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Cardiac fibrosis, a common pathophysiologic process in most heart diseases, refers to

an excess of extracellular matrix (ECM) deposition by cardiac fibroblasts (CFs), which

can lead to cardiac dysfunction and heart failure subsequently. Not only CFs but also

several other cell types including macrophages and endothelial cells participate in the

process of cardiac fibrosis via different molecular pathways. Exosomes, ranging in 30–

150 nm of size, have been confirmed to play an essential role in cellular communications

by their bioactive contents, which are currently a hot area to explore pathobiology and

therapeutic strategy in multiple pathophysiologic processes including cardiac fibrosis.

Cardioprotective factors such as RNAs and proteins packaged in exosomes make them

an excellent cell-free system to improve cardiac function without significant immune

response. Emerging evidence indicates that targeting selective molecules in cell-derived

exosomes could be appealing therapeutic treatments in cardiac fibrosis. In this review,

we summarize the current understandings of cellular effectors, molecular pathways, and

exosomal roles in cardiac fibrosis.

Keywords: cardiac fibrosis, cellular effectors, mechanisms, exosome, treatment

INTRODUCTION

Cardiac fibrosis, marked by an excess of extracellular matrix (ECM) deposition by cardiac
fibroblasts (CFs), is a common pathophysiologic process in most heart diseases such as myocardial
infarction (MI), hypertensive heart disease, and different types of cardiomyopathies (1, 2) and
impair the heart physically and electrically. Taking acute MI (AMI) as an example, sudden massive
loss of cardiomyocytes triggers an intense inflammation and causes the dead myocardium to be
replaced with a collagen-based scar (3), which is critical to prevent cardiac rupture. However,
prolonged or excessive fibrotic responses could remarkably lead to excessive ECM deposition,
which results in hardening of myocardium, poor tissue compliance, and worsening of cardiac
dysfunction. According to the location of cardiac scars and underlying cause (4, 5), cardiac fibrosis
can be classified into various forms, among which reactive interstitial fibrosis and replacement
fibrosis are the most relevant type of the ischemic adult heart. Being the major cell type in the
adult myocardium, CFs perform a critical role in maintaining ECM protein homeostasis. The
activation of CFs can lead to the transition into myofibroblasts, which is a critical step in the
development of cardiac fibrosis. Besides CFs, there are various types of cells involved in the process
of cardiac fibrosis via different pathways. It is widely known that cardiac fibrosis can provoke
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chamber dilation, cardiomyocyte hypertrophy, and apoptosis
and finally result in congestive heart failure (6–8). Therefore, it
is essential to discover potential diagnostic or therapeutic targets
for cardiac fibrosis.

Exosomes, ranging in 30–150 nm of size, play an essential role
in cellular communications by their bioactive contents (9, 10).
As a cell-free system, exosomes could lead to improvement in
cardiac function without triggering an immune response by
including cardioprotective components such as miRNAs and
proteins, emerging as an appropriate candidate for cardiac
fibrosis treatment. Recent research studies show that inhibiting
exosome secretion or targeting specific molecules in CF-derived
exosomes could be a promising therapeutic strategy in ischemic
heart disease (11, 12). In this review, we demonstrate the current
understandings of the cellular effectors, molecular pathways, and
exosomal roles in cardiac fibrosis.

CELLULAR EFFECTORS OF CARDIAC
FIBROSIS

After a myocardial injury, CFs convert to their activated form
(termed as myofibroblasts) by upregulating expression of pro-
inflammatory cytokines, which is defined as the key cellular event
in cardiac fibrosis. Though activated myofibroblasts have been
the primary effector cells in the fibrotic heart by producing ECM
proteins directly, macrophages/monocytes, mast cells (MCs),
lymphocytes, cardiomyocytes, and vascular cells (Figure 1) can
also play vital roles in the fibrotic response via secretion of a
variety of fibrogenic mediators such as matricellular proteins and
growth factors.

Abbreviations: ECM, extracellular matrix; CF, cardiac fibroblast; AMI, acute

myocardial infarction; EMT, epithelial–mesenchymal transition; MMP, matrix

metalloproteinases; DDR2, discoidin domain receptor 2; FSP1, fibroblast-

specific protein 1; S100a4, S100 calcium-binding protein A4; Thy1, thymus

cell antigen 1; TCF21, the transcription factor 21; PDGFR α, platelet-derived

growth factor receptor α; α-SMA, α-smooth muscle actin; ED-A, extradomain

A; ROS, reactive oxygen species; MC, mast cells; DAMPs, damage-associated

molecular patterns; TNF, tumor necrosis factor; IL, interleukin; MCG, mast cell

granule; VEGF, vascular endothelial growth factor; MSC, mesenchymal stem cell;

ET, endothelin; EndMT, endothelial to mesenchymal transition; HIF, hypoxia-

inducible factor; IP, interferon-γ-inducible protein; TβRII, TGF-β receptor II;

IGF, insulin-like growth factor; AT2, angiotensin II type 2 receptor; PAI,

plasminogen activator inhibitor; PDGF, platelet-derived growth factor; RAAS,

renin–angiotensin–aldosterone system; Ang II, angiotensin II; ACE, angiotensin-

converting enzyme; AT 1, angiotensin type 1; AR, adrenergic receptor; CCN2,

cellular communication network factor 2; GRK2, G protein-coupled receptor

kinase 2; MRTF, myocardin-related transcription factor; TSP-1, thrombospondin

1; STAT, signal transducer and activator of transcription; JAK, Janus kinase;

mIL-6R, membrane-bound IL-6R; sIL-6R, soluble IL-6R; RAS, renin–angiotensin

system; HIMF, hypoxia-induced mitogenic factor; TN-C, Tenascin-C; EE, early

endosome; LE, late endosome; ILV, intraluminal vesicle; MVB, multivesicular

body; TSG101, tumor susceptibility gene 101; MHC, major histocompatibility

complex; PDCD6IP, programmed cell death 6-interacting protein; HSP, heat shock

protein; SORBS2, orbin and SH3 domain-containing protein 2; PDLIM5, PDZ and

LIM domain; Nrf2, nuclear factor erythroid 2-related factor 2; FoxO, forkhead

transcription factors of the O class; YBX-1, Y box binding protein 1; Smurf1,

SMAD-specific E3 ubiquitin protein ligase 1; HDAC4, histone deacetylase 4;

MKK6, mitogen-activated protein kinase kinase 6; Dyrk2, dual-specificity tyrosine

phosphorylation-regulated kinase 2; PTEN, phosphatase and tensin homolog;

Mecp2, methyl CpG binding protein 2; BMP2, bone morphogenetic protein 2;

EGR1, early growth response factor 1; HuR, human antigen R; Ang, angiotensin.

Fibroblasts and Myofibroblasts
It is recognized that the transdifferentiation from CFs to
myofibroblasts is the core cellular event in cardiac fibrosis.
In order to clarify the role of CFs and myofibroblasts in
cardiac fibrosis, several markers have been found to identify
and distinguish CFs and myofibroblasts (13–37) (Table 1). It
has been clear that most CFs derived from the epicardium, a
protective epithelial layer that entirely covers the four cardiac
chambers, undergoing epithelial–mesenchymal transition (EMT)
(38, 39). Smaller populations are derived from the endocardium
(40, 41) and cardiac neural crest (20) and are mostly found
in the interventricular septum and right atrium, respectively
(Figure 2). However, the origin of the myofibroblasts forming
fibrotic lesions in failing hearts has been a source of debate.
Most investigations in the last 10 years have revealed that
activated myofibroblasts in remodeling and the infarcted hearts
are primarily derived from resident CFs (20), and it is well-
established that the transformation of CFs to myofibroblasts is
a core cellular event involved in fibrotic response under cardiac
injury. Cardiac myofibroblasts, a contractile and secretory cell
type, not only contribute to the structure of ECM proteins
in fibrotic hearts but also play an important role in matrix
remodeling regulation through the production of proteases
including the matrix metalloproteinases (MMPs) as well as
their inhibitors.

So far, few factors that can independently induce CF activation
have been identified. Evidence has revealed that, following
mechanical stress, fibroblasts change to proto-myofibroblasts
(an intermediate cell) (42). Proto-myofibroblasts contain unique
cell markers including a splice variant of fibronectin called
the fibronectin extradomain A (ED-A) and stress fibers (43).
The cytokine TGF-β further stimulates proto-myofibroblasts,
causing them to develop into the myofibroblast cell phenotype;
thus, it, in turn, leads to heart failure associated with cardiac
remodeling. Inflammation, MI, changes in mechanical tension,
reactive oxygen species (ROS), age, and other factors can all
alter the activation of CFs (Figure 3). We will discuss the
specific molecular pathways contributing to CF activation in the
remodeling heart in section Fibrogenic growth factors.

The Monocytes/Macrophages
According to increasing evidence, macrophages and monocytes
have both been confirmed to play vital roles in the regulation
of cardiac fibrosis. Macrophages and monocytes in the injured
heart appear to be increasingly heterogeneous depending on their
different subpopulation (44), and their phenotypic and functional
flexibility allow them to perform diverse functions in fibrotic
responses, such as serving as a primary source of fibrogenic
growth factors and cytokines, producing matricellular proteins,
and secreting matrix remodeling proteases (45). Moreover,
circulating fibroblast progenitors may be implicated in the
progression of cardiac fibrosis as suggested by numerous studies
using bone marrow transplantation techniques (46). These
hematopoietic progenitors could be monocyte subsets that can
differentiate fibroblasts, comparable with the CD14+ “fibrocytes”
discovered in humans (47), which imply that macrophages and
monocytes in fibrotic hearts could be sources of myofibroblasts.
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FIGURE 1 | Cellular effectors of cardiac fibrosis.

The Mast Cells
MCs are innate immune cells found almost everywhere of
the body, including the heart. Resident MCs in the heart can
respond to damage-associated molecular patterns (DAMPs) after
injury, thus influencing the development of cardiac remodeling.
However, the precise function of MCs in cardiac fibrosis is
debatable, as the secretory proteins produced by MCs can be
both anti- and profibrotic in nature. MC-specific proteases such
as chymase and tryptase released by degranulation could induce
TGF-β1 production (48–50), which plays a role in cardiac fibrosis
through collagen synthesis, myofibroblast differentiation, and
fibroblast stimulation (1, 51). In addition, cytokines like tumor
necrosis factor (TNF) (52) and interleukin (IL)-1β (53) stored in
MC granule (MCG) can also promote cardiac fibrosis through
cardiomyocyte apoptosis during degranulation (54).

MCs, on the other hand, secrete anti-inflammatory mediators
including IL-10 (55), which has been shown to inhibit excessive
cardiac remodeling by activating STAT3 and suppressing NF-κB
(56–58). Besides, MCs can produce vascular endothelial growth
factor (VEGF)-A (52, 53), as one of the important anti-fibrotic
mediators, which can increase capillary density in damaged
tissues and promote proper repair in cardiac fibrosis (59–61).
Over the past few years, various studies have been carried out
for investigating the functions of MCG in fibrosis. MCG therapy
of mesenchymal stem cells (MSCs) in vitro reduced TGF-β1-
mediated transition of MSCs to myofibroblasts, while in vivo
delivery of MCGs from rats to the myocardium during AMI
lowered fibrosis and enhanced capillary density (62). These
findings suggest that MCs have anti-fibrotic properties and could
be used as therapeutic targets in cardiac remodeling.

The Endothelial Cells
The prevalence of perivascular fibrosis in the injured heart may
indicate that endothelial cells are involved in cardiac fibrosis
(63). Under pathophysiologic conditions, endothelial cells may
enhance fibrotic responses via a variety of mechanisms after the
myocardial injury. First, several profibrotic mediators produced
by endothelial cells, such as FGFs, TGF-1, and endothelin (ET)-
1, may play key roles in the development of cardiac fibrosis (64,
65). Second, endothelial cells may produce pro-inflammatory
cytokines and chemokines, contributing to recruitment of
lymphocytes and macrophages with fibrogenic actions (66).
Third, although low numbers of endothelial-derived fibroblasts
were detected in the remodeling myocardium, endothelial cells
may undergo endothelial to mesenchymal transition (EndMT),
increasing the number of fibroblasts (34).

On the contrary, anti-fibrotic mediators could also be
produced by endothelial cells. Endothelial cells have been found
to express hypoxia-inducible factor (HIF)-1 for protecting the
pressure-overloaded myocardium from fibrosis via suppression
of TGF-β signaling partially (67). Furthermore, endothelial cells
exert inhibitory actions on cardiac fibrosis by producing and
secreting interferon-γ-inducible protein (IP)-10/CXCL10, a CXC
chemokine that prevents the migration of CFs in the infarcted
heart (68).

The Cardiomyocytes
The roles of cardiomyocytes in the process of cardiac fibrosis
are two sides of the coin. For one thing, cardiomyocytes may
promote interstitial fibrosis through neurohumoral and growth
factor-mediated pathways, such as cardiomyocyte-specific
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TABLE 1 | Summary of molecular markers used for the identification of cardiac fibroblasts and myofibroblasts.

Biomarker Location Function Expression in cardiac fibroblast Expression in cardiac myofibroblast Expression in other

cell types

References

Discoidin domain

receptor 2 (DDR2)

Cell surface Collagen-specific receptor

tyrosine kinase mediating

cell growth, migration, and

differentiation

Yes Yes Epicardium (13–18)

Vimentin Cytoskeletal Intermediate filaments for

motility and cell shape

Yes Yes Endothelial cells,

macrophages

(19–22)

Fibroblast-specific

protein 1 (FSP1)/S100

calcium-binding protein

A4 (S100a4)

Cytosolic Calcium-binding protein for

motility and tubulin

polymerization

Yes Unknown Immune cells (23, 24)

Thymus cell antigen 1

(Thy1, CD90)

Cell surface Membrane glycoprotein for

cell adhesion

Yes No Immune cells,

lymphatic endothelial

cells and pericytes

(25–27)

The transcription factor

21 (TCF21)

Nucleus Regulates mesenchymal cell

transitions

Yes Yes Epicardium (25, 28, 29)

Platelet-derived growth

factor receptor α

(PDGFR α)

Cell surface Tyrosine kinase receptor Yes Unknown Platelets, epicardium (30)

Collagen 1α1-GFP Transgene Targeting collagen I

protein-producing cells

Yes Unknown Endothelial and

vascular smooth

muscle cells

(22, 32)

α-Smooth muscle actin

(α-SMA)

Cytoskeletal Intermediate

filament-associated protein

for cell contraction

No Yes Epicardium, smooth

muscle cells, pericytes,

and cardiomyocytes

(33, 34)

Periostin Extracellular matrix (ECM) Cardiac development,

remodeling and ECM

organization

No Yes Epicardium, vascular

smooth muscle cells,

and valve interstitial

cells

(35–37)
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FIGURE 2 | Origin of cardiac fibroblasts.

FIGURE 3 | Activation of cardiac fibroblasts.

mineralocorticoid receptor signaling (69), TGF-β receptor II
(TβRII) signaling (70), and insulin-like growth factor (IGF)-1
signaling (71). Moreover, necrotic cardiomyocytes trigger
an inflammatory response that finally leads to activation
of fibroblasts via release of DAMPs, which means cardiac
fibrosis may occur due to cardiomyocyte death, instead of
cardiomyocyte-derived fibrogenic signals (51). For another,
cardiomyocyte-specific overexpression of angiotensin II (Ang
II) type 2 (AT2) receptor or the plasminogen activator inhibitor
(PAI)-1 exerts anti-fibrotic actions via the kinin/NO system
activation or inhibition of TGF-β synthesis, respectively (72, 73).

MOLECULAR PATHWAYS IN CARDIAC
FIBROSIS

The complexity of interconnections and the extensive range
of molecular pathways involved in the fibrotic response
have restricted our understanding of the mechanism of
cardiac fibrosis. High-throughput transcriptomic and genomic
techniques have recently been employed to find new molecular
signals and pathways linked to the fibrotic response’s initiation,
regression, and progression (74); and in the development of
cardiac fibrosis, various molecular routes have been identified.
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Most fibrotic heart diseases, regardless of cause, appear to
include the aldosterone/angiotensin axis and fibrogenic growth
factors such as platelet-derived growth factor (PDGF) and TGF-
β. Moreover, several inflammatory signals (3, 75) such as TNF-
α and IL-6 may regulate reparative and ischemic fibrosis by
transducing the cascades of intracellular signaling that result
in the transcription of ECM genes and translation of matrix
remodeling-related proteins. Here, we demonstrate signaling
pathways and mediators known to influence process of cardiac
fibrosis after myocardial injury, hoping to find novel therapeutic
targets or strategies.

Neurohumoral Pathways
The Renin–Angiotensin–Aldosterone System
During the progression of cardiac fibrosis, the renin–
angiotensin–aldosterone system (RAAS), of which Ang II
appears to be the primary effector, is persistently engaged.
In fibrotic hearts, the oligopeptide Ang II, which induces
vasoconstriction and high blood pressure, is raised. Angiotensin-
converting enzyme (ACE) and renin, which are required for
the production of Ang II, are produced by fibroblasts and
macrophages invading the damaged heart (76, 77). Both in vivo
and in vitro investigations suggest that Ang II is involved in TGF
signaling. TGF-1 expression is induced by Ang II in fibroblasts
and cardiomyocytes via the Ang II type 1 (AT 1) receptor, which
plays a crucial role in profibrotic signaling (78–80); and in vivo,
TGF-β is necessary for Ang II to induce both cardiac fibrosis
and hypertrophy (81, 82). Besides, Ang II is also intimately
involved with the inflammatory response, and in CFs, Ang II
enhances their collagen-synthetic activity through extracellular
signal-regulated kinase by an IL-6-dependent mechanism
indeed. Another mechanism underlying the fibrotic capability
of Ang II could involve miR-29b. In vitro, miR-29b suppression
promotes Ang II-induced collagen type I and α-SMA expression,
but overexpression of miR-29b inhibits it. It is indeed possible
that miR-29b targets a sequence within the TGF-β1 coding area,
which explains this observation. On the contrary, AT2 signaling
may inhibit AT1-mediated actions, suppressing CF proliferation
and matrix synthesis, serving as a negative regulator of Ang
II-mediated profibrotic responses.

Aldosterone is also capable of inducing fibrotic responses
in the myocardium after cardiac injury, suggested by patients
with adrenal adenomas and experimental animal studies.
Several potential mechanisms have been involved in the
profibrotic activities of aldosterone in the heart. First, aldosterone
may have pro-inflammatory effects on vascular cells by
increasing the production of cytokines like TNF-α via NF-
κB activation. Second, aldosterone may induce a fibrogenic
phenotype in macrophages via the mineralocorticoid receptor.
Third, aldosterone may activate cardiomyocyte-derived fibrotic
signals, involving regulation of MMP-2/9 activity and the TGF-
β-connective tissue growth factor profibrotic pathway. Fourth,
aldosterone may exert a direct effect on CFs, stimulating
proliferation and increasing collagen synthesis.

GPCR/Adrenergic Signaling
It has been reported that activation of adrenergic signaling via
β-adrenergic receptor (AR) can induce cardiomyocyte death

and subsequent reparative fibrosis, thus leading to cardiac
remodeling. Although there are several subtypes of β-AR
expressed in the heart, the predominant form of β2-AR seems
to be expressed on CFs. Collagen secretion, cell proliferation,
migration, and transformation to the myofibroblast phenotype
can all be induced by direct activation of β2-AR on CFs, mediated
through p38 MAPK signaling partially. In addition, β-AR
signaling can also regulate cytokine expression by macrophages
and induce growth factor synthesis by cardiomyocytes, which
plays an important role in promoting cardiac fibrosis. However,
not all types of β-ARs are involved in the profibrotic responses.
On the contrary, several studies have proved that, in a model
of pressure overload-induced cardiac fibrosis, β3-AR signaling in
cardiomyocytes may protect the heart, due to downregulation of
the matricellular protein CCN2 by cardiomyocytes.

Adrenergic stimulation causes structural changes in G protein
βγ subunits in the damaged myocardium, culminating in
activation of G protein-coupled receptor kinase 2 (GRK2). In
an experimental model of MI, GRK2 activation in CFs has
been shown to have substantial fibrotic effects. Although the
specific fibrotic signals activated by GRK2 remain unclear, GRK2
represents a critical target for therapeutic interventions against
cardiac fibrosis.

Endothelin-1
The endothelin family of peptides was mostly known for its
vasoconstriction capabilities; however, it is now being recognized
for its potential role in tissue fibrosis. ET-1, one of the
significant endothelin isoforms in humans, is thought to be
secreted predominantly by endothelial cells but also can be
produced by other cells including fibroblasts, cardiomyocytes,
and macrophages. The ETA and ETB receptors, which have
been found to perform opposite roles, are two recognized ET-
1 receptors in the heart. At first, it was thought that these two
receptors were only expressed on endothelial cells; however, the
latest evidence suggests (83, 84) that they can also be expressed
in other types of cells such as macrophages, cardiomyocytes,
and CFs.

Both in vitro and in vivo studies suggest that ET-1 appears
to be a potent fibrogenic mediator. In vitro, ET-1 enhances
proliferation and collagen production in isolated human CFs
via ETA receptor; in vivo, overexpression of ET-1 in the heart
induces myocardial fibrosis associated with biventricular systolic
and diastolic dysfunction. In addition to fibroblast-activating
characteristics of its own, ET-1 can also act as a downstream
of cytokines and neurohumoral mediators such as TGF-β and
Ang II, serving as a link between fibrosis and inflammation. For
example, the development of cardiac fibrosis in response to Ang
II is impaired in mice with vascular endothelial cell-specific ET-
1 deficiency, regulated by the myocardin-related transcription
factor (MRTF)-A.

Moreover, endothelin antagonists are now approved to
treat pulmonary hypertension, and many believe they will
also be beneficial in the treatment of heart pathological
fibrosis. Bosentan, a non-selective endothelin receptor antagonist
routinely used to treat pulmonary hypertension, has also
been shown to reduce fibrotic myocardium remodeling in
hypertensive and reparative cardiac fibrosis animal models (85).
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Despite the failure of several randomized controlled studies
exploring the impact of endothelin antagonists in heart failure
and coronary artery disease, manipulating ET-1 signaling appears
to be promising. More researches are needed to explore whether
ET-1 and its receptors may be appropriate clinically viable anti-
fibrotic treatment targets.

Fibrogenic Growth Factors
TGF-β
The TGF-β family is a group of pleiotropic and multifunctional
peptides activated in experimental models of cardiac fibrosis
and fibrotic human hearts markedly (1, 3). TGF-β is found in
three isoforms (TGF-β1, TGF-β2, and TGF-β3) in mammals
(86), among which TGF-β1 acts as the predominant isoform
in the cardiovascular system and expresses ubiquitously. In the
injured heart, TGF-β1, which is present in the normal heart as a
latent complex, is transformed from the latent form to the active
form via a variety of mediators. Proteases, including MMP-2,
MMP-9, and plasmin, are widely acknowledged to participate
in the activation of TGF-β as well as the matricellular protein
thrombospondin 1 (TSP-1) (1), which plays an important role
in cardiac remodeling. Upon activation, a group of studies
have revealed that TGF-β was involved in the pathogenesis
of cardiac fibrosis through Smad-mediated pathways where
TGF-β binds to the constitutively active TβRII on the cell
surface, transphosphorylates the cytoplasmic domain of the type
I receptor (TβRI), and then gets connection with the Smads; or
through Smad-independent pathways, in which TGF-β/TAK-1
signaling may exert profibrotic actions (1). Meanwhile, negative
regulation of TGF-β signaling may be crucial in preventing
cardiac fibrosis. A study conducted in a mouse model of pressure
overload-induced heart failure has suggested that cleavage and
release of a soluble endoglin may inhibit fibrogenic actions of
TGF-β (87).

In addition, TGF-β is a critical fibrogenic mediator that may
have the potential to affect all cell types involved in cardiac
fibrotic response. MCGs are known to contain TGF-β in a
large amount, while TGF-β-induced Smad-dependent pathways
are activated by MC chymase, which results in fibrogenic
effects (88). Besides, profibrotic growth factors including TGF-
β can be produced and secreted in significant quantities
by macrophages and monocytes. In return, TGF-β-mediated
actions of these cell types may also play a paracrine role
in fibrotic response. Moreover, endothelial cells may promote
fibrotic cardiac remodeling through the expression of profibrotic
mediators, such as TGF-β1, FGFs, or ET-1.

What is more, TGF-β-stimulated myofibroblast
transdifferentiation is induced by activation of the Smad3
signaling cascade, which promotes α-SMA transcription
in fibroblasts (89) and enhances ECM protein synthesis.
Furthermore, cardiomyocyte-specific TβRII knockdown
significantly reduced fibrosis in the pressure-overloaded heart
(70), implying that cardiomyocyte-specific TGF-β signaling is
essential in the pathogenesis of fibrotic remodeling.

Platelet-Derived Growth Factor
The PDGF family includes homo- or hetero-dimeric growth
factors (such as PDGF-AA, PDGF-BB, PDGF-AB, PDGF-CC,

and PDGF-DD) that signal via two distinct receptors: PDGFR-
α and PDGFR-β (1). In vivo, PDGF-A and PDGF-C bind to
PDGFRα, while PDGF-B and PDGF-D bind to PDGFRβ in
general (90). PDGF-B and PDGF-D are expressed by endothelial
cells, whereas PDGFRβ is expressed by vascular mural cells
(pericytes and smooth muscle cells). Myocardial cells express
both PDGF-A and PDGF-C, while PDGFRα-positive interstitial
cells have been found in the myocardium, epicardium, and
endocardium (90). With pleiotropic effects of PDGF signaling,
all PDGFs have been reported to play a certain role in the
development of cardiac fibrosis. Overexpression of PDGF-C (91)
and PDGF-D (92) from the α-myosin heavy chain promoter (α-
MHC), as well as PDGF-A (both splice variants) and PDGF-B,
has been reported to generate cardiac fibrosis and hypertrophy
in transgenic mice, though the degree and location of fibrosis
vary between the different ligands (90). Besides, a group of
studies suggested that PDGF stimulates fibroblast proliferation
and differentiation to myofibroblasts in vitro, whereas PDGF
blockade reduces interstitial fibrosis of the infarcted hearts in
rats and suppresses atrial-selective canine fibroblast activation,
removing the distinctive atrial–ventricular fibroblast activation
differences (93). Moreover, a study implied that PDGF may
also act to promote fibrosis by elevating TGF levels, for
it can significantly upregulate profibrotic TGF-1 mRNA and
accelerate cardiac fibrosis and arteriosclerosis when three of the
isoforms, PDGF-A, PDGF-C, or PDGF-D, was introduced into
the heart using adenovirus-mediated delivery (94). Similarly,
PDGFRα appears to be a strong CF marker, possibly implicated
in the production of CFs from epicardium, while PDGFR-β
regulates the development of vascular smooth muscle cells from
epicardium-derived cells (22, 24). Injection of a neutralizing
PDGF receptor-specific antibody was also shown to reduce atrial
fibrosis in several studies (95). These findings strongly imply
that PDGF and PDGFR could be useful targets for anti-fibrotic
treatment in the heart.

Inflammatory Cytokines
Tumor Necrosis Factor-α
TNF-α is a powerful pro-inflammatory cytokine that exerts
pleiotropic effects on a variety of cell types and is reported to
be crucial in the process of cardiac fibrosis. Transmembrane
TNF-α, a precursor of the soluble TNF-α, is expressed on
activated lymphocytes and macrophages as well as other cell
types, exerting its biological actions by binding to type 1 and
2 TNF receptors (TNF-R1 and TNF-R2) (96), which can play
different roles. Studies have shown that TNF-α in deficient
mice after non-reperfused MI exacerbates cardiac remodeling,
hypertrophy, NF-κB activity, and inflammation as well as border
zone fibrosis through TNF-R1, whereas it ameliorates these
events through TNF-R2 (97). In addition, an increasing number
of studies suggest that cardiac fibrosis is promoted by TNF-
α via a range of mediators and the interaction with other
cell types. Heart failure was accelerated in transgenic mice by
cardiac-specific overexpression of TNF-α, which was associated
with increased collagen synthesis, deposition, and denaturation,
and dramatically elevated MMP-2 and MMP-9 activities (98).
Studies have also shown that fibrotic remodeling in the TNF-
α overexpressing heart is associated with increased expression
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of TGF-βs and the interactions between CFs and MCs (98).
Complementally, in models of heart pressure overload induced
by Ang II infusion or aortic banding, it is demonstrated
that global genetic deletion of TNF-α reduced interstitial and
perivascular fibrosis (99).

Interleukin-6
IL-6 is a pleiotropic cytokine that has a wide range of
biological functions in hematopoiesis, immunological regulation,
inflammation, and cardiac fibrosis. It was first identified as
a B-cell differentiation factor (100). Secreted by various types
of cells, IL-6 influences a group of cell types and exerts its
multiple biological activities through two different signaling
pathways: classic signaling and trans-signaling. Both intracellular
signaling pathways involve the signal transducer and activator
of transcription (STAT) pathway and Janus kinase (JAK)
pathway, though they are activated following interaction of signal
transducing membrane-bound IL-6R (mIL-6R), soluble IL-6R
(sIL-6R), or glycoprotein (gp130) (100, 101). Emerging evidence
suggests that IL-6, as a multifunctional cytokine, has a role in
cardiac fibrosis. A study using the animal model suggested that
elevated production of IL-6 induced by aldosterone could further
promote collagen production and cardiac hypertrophy via the IL-
6 trans-signaling pathway (102). Similarly, increased IL-6 levels
and ROS generation in rats could activate the renin–angiotensin
system (RAS) and JAK1/2-STAT1/3 signaling pathways, thus
ultimately leading to activation of TGF-1β/Smad3 fibrotic
pathway (103). Moreover, a study of neonatal rats under hypoxic
conditions showed that overexpression of IL-6 was sufficient
for inducing myofibroblastic proliferation, differentiation, and
fibrosis, probably through improved TGF-β1-mediated MMP-
2/MMP-3 signaling (102). Furthermore, IL-6 is a downstream
signal of hypoxia-induced mitogenic factor (HIMF), and it plays
a key role in cardiomyocyte hypertrophy and cardiac fibrosis
via the MAPK and CaMKII-STAT3 pathways (104). Directly, by
activating CFs to secrete Tenascin-C (TN-C), ET-1, and collagen,
IL-6 produced by macrophages can also cause cardiac fibrosis
(105). However, different studies on the role of IL-6 in cardiac
fibrosis can be conflicting. In models of left ventricular pressure
overload, genetic loss of IL-6 reduced cardiac dysfunction and
fibrosis, whereas another study utilizing a model of pressure
overload caused by transverse aortic constriction found no effect
of germline IL-6 loss on ECM protein deposition and cardiac
fibrosis (98). Therefore, we conclude that IL-6 and IL-6Rsmay act
as therapeutic targets of cardiovascular disease in the near future
(Figure 4).

ROLE OF EXOSOMES IN CARDIAC
FIBROSIS

Exosome-mediated intercellular signaling, which can
transfer various functional modulators including proteins,
lipids, and RNA, plays an increasingly important role in
cardiovascular diseases. CFs are major components of the heart,
ischemia/hypertrophy activates these fibroblasts, and they are
involved in cardiac fibrosis and remodeling (106). Post-cardiac

injury, fibroblast-derived miR-21-enriched exosomes can lead to
cardiac myocyte hypertrophy and remodeling (11). In addition,
miR-155 enriched in macrophage-derived exosomes led to
enhanced proliferation and differentiation of resident fibroblasts
and further exacerbated inflammation (12). Furthermore,
exosomes via use of a targeting cardiac homing peptide or
encapsulated in functional peptide hydrogels exhibit better
ability in improving cardiac function and reducing fibrosis
(107, 108). Besides, changes of miRNAs or proteins in exosomes
derived from plasma or peripheral blood are considered as
novel biomarkers for cardiac fibrosis or cardiac remodeling.
Therefore, exosomes could be potential therapeutic treatments
in cardiac fibrosis. Thorough knowledge of exosomes and
exosome-mediated intercellular communication in cardiac
fibrosis will provide better understanding to develop novel
strategies for cardiac fibrosis treatments.

Exosomes: Biogenesis, Isolation, and
Uptake
In response to different physiological states, exosomes are
secreted by various cell types, such as MCs (109), macrophages,
CFs, and exogenous MSCs, whose size range from 30 to
150 nm. Initially, transmembrane proteins are endocytosed and
trafficked to early endosomes (EEs). EEs then mature into late
endosomes (LEs) and generate intraluminal vesicles (ILVs) in
the lumen of the organelles. Multivesicular bodies (MVBs),
namely, LEs containing these ILVs, can fuse with plasma
membrane and release exosomes into the extracellular space or
fuse with lysosomes and degrade exosomes (110, 111). Different
cell type- and microenvironment-derived exosomes transport
distinct proteins, lipids, and nucleic acid cargoes (112, 113).
Generally, exosomes are formed with tetraspanin family (CD9,
CD63, and CD81) transmembrane proteins, tumor susceptibility
gene 101 (TSG101), major histocompatibility complex (MHC)
class II molecules, programmed cell death 6-interacting proteins
(PDCD6IPs), heat shock proteins (HSPs) (HSP60, HSP70, and
HSP90), cytoskeletal proteins (actin and tubulin), annexins
(regulate cytoskeletal changes in membranes and membrane
fusion), and membrane transport proteins (114).

Different techniques including microfiltration, gel filtration,
ultracentrifugation, and commercial exosomes isolation kits are
used to isolate exosomes from body fluids, plasma, or cell culture
medium (115). Among these, ultracentrifugation is regarded as
the gold standard for exosomes isolation and is also the most
common method. Exosomes can enter recipient cells via distinct
mechanisms including lipid membrane fusion, internalization by
receptor-mediated endocytosis, receptor-mediated binding, and
activation of downstream signaling (116). Total understanding of
the biogenesis, isolation, and uptake of exosomes may contribute
to find novel strategies for the treatment of cardiac fibrosis.

Exosome Contents for the Treatment of
Cardiac Fibrosis
MicroRNAs
MiRNAs, small endogenous oligonucleotides of 21–25
nucleotides, are critical in regulating post-transcriptional
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FIGURE 4 | Molecular pathways participated in cardiac fibrosis.

gene. Additionally, exosomes, containing different numerous
miRNAs, could contribute to or alleviate a variety of pathologies
including cardiac fibrosis. Exosomes, derived from distinct
cell types including fibroblasts and exogenous MSCs, with
upregulation or downregulation of certain miRNAs, can exhibit
better ability in attenuating cardiac fibrosis and improving
cardiac function (Table 2).

It has been confirmed that miR-21 played an essential
role in fibroblast biology and that the levels were selectively
increased in the failing heart, which makes it a target in
heart failure (146). Bang et al. (11) revealed that miR-21
was enriched in fibroblast-derived exosomes, and the transfer
of miR-21 to cardiomyocytes led to cellular hypertrophy.
Additionally, Kang et al. demonstrated that miR-21-loaded
human peripheral blood derived-exosomes enhanced fibrosis,
making it a novel therapeutic target for cardiac fibrosis
(137). Another research indicated that miR-27a-, miR-28a-,
miR-34a-enriched fibroblast-derived exosomes could regulate
cardiomyocyte antioxidant enzymes, thus contributing to cardiac
hypertrophy (117). Therefore, exosomes derived from fibroblasts,
especially those changing miRNAs contents, are a promising
target for cardiac fibrosis.

Furthermore, exosomes derived from cardiomyocytes also
exert therapeutic effects in cardiac fibrosis. Exosomes that
contain high levels of miR-29b and miR-455 can downregulate
MMP-9, thus reducing matrix degradation and mitigating
fibrosis and myocyte uncoupling (122). MiR-378 secreted by
cardiomyocytes mediated cardiac fibrosis via targeting the p38
MAPK-Smad2/3 signaling pathway and then regulating collagen
and MMP expression in CFs (123). However, cardiomyocyte-
derived miR-217- and miR-208-containing exosomes resulted
in cardiac dysfunction and worsened cardiac fibrosis via
targeting phosphatase and tensin homolog (PTEN) and dual-
specificity tyrosine phosphorylation-regulated kinase 2 (Dyrk2)
separately (124, 147). Evidence indicated that miR-142-3p-
enriched exosomes derived from activated CD4+ T cells
contributed to the activation of WNT signaling pathway and
CF activation, making it a promising target for treating cardiac
fibrosis post-MI (138).

Cell therapy, including different types of stem cells, has
been widely considered as a therapeutic approach for the
treatment of cardiac fibrosis. Placenta-derived MSCs decreased
the expression of TGF-β and reduced fibrosis in cardiac muscles
via transferring exosomal miR-29c (130). MiR-92a from CDC-
derived exosomes can be enriched via the activation of β-catenin
and contribute to attenuation of cardiac fibrosis and improved
cardiac function (131).

Proteins
Functional proteins, as the vital contents of exosomes, also
exhibit an ability in regulating cardiac remodeling and cardiac
fibrosis. It is generally considered that heat shock response
is a cellular intrinsic defense mechanism (148) and that the
increased expression of HSPs is beneficial for cells or tissues to
fight against stress stimuli and pathological conditions (149).
The overexpression of HSP20 in cardiomyocytes contributes
to the secretion of exosomes via interaction with TSG101 and
leads to the elevation of HSP20 in exosomes, which remarkably
improved cardiac function and attenuated adverse remodeling
(139). However, myocyte-derived HSP90 exerted a profibrotic
role through orchestrating the synthesis of IL-6 and activating
STAT-3 in fibroblasts, leading to excess collagen secretion and
deposition, thus exaggerating cardiac hypertrophy and fibrosis
(140). Emerging evidence indicated that proteins of WNT family
are involved in the activation of cardiac fibrotic pathologies
(150–152). Działo et al. confirmed that WNT3a-rich exosomes
could specifically activateWNT/β-catenin signaling pathway and
promoted fibrogenesis in post-infarcted hearts, whereasWNT5a-
rich exosomes only activated non-canonical WNT pathways
and induced production of profibrotic IL-6 (145). Summarizing,
exosomes containing WNT proteins can regulate cardiac fibrosis
via canonical and non-canonical WNT pathways and provide
a novel strategy to treat cardiac fibrosis. The upregulated
decorin and downregulated periostin in cardiomyocyte-derived
exosomes had been confirmed to regulate cardiac fibrosis
through targeting Ang II. Additionally, upregulated human
antigen R (HuR) in macrophages significantly increased
inflammatory and profibrogenic responses in fibroblast and
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TABLE 2 | MiRNAs and proteins involved in exosomes for the treatment of cardiac fibrosis.

Name Level Derivation Disease Target gene/pathway Effects References

MiRNAs

MiR-21-3p Downregulation Cardiac fibroblasts Heart failure (HF) Orbin and SH3 domain-containing protein

2 (SORBS2)

PDZ and LIM domain 5 (PDLIM5)

Cardiac hypertrophy↓ (11)

MiR-27a,

MiR-28-3p,

MiR-34a

Upregulation Cardiac fibroblasts HF Nuclear factor erythroid 2-related factor 2

(Nrf2)

Oxidative stress↑

Cardiac remodeling↑

(117)

MiR-155 Upregulation Macrophages Uremic

cardiomyopathy

Forkhead transcription factors of the O

class (FoxO3a)

Cardiomyocyte pyroptosis↑

Cardiac hypertrophy and fibrosis↑

(118)

MiR-19a-3p Upregulation Endothelial cells MI MiR-19a-3p/Thrombospondin 1 Vascularization↑

Myocardial fibrosis↓

Left ventricular ejection fraction↑

(119)

MiR-133 Upregulation Endothelial cells Myocardial

fibrosis

Y box binding protein 1 (YBX-1) Angiogenesis↑ mesenchymal-endothelial

transition of cardiac fibroblast↑

(120)

MiR-10b-5p Upregulation Endothelial cells MI SMAD-specific E3 ubiquitin protein ligase

1 (Smurf1)

Histone deacetylase 4 (HDAC4)

Cardiac fibroblast activation↓ (121)

MiR-29b,

MiR-455

Upregulation Cardiomyocytes Diabetes Matrix metalloproteinase 9 (MMP-9) Fibrosis and myocyte uncoupling↓ (122)

MiR-378 Upregulation Cardiomyocytes Myocardial

fibrosis

Mitogen-activated protein kinase kinase 6

(MKK6)/P38 MAPK pathway

Fibrosis↓ (123)

MiR-208a Upregulation Cardiomyocytes Cardiac fibrosis Dual-specificity tyrosine

phosphorylation-regulated kinase 2 (Dyrk2)

Cardiac fibroblast↑

Myofibroblast differentiation↑

Cardiac fibrosis↑

(124)

MiR-19a Upregulation Mesenchymal stem

cells (MSCs)

MI Phosphatase and tensin homolog

(PTEN)/Akt pathway

Infarct size↓

Fibrosis↓

Cardiac function↑

(125)

MiR-210 Upregulation MSCs MI MiR-210/hypoxia-inducible factor-1 α

(HIF-1α)

Fibrosis↓

Angiogenesis↑

Apoptosis↓

(126)

MiR-22 Upregulation MSCs MI Methyl CpG binding protein 2 (Mecp2) Cardiac fibrosis↓

Anti-apoptosis↑

(127)

MiR-24 Upregulation Human umbilical MSCs MI MiR-24/Bim pathway Cardiac fibrosis↓

Cardiac function↑

(128)

MiR-26a Upregulation Satellite cells Uremic

cardiomyopathy

FBXO32/atrogin-1

TRIM63/MuRF1

Cardiac fibrosis lesions↓ (129)

MiR-29c Upregulation Placenta-derived MSCs Duchenne

muscular

dystrophy

TGF-β Fibrosis in the diaphragm and cardiac

muscles↓

Inflammation↓

Utrophin↑

(130)

MiR-92a Upregulation Cardiosphere-derived

cells (CDCs)

MI Bone morphogenetic protein 2 (BMP2) Contractility↑

Fibrosis↓

(131)

(Continued)
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TABLE 2 | Continued

Name Level Derivation Disease Target gene/pathway Effects References

MiR-126 Upregulation Adipose-derived stem

cells (ADSCs)

MI – Cardiac fibrosis↓

Inflammation↓

Apoptosis↓

Angiogenesis↑

(132)

MiR-133a Upregulation Cardiac progenitor cells

(CPCs)

MI Bim

Bmf

bFgf

Vegf

Apoptosis↓

Fibrosis↓

Hypertrophy↓

(133)

MiR-146a-5p Upregulation CPCs Doxorubicin/

trastuzumab-

induced cardiac

toxicity

Traf6

Smad4

Irak1

Nox4

Mpo

Myocardial fibrosis↓

CD68+ inflammatory cell infiltrates↓

Inducible nitric oxide synthase

expression↓

Left ventricular dysfunction↓

(134)

MiR-146a Upregulation ADSCs MI Early growth response factor 1

(EGR1)/TLR4/NFkB

Apoptosis↓

Inflammatory response↓

Fibrosis↓

(135)

MiR-425,

MiR-744

Downregulation Plasma HF TGF-β1 Collagen formation↑

Fibrogenesis↑

(136)

MiR-21 Upregulation Human peripheral

blood

MI Smad7

PTEN

MMP-2

Fibrosis↑ (137)

MiR-142-3p Upregulation CD4+ T cells MI WNT pathway Cardiac fibrosis↑

Dysfunction↑

(138)

Proteins

HSP20 Upregulation Cardiomyocytes Diabetic

cardiomyopathy

Phosphorylated Akt

Survivin

SOD1

Cell death↓

Cardiac adverse remodeling↓

(139)

HSP90 Downregulation Cardiomyocytes Cardiac

hypertrophy

STAT3 Collagen synthesis↓ (140)

Decorin

Periostin

Upregulation

Downregulation

Cardiomyocytes Cardiac fibrosis Ang II Transformation into myofibroblast↓

Fibroblast migration↓

(141)

HSP70 Upregulation Serum Aging-related

cardiac fibrosis

– Fibroblast proliferation↓

Myofibroblast differentiation↓

(142)

Lamp2b

Ischemic

myocardium-

targeting peptide

CSTSMLKAC

(IMTP)

Upregulation MSCs MI –
Inflammation↓

Apoptosis↓

Fibrosis↓

Vasculogenesis↑

Cardiac function↑

(143)

Human antigen

R (HuR)

Upregulation Macrophages Cardiac fibrosis Ang II Inflammatory and profibrogenic

responses↑

Cardiac fibrosis↑

(144)

WNT3a

WNT5a

Overexpression Cardiac fibroblasts Cardiac fibrosis WNT pathways Cardiac fibroblast activated↑

Cardiac fibrosis↑

(145)

↑means the corresponding MiRNA or protein has a positive effect on the process, or could increase the number/area of the subject; ↓means the corresponding MiRNA or protein has a negative effect on the process, or could decrease

the number/area of the subject.
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cardiac fibrosis, suggesting that HuR might be targeted to
alleviate macrophage dysfunction and pathological fibrosis (144).

Exosomes Act as Biomarkers in Cardiac
Fibrosis
Recently, researches have been devoted to using miRNAs or
other molecules in serum or plasma as diagnostic or prognostic
biomarkers in cardiovascular diseases. Exosomes, as the carrier
of those molecular constituents, are highly associated with
concurrent physiological or pathological condition. It has been
shown that the level of plasma exosomal miR-425 and miR-
744 was decreased while the level of miR-21 was increased
during the development of heart failure, whichmakes them novel
biomarkers for heart failure and represent the conditions of
the CF (136). In addition, surface HSP70 expression in serum
exosomes was obviously decreased during senescence in the
model of cardiac fibrosis, while HSP70 overexpression attenuated
these effects, making it a new biomarker in aging-related cardiac
fibrosis (142). Therefore, exosomes may act as a promising
diagnostic biomarker in cardiac fibrosis.

CONCLUSION

Cardiac fibrosis, a common pathophysiologic event in most
heart disease, can lead to poor tissue compliance, hardening of
myocardium, and worsening of cardiac dysfunction. CFs, a major
cell type of adult myocardium, play a vital role in the process
of cardiac fibrosis. MCs, macrophages/monocytes, endothelial

cells, and cardiomyocytes, in addition to CFs, also have a role
in the fibrotic response through fibrogenic growth factors, the
aldosterone/angiotensin axis, or inflammatory signals. Thus,
cardiac fibrosis is a complex process involving multiple cells
and regulated by multiple molecular pathways. Based on
this, exosomes derived from various cell types are rich in
a variety of miRNAs and proteins and could participate in
intercellular communication to mediate cardiac fibrosis process,
thus providing a novel strategy for the prediction and treatment
of cardiac fibrosis.
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