteatosis
measurements. Third, although there was a relatively large number
of patients with initial diagnosis of the mild common-subtype
COVID-19 infection in this study, the number of cases with severe
illness was still small, which may affect the performance of pre-
dictive modeling and may also affect the generalizability of our
study results. Large-scale prospective multicenter study with
standardized imaging protocol should be helpful to validate our
results.

In summary, we found CT-derived measurements of thoracic
myosteatosis to be associated with higher risk of transition to se-
vere illness in patients affected by COVID-19 who initially pre-
sented as having the mild common-subtype infection. The
myosteatosis nomogram developed in this study could potentially
provide an individualized prediction of the transition risk to severe
illness, thus assisting in making treatment decision for patients
with COVID-19 infection in the early stage. Our study presented
promising data for potential use of body composition analysis in the
overall assessment of disease progression and prognosis in patients
with COVID-19 infection.
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