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    Abstract     Proteases are enzymes that have the capacity to hydrolyze peptide bonds 
and degrade other proteins. Proteases can promote infl ammation by regulating 
expression and activity of different pro-infl ammatory cytokines, chemokines and 
other immune components in the lung compartment. They are categorized in three 
major subcategories: serine proteases, metalloproteases and cysteine proteases 
especially in case of lung diseases. Neutrophil-derived serine proteases (NSPs), 
metalloproteases and some mast cell-derived proteases are mainly focused here. 
Their modes of actions are different in different diseases for e.g. NE induces the 
release of IL-8 from lung epithelial cells through a MyD88/IRAK/TRAF-6-
dependent pathway and also through EGFR MAPK pathway. NSPs contribute to 
immune regulation during infl ammation through the cleavage and activation of spe-
cifi c cellular receptors. MMPs can also infl uence the progression of various infl am-
matory processes and there are many non-matrix substrates for MMPs, such as 
chemokines, growth factors and receptors. During lung infl ammation interplay 
between NE and MMP is an important signifi cant phenomenon. They have been 
evaluated as therapeutic targets in several infl ammatory lung diseases. Here we 
review the role of proteases in various lung infl ammatory diseases with emphasis on 
their mode of action and contribution to immune regulation during infl ammation.  
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1         Introduction 

 Numerous environmental pathogens, particulate matters, allergens and harmless 
antigens are present in the air we breathe. Although airways are the main port of 
entry for pathogens and allergens during inhalation of the inspired air (10,000 L per 
day in humans) [ 1 ], the lung is one of the most challenged organs of the body. For 
this reason, air-breathing animals have developed several defense mechanisms in 
this compartment [ 2 ,  3 ]. 

 Infl ammation, a host defense mechanism, is an immediate response of the body 
to tissue injury caused by harmful stimuli, such as pathogens, damaged cells or 
chemicals [ 4 ]. Lung infl ammation is a broad term which covers various acute and 
chronic infl ammatory diseases such as Acute Lung Injury (ALI), Acute Respiratory 
Distress Syndrome (ARDS), Emphysema, Airway hyper-reactivity (AHR) or 
Asthma, Allergic Asthma or Chronic eosinophilic infl ammation, Chronic 
Obstructive Pulmonary Disease (COPD), Fibrotic lung disease, Pulmonary edema, 
Tuberculosis, Pneumococcal infection etc. This complex and dynamic process is 
characterized by an innate immune response, which involves a coordinated expres-
sion of infl ammatory cytokines and implication of various cell types particularly 
immune cells aimed at clearing the pathogenic agent, damaged cells etc. [ 5 ]. 
Modulation of expression and activity of these infl ammatory cytokines and other 
immune components are regulated by various proteases in the lung compartment. 
Here we present the information relative to some relevant proteases which have 
roles in different infl ammatory lung diseases. 

 Proteases are enzymes that have the ability to hydrolyze peptide bonds and 
degrade other proteins. According to the active groups of their catalytic center they 
are categorized and in case of lung disease, basically three major protease group 
serine proteases, cysteine proteases, and the matrix metalloproteases (MMPs) are 
studied [ 6 ]. There is another group the ADAM (a disintegrin and metalloprotease) 
family of proteases, which has an emerging role in mucin production and cytokine 
processing [ 7 ]. A number of studies have elucidated the role of proteases in human 
diseases such as cancer, thrombotic and infl ammatory disorders [ 8 ,  9 ]. Various 
infl ammatory cells, such as neutrophils, mast cells, macrophages, and lymphocytes 
are the major source of proteases within the lung [ 10 – 12 ]. Other cells, including 
epithelial, endothelial, and fi broblasts, also synthesize proteases [ 13 ,  14 ]. Serine 
proteases, including Neutrophil Elastase (NE), Cathepsin G (CG), and Proteinase 3 
(PR 3), are packaged in primary granules within neutrophils [ 15 ]. Some of the 
metalloproteases, MMP-8 and MMP-9, are also packaged into specifi c and gelatin-
ase granules, respectively, in the neutrophil [ 16 ].  

2     Proteases in Lung and Their Mode of Action 

 In the lung, proteases function either intracellularly or extracellularly after cellular 
activation. Proteases that may be present in the respiratory tract and activate PARs 
include the endogenous enzymes mast cell tryptase (activates PAR2), trypsin 
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(PAR1, PAR2 and PAR4), chymase (PAR1) and cathepsin G (PAR4), as well as 
exogenous enzymes such as Der p1 (PAR2) that are inhaled. However, these and 
other enzymes within the respiratory tract may also inactivate or disarm various 
PARs by cleaving them at other sites that remove the tethered ligand sequence [ 17 ]. 
Proteases have crucial role in chemotaxis of all of the various infl ammatory cell 
types to the lung. MMP-9 and serine proteases increase eosinophil chemotaxis, and 
MMP-12 is responsible for eosinophil and macrophage accumulation [ 18 ,  19 ]. 
However, maximum work has focused on neutrophil chemoattraction to the lung by 
interleukin 8 (IL-8) and leukotriene B4 to study the effect of proteases on cell 
migration in infl ammatory lung diseases.  

3     Serine Proteases 

3.1     Neutrophil-Derived Serine Proteases (NSPs) 

 Neutrophils are essential for host defense against invading pathogens. They are the 
fi rst infl ammatory cell lines to enter tissue during infl ammation [ 20 ]. They engulf 
and degrade microorganisms using an array of weapons that include reactive oxy-
gen species, antimicrobial peptides, and proteases such as Cathepsin G, Neutrophil 
Elastase and Proteinase 3. After release, these proteases also contribute to the extra-
cellular killing of microorganisms, and regulate non-infectious infl ammatory pro-
cesses by activating specifi c receptors and modulating the levels of cytokines [ 21 ]. 
In addition to their involvement in pathogen destruction and the regulation of proin-
fl ammatory processes, NSPs are also involved in a variety of infl ammatory human 
conditions, including chronic lung diseases (chronic obstructive pulmonary disease, 
cystic fi brosis, acute lung injury, and acute respiratory distress syndrome) [ 22 – 25 ]. 
In these disorders, accumulation and activation of neutrophils in the airways result 
in excessive secretion of active NSPs, thus causing lung matrix destruction and 
infl ammation.  

3.2     Neutrophil Elastase (NE) 

 NE is a serine-protease of the chymotrypsin family stored in primary (azurophilic) 
granules of PMNs along with proteinase-3 and cathepsin G, two other neutrophil 
serine-proteases. Intracellular stored NE comes in action when azurophilic granules 
are incorporated to the phagosome [ 26 ]. However,  in vitro  stimulation of PMNs 
with physiological relevant pro-infl ammatory stimuli induces either transfer of NE 
to the plasma membrane (membrane-bound NE associated to by proteoglycans) 
[ 27 ,  28 ], or a secretion in the extracellular space specially in case of pulmonary 
chronic (CF and COPD) [ 29 ,  30 ] or acute lung injury [ 22 ], where high effl ux of 
PMNs in the alveolar space increase the release of NE from necrotic PMNs. 
Functions of NE are not only concerned with degrading bacteria [ 31 – 33 ] and 
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extracellular matrix molecules, they also operate on various bioactive molecules 
including chemokines, cytokines, growth factors and cell surface receptors [ 34 – 36 ], 
thus the “deleterious” concept of NE has changed towards a multifunctional mole-
cule able to regulate infl ammatory process and immune responses. Indeed, extracel-
lular NE (free, chromatin-bound or membrane-bound) participates in: (1) direct 
killing of bacteria [ 31 – 33 ]; (2) processing and release of chemokines, cytokines and 
growth factors [ 34 ,  35 ], (3) modulation of immune cell activity through interaction 
with cell surface receptors [ 36 ,  37 ], (4) mucus secretion [ 38 ]. 

 Proteases can also modulate cytokine activity and release from immune cells 
through mechanisms independent of cytokine receptors. For example, it has been 
shown that NE induces the release of IL-8 from lung epithelial cells [ 39 – 42 ] through 
a MyD88/IRAK/TRAF-6-dependent pathway [ 42 ] that also involves TLR4 [ 39 ] and 
also through EGFR MAPK pathway (Fig.  1 ) [ 43 ]. How NE activates TLR4 is 
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  Fig. 1    Mechanism of neutrophil elastase (NE) induced-release of IL-8 from lung epithelial cells. 
Following its release from the azurophilic granules in response to pathogenic/pathologic insult, NE 
activates TNFa converting enzyme (TACE), which in turn cleaves proTGFa (pro-transforming growth 
factor a) to generate soluble TGFa as a ligand for the epidermal growth factor receptor (EGFR). 
EGFR co-localizes with toll-like receptor-4 (TLR4) and a signal transduction cascade is initiated via 
myeloid differentiation factor 88 (MyD88 or Mal), IL-1 receptor-associated kinases (IRAKs), tumor 
necrosis factor receptor-associated factor 6 (TRAF6), transforming growth factor-beta- activated 
kinase 1 (TAK1) and the IkB kinases (IKKs), leading to a degradation of inhibitor of NF-kB (IkB) 
proteins, activation of nuclear factor-kB (NF-kB) and increased IL-8 gene transcription       
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unknown but liberation of proteolytic fragments from host targets able to recognize 
PRR could be possible as described for TLR2 [ 44 ]. Serine proteases such as NE can 
induce IL-8 expression by bronchial epithelial cells (Fig.  1 ) and leukotriene B4 
expression by macrophages [ 42 ,  45 ]. NE appears to be the most important regula-
tory factor present in the cystic fi brosis (CF) lung responsible for IL-8 expression 
because inhibition of NE activity in CF bronchoalveolar lavage fl uid (BALF) almost 
completely blocks IL-8 message in bronchial epithelium [ 40 ]. It has been shown 
that NE generally act at least in part via an IL-1 receptor-associated kinase-1/
myeloid differentiation factor-88/nuclear factor-κB-dependent pathway in bron-
chial epithelial cells; this can be inhibited by a dominant negative variant of myeloid 
differentiation factor-88 [ 42 ]. This gives new therapeutic approaches targeted at 
inhibiting the NE-activated intracellular pathways rather than NE itself. It is quite 
clear that expression of IL-8 and leukotriene B4 are responsible for neutrophil 
migration to the lung, and given the high neutrophil and NE burden present in the 
CF lung this has lead to the “vicious cycle” hypothesis whereby NE is the main 
player behind IL-8 production and neutrophil infl ux into the CF lung. From further 
experiments it has been found that an initial infl ammatory event can stimulate fur-
ther infl ammation i.e., epithelial cell injury in mice leads to secretion of the murine 
homolog of IL-8, which in turn binds to an adhesive component of the extracellular 
matrix, syndecan-1 [ 46 ]. MMP-7 cleaves this syndecan-1-murine IL-8 complex and 
this is crucial for attracting neutrophils to the damaged epithelial surface (Fig.  2 ).

3.3         Proteinase-3 (PR-3) 

 Proteinase-3 (PR-3) is a serine protease that cleaves TNF into membrane-associated 
TNF and soluble TNF form [ 47 ]. It has been hypothesized that PR-3-mediated TNF 
processing may be an important mechanism in infl ammatory lung diseases [ 48 ]. 
PR-3 is able to degrade extracellular matrix, and its potential involvement in pulmo-
nary infl ammatory disease has been demonstrated by the induction of emphysema 
in hamsters following intratracheal instillation [ 49 ]. PR-3 is also enhanced in the 
sputum of cystic fi brosis patients, and correlates with disease severity [ 50 ]. The 
main sources of PR-3 are neutrophils and it has been hypothesized that there would 
be an increased contribution of PR-3 to TNF processing in diseases with abundant 
alveolar neutrophils such as usual interstitial pneumonia (UIP) [ 48 ]. 

 NSPs contribute to immune regulation also through the cleavage and activation 
of specifi c cellular receptors. NE, PR3, and CG can process the N-terminal extracel-
lular domains of protease-activated receptors (PARs), which are a subfamily of 
related G-protein-coupled receptors [ 51 ,  52 ]. These receptors are ubiquitously 
expressed in various tissues and cells and, more especially, in platelets and endothe-
lial cells. Processing of PAR extracellular domains occurs through exposure of a 
tethered ligand that allows the auto-activation of the receptor and subsequent activa-
tion of an intracellular signaling cascade via phospholipase C [ 51 ,  52 ]. Four PARs 
have been identifi ed so far; three of them, PAR-1, PAR-3, and PAR-4, can be acti-
vated by thrombin. Apart from thrombin, CG released from activated neutrophils 
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can also activate PAR-4 at the surface of platelets and initiate their aggregation [ 53 ]. 
All three NSPs cleave PAR-1, which impairs their activation by thrombin [ 54 ]. 
Serine proteases cleave the amino acids at a specifi c site of the extracellular 
N-terminus of the molecule to expose a new N-terminal ligand domain that binds to 
another site on the same molecule, thereby activating the receptor. The amino acid 
sequence of each cleavage site is specifi c for the particular PAR, and mAb(monoclonal 
Antibody) assays for the protein and PCR assays for mRNA are available [ 55 ]. 
Activation of PAR2 results in the production and secretion of IL-8 and chemokine 
(C-Cmotif) ligand 2 [ 56 ,  57 ].  

3.4     Human Airway Trypsin-Like Protease (HAT) 

 HAT belongs to the family of Type II Transmembrane Serine Proteases (TTSP) 
[ 58 ]. Members of this family present a short intracellular domain connected to a 
single-pass transmembrane domain followed by a large extracellular domain con-
taining a highly variable stem region and a C-terminal serine-protease domain of the 
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  Fig. 2    Interaction of NE and MMPs during infl ammatory responses in the respiratory tract. 
Neutrophil Elastase (NE) induces interleukin-8 (IL-8) synthesis, resulting in chemoattraction of 
neutrophils to the respiratory tract. MT1-matrix metalloprotease (MMP) 14 processes IL-8 and 
monocyte chemoattractant protein 1 (MCP-1), and MMP-7 cleaves the syndecan-1-IL-8 complex 
to generate active IL-8, which in turn acts as a neutrophil chemoattractant. MMP-12 released from 
macrophages also helps in chemoattraction of different infl ammatory cell       
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chymotrypsin (S1) fold [ 58 ]. It is preferentially expressed in human bronchial and 
tracheal respiratory tract [ 59 ,  60 ], particularly in ciliated cells [ 61 ]. A soluble form 
after proteolytic cleavage is also found in the sputum of patients with chronic air-
ways diseases [ 59 ]. Concerning the lung compartment,  in vitro  experiments have 
revealed various HAT activity such as: (1) fi brinogenolytic activity in lung airway 
anticoagulation processes [ 62 ]; (2) proteolytic inactivation of urokinase-type plas-
minogen activator receptor (uPAR) in lung epithelial cells [ 63 ]; (3) proteolytic acti-
vation of the hemagglutinin antigen of infl uenza virus leading to multicycle 
replication and propagation of infl uenza virus  in vitro  [ 64 ,  65 ]; (4) stimulation of 
lung fi broblast proliferation through a PAR-2-dependent MEK-MAPK mediated 
pathway [ 66 ]; (5) increase of intracellular Ca 2+  concentration in bronchial cells 
through PAR-2-dependent mechanisms [ 67 ].   

4     Metalloproteases 

4.1     Matrix Metalloproteinases (MMPs) 

 Matrix metalloproteinases (MMPs) are zinc-dependent neutral endopeptidases that 
form a family of extracellular matrix proteolytic enzymes. They are primarily 
responsible for the degradation of extracellular matrix components during the 
remodeling processes essential for normal tissue growth and repair. In the lung, 
inappropriate expression and excessive activity of several MMPs, including MMP- 
12, have been implicated in the tissue-destructive processes associated with chronic 
lung diseases, including COPD and asthma [ 68 – 73 ]. It is well established that 
MMP-12 has defi nite role in the pathogenesis of COPD [ 74 ]. Patients suffering 
from COPD have increased secretion and activity of MMPs, especially MMP-2 and 
MMP-9, been identifi ed in infl ammatory cells and tissues isolated from those 
patients [ 75 ]. In our previous study, we found increased expression of MMP-2 in 
case of cadmium induced lung infl ammation in mice model [ 76 ]. Kundu  et al.  
(2009) performed SDS-PAGE and gelatine zymography to fi nd out the expression 
of MMP-2 from lung cell extracts at different time points after the induction of 
cadmium chloride and found there was increased expression of MMP-2 even after 
use of ibuprofen, a non-steroidal anti-infl ammatory drug (Fig.  3 ). Expression and 
activities of MMP-2 and MMP-9 are increased in case of Infl uenza virus infection 
both  in vivo  and  in vitro . It has been demonstrated that H3N2 virus infection induces 
expression of MMP-2 and MMP-9 in murine lungs  in vivo  and alveolar epithelial 
cells  in vitro  [ 77 ]. Gelatinases (including MMP-2 and MMP-9) are zinc-dependent 
endopeptidases, degrade major components of the basement membrane such as 
gelatin and collagen IV, and exert deleterious effects on the epithelium and endothe-
lium in the thin alveolar-capillary barrier [ 78 ].

   A number of studies reveal that MMPs can also infl uence the progression of vari-
ous infl ammatory processes and there are many non-matrix substrates for MMPs, 
such as chemokines, growth factors and receptors [ 79 ]. MMP-14 is a protease who 
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does the processing of IL-8 by removing a pentapeptide from the N-terminus of the 
protein, resulting in a more biologically active form. MMP-9 also process IL-8 to a 
form 20-fold more active as a chemoattractant [ 80 ,  81 ]. They process monocyte 
chemoattractant proteins (MCPs) to produce antagonists of chemokine receptors, 
indicating a role for MMP-14 in dampening infl ammation [ 82 ]. Another potent pro- 
infl ammatory cytokine IL-1β that requires proteolytic processing before activation 
not only by caspase-1 but also several MMPs, including MMP-2, MMP-3 and MMP-
9. Interestingly, MMP-3 can degrade the mature IL-1beta cytokine, suggesting 
potentially dual roles for MMPs in either stimulating or inhibiting IL-1beta effects 
[ 83 ]. The mechanism by which MMPs control infl ammation is the regulation of 
chemokine gradients and that includes both the immobilization of chemokines to the 
components of extracellular matrix and the generation of chemotactic concentration 
gradients which provide indications for leukocyte migration. Thus, MMPs can indi-
rectly control infl ux of infl ammatory cells by cleaving proteins in the pericellular 
environment that bind chemokines. One well established example of this mechanism 
is MMP7-dependent shedding of syndecan-1 in acute lung injury [ 46 ]. In response 
to lung injury, both CXCL1 (KC) and MMP7 are induced, and MMP7 sheds syn-
decan-1, a ubiquitous heparan sulfate proteoglycan, that releases the CXCL1-
syndecan-1 complex to generate a chemokine gradient. MMP7-null mice that lack 
this shedding are unable to create a CXCL1 gradient, and thus, neutrophils fail to 
effl ux into the alveolar space and instead remain in the perivascular space [ 84 ]. 

 There is also interplay between NE and MMPs in infl ammation. NE activates 
MMP-9 directly and indirectly by inactivating TIMP-1, the naturally occurring 
inhibitor of MMP-9 [ 85 ,  86 ]. Furthermore, NE may activate MMP-2 through a 
mechanism that requires MMP-14 expression [ 87 ]. Therefore, a variety of proteases 
liberated from neutrophils or actively expressed on epithelial cells may interact with 
each other, thereby perpetuating a cycle of infl ammation. If we consider CF lung, 
there is high concentration of NE due to the increased neutrophil burden present in 
the CF lung and surplus the levels of MMP-14-processed monocyte chemoattractant 
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  Fig. 3    Increased expression of MMP-2 in cadmium induced lung infl ammation by SDS-PAGE and 
Gelatin zymography. Detection of matrix metalloproteinase-2 (MMP-2) expression at different time 
points after the induction of Cadmium chloride (5 mg/kg body weight). Lung cell extracts were pre-
pared at days of 15, 30, 45 and 60 from normal (N), Cadmium treated and Cadmium plus Ibuprofen 
treated (three individual animals per dose) mice. The zymography was developed and stained. The 
picture shows increased expression of MMP-2(72 kDa), which was not inhibited by Ibuprofen. Gel 
is representative of three comparable experiments indicate p < 0.05 with respect to the control       
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protein antagonists. This is supported by evidence showing signifi cant IL-8 levels 
present in CF bronchoalveolar lavage fl uid [ 40 ].  

4.2     ADAM (A Disintegrin and Metalloprotease) 

 ADAMs are a family of type I transmembrane proteins belonging to the adamalysin 
subfamily of metalloproteinases [ 88 ]. Members of this family present a metallopro-
tease domain and a domain of interaction with integrin (disintegrin domain) [ 89 ], 
indicating that ADAMs are both proteases and adhesion molecules. At least 40 
ADAMs has been described so far, 25 of which are expressed in humans [ 90 ,  91 ]. 
ADAMs family has been implicated in the control of membrane fusion, cytokine 
and growth factor shedding, and cell migration, as well as processes such as muscle 
development, fertilization, and cell fate determination. 

 Pathologies such as infl ammation and cancer also involve ADAMs family mem-
bers. ADAMs has been related to lung pathological processes such as cancer [ 90 ], 
asthma [ 92 ,  93 ] and idiopathic pulmonary fi brosis [ 94 ]. ADAMs can also modulate 
cell responses to various signals by acting as cell surface sheddase on membrane 
associated cytokines, apoptosis ligands, growth factors and receptors. In particular, 
sheddase activity has important physiological consequences. One of the most docu-
mented example is through the production of active tumor necrosis factor-α (TNF- 
α), a potent inducer of innate infl ammatory responses. TNF-α is a homotrimeric 
transmembrane protein of 26 kDa able to induce infl ammatory and cytotoxic effects 
after cell-to-cell contact [ 95 ]. ADAM-17 (also known as TNF-α convertase enzyme 
or TACE) cleaves transmembrane TNF-α to release the 17 kDa active soluble form 
of TNF-α [ 96 ]. Importantly, ADAMs are also implicated in the shedding of most of 
the EGFR ligands (EGF, transforming growth factor (TGF)-a, heparin binding 
(HB)-EGF, betacellulin, epiregulin and amphiregulin (AR)) [ 89 ]. It has been 
reported that Adam17 knock-out mice presented developmental defects resembling 
those in animals lacking TGF-a, HB-EGF, AR, or the EGFR [ 97 – 99 ]. In addition, 
sheddase activity on EGFR ligands has important physiological consequences for 
mucus production. Recently, it has been confi rmed that endothelial ADAM10 and 
ADAM17 are both required for microvascular permeability [ 100 ]. To investigate 
this phenomenon Dreymueller  et al.  (2012) did LPS treatment on HMVEC-L 
(Human Microvascular Endothelial Cells) and found there is release of soluble 
JAM-A by LPS-challenged HMVEC-L. Release of soluble JAM-A was 1.3-fold 
enhanced by 4 h of LPS stimulation, further increasing to 2.3-fold by stimulation for 
24 h and was completely inhibited by GW280264X-treatment, capable of blocking 
tumor necrosis factor-alpha-converting enzyme (TACE) and the closely related 
disintegrin- like metalloproteinase 10 (ADAM10). The knockdown of ADAM10 or 
ADAM17 by shRNA indicated the involvement of ADAM17 and to a lesser extent 
of ADAM10 in JAM-A release. They further examined whether ADAM10/17 activ-
ity might infl uence transendothelial migration of neutrophils. The inhibitor 
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GW280264X reduced transmigration in response to the neutrophil-attracting cyto-
kine IL-8 by 70 %. Silencing or knock-out of either ADAM10 or ADAM17 alone 
was suffi cient to abrogate transmigration in response to IL-8. Thus, endothelial 
ADAM10 and ADAM17 are both required for microvascular permeability and for 
IL-8-mediated transmigration of neutrophils  in vitro .  

4.3     TACE (TNF-α Converting Enzyme) 

 It has been reported that TACE mediates a critical step in the development of post- 
transplantation lung injury [ 101 ]. Goto  et al.  (2004) evaluated the role of TACE in 
acute infl ammation using an inhibitor of the enzyme in a rat model of lung trans-
plantation. Inhibition of this protease results decreased neutrophil accumulation in 
the alveolar space and other histological changes such as intercellular adhesion 
molecule-1 (ICAM-1) expression. In addition, signifi cantly lower levels of mono-
cyte chemotactic protein-1 (MCP-1), cytokine induced neutrophil chemoattractant-
 1 (CINC-1), high mobility group box-1 (HMGB1), and soluble epithelial cadherin 
and decreased neutrophil elastase activity were observed in bronchoalveolar lavage 
fl uid from the rats treated with the inhibitor.   

5     Mast Cell-Derived Proteases 

 Proteases are the most abundant class of proteins produced by mast cells. Many of 
these are stored in membrane-enclosed intracellular granules until liberated by 
degranulating stimuli, which include cross-linking of high affi nity IgE receptor F(c)
εRI by IgE bound to multivalent allergen [ 102 ]. It has been investigated that 
b- tryptase, a major protease released during mast cell activation, cleaves IgE and this 
tryptase-mediated IgE cleavage affects IgE binding to allergens [ 103 ]. From their 
study, IgE degradation products were detected in tryptase-containing tissue fl uids 
collected from sites of allergic infl ammation [ 103 ] and it has been confi rmed that 
tryptase cleaves IgE and abolishes binding of IgE to allergens and F(c)εRI. It is a 
natural mechanism for controlling allergic reactions is supported by experiments per-
formed with purifi ed proteins, as well as by cellular  in vitro  and  in vivo  data [ 103 ]. 

 The lung epithelial cells could be activated by airborne proteases from molds, 
mites, or pollens. Activation of other cells in the airway by various endogenous and 
exogenous proteases that increase production of IgE antibody and enhance infi ltra-
tion of eosinophils, basophils, neutrophils, monocytes, and lymphocytes. Apart from 
that, smooth muscle contraction is enhanced, nerves are made more reactive, and 
airway responsiveness is increased [ 104 ]. Eosinophils and mast cells are degranu-
lated and stimulated to produce infl ammatory molecules, such as nitric oxide, major 
basic protein, leukotrienes, histamine, and mast cell tryptase itself. Mast cell tryptase 
is likely to be especially important in the late phase of the allergic response [ 105 ].  
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6     Proteases Involvement in Disease Progression 

6.1     Chronic Obstructive Pulmonary Disease (COPD) 
and Pulmonary Emphysema 

 Chronic obstructive pulmonary disease (COPD) represents a group of diseases, 
including chronic bronchitis and emphysema, which are characterized by an airfl ow 
limitation that is not fully reversible [ 106 ]. The pathogenic roles of NSPs in COPD 
are attributed to their ability to break down connective tissue components and gen-
erate proinfl ammatory peptides from these components [ 107 ,  108 ], to induce mucus 
secretion by submucosal glandular cells and goblet cells, and to express proinfl am-
matory cytokines from airway epithelial cells [ 109 – 111 ]. Pulmonary emphysema is 
a destructive lesion of the lung parenchyma. It has been demonstrated that the lesion 
of the matrix which results in emphysema is the end-result of crosstalk between 
macrophage metalloelastase and neutrophil elastase [ 112 ,  113 ]. However, the latter 
protease is responsible for the greater portion of the fi nal proteolytic attack [ 112 ]. 

 We have already mentioned before the role of MMP-12 in the pathogenesis of 
COPD. The most well studied MMPs in human COPD and emphysema are MMP- 
1, MMP-8, MMP-9, and MMP-12, which all have been implicated in tissue destruc-
tion in human COPD and emphysema [ 114 ]. The lymphocytes present in 
emphysematous lungs have a strong Th1 bias, expressing higher levels of CXCL10 
(IP-10) and CXCL9 (MIG). This CXCL9 can upregulate the expression of MMP-12 
in pulmonary macrophages [ 115 ], providing a mechanism for chronic and progres-
sive destruction of lung parenchyma that is seen in emphysema.  

6.2     Interstitial Lung Disease and Idiopathic Pulmonary 
Fibrosis (IPF) 

 Idiopathic pulmonary fi brosis (IPF), one of the most common forms of interstitial 
lung diseases, is a progressive fi brotic lung condition of unknown etiology [ 116 ]. 
The diagnosis of IPF is made by surgical lung biopsy, and the histopathological 
features include the presence of patchy infl ammatory cells, foci of proliferating 
fi broblasts and myofi broblasts, and collagen deposition [ 117 ,  118 ]. From a study it 
has been observed that MMP-2 activity is increased in a dose-dependent manner in 
A549 cells treated for 48 h by TGF-β stimulation [ 119 ] because TGF-β plays a key 
role in stimulation of fi broblast proliferation and has been implicated in progression 
of IPF [ 120 ]. 

 It has been postulated that NE may be involved in the early stages of lung infl am-
mation during the development of pulmonary fi brosis [ 121 ]. Neutrophil elastase 
acts as a putative link between emphysema and fi brosis and this dual role of NE has 
been reported from a recent study that has highlighted NE as a common pathogenic 
mechanism linking pulmonary emphysema and fi brosis [ 122 ]. This study was done 
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in two animal models in which emphysema and fi brosis were induced either by 
bleomycin (BLM) or by chronic exposure to cigarette smoke. In order to study 
whether BLM-induced lesion is protease-dependent or not, a group of mice was 
treated with 4-(2-aminoethyl)-benzenesulfonyl fl uoride hydrochloride (a serine pro-
teinase inhibitor active against neutrophil elastase). In DBA/2 mice that develop 
both emphysema and fi brosis after chronic cigarette-smoke exposure, the presence 
of NE in alveolar structures is also associated with a positive immunohistochemical 
reaction of both TGF-β and TGF-α [ 123 ]. These results strongly suggest that neu-
trophil elastase may be a common pathogenic link between emphysema and fi bro-
sis, acting as a regulatory factor in the generation of soluble cytokines with mitogenic 
activity for mesenchymal cells resulting either in emphysema or in fi brosis or both 
[ 122 ]. A recent study has provided evidence that different interstitial levels of NE 
burden in emphysema may be associated with different routes of collagen clearance 
(intracellular vs. extracellular) and different degrees of remodeling of the ECM in 
emphysema [ 124 ]. This point merits further investigation. The implication of NE in 
lung destruction and repair and its pathogenic role in emphysema and fi brosis could 
lead to a novel approach for therapeutic interventions.  

6.3     Cystic Fibrosis (CF) 

 Cystic fi brosis (CF) is a common, inheritable genetic disorder that results in mal-
functioning of the chloride channels of many exocrine epithelial linings including 
the airway epithelia [ 125 ]. The exact mechanism or pathophysiology of progressive 
lung infl ammation in patients with CF is not clear, but patients with CF have 
increased levels of MMP-2, MMP-8, and MMP-9 in their BAL [ 126 ]. In a study of 
23 children with CF, BAL fl uid concentrations of MMP8 and MMP9 were higher in 
untreated children and lower in those who were treated with DNase [ 127 ]. In chil-
dren with stable CF, there is a signifi cant inverse relationship between MMP-9 and 
lung function, as measured by FEV1. Furthermore, levels of MMP-9 are higher in 
sputum of asymptomatic children with CF compared with controls, suggesting that 
MMP-9 and total neutrophil count may be useful markers of airway injury and air-
fl ow obstruction in persons with CF [ 126 ]. As discussed in Sect.  7 , MMPs play a 
critical role in the host defense against pathogens in the lung. 

 Neutrophils express three closely related serine proteases, NE, CG and PR3, in a 
coordinated fashion. It has been reported that IL-6 is susceptible to cleavage by all 
three proteases [ 128 ] but now a days, degradation of SIL-6R in a time and dose 
dependent manner has also been proved in the context of cystic fi brosis [ 129 ]. It has 
been studied that on the basis of molar concentration, among these proteases, CG is 
the most potent protease with maximal degradation occurring within 60 min at a 
concentration of 250 nM. NE also shows potent activity at 250 nM but required up 
to 4 h for complete degradation of sIL-6R to occur. PR3 was the least active prote-
ase with minimal degradation of sIL-6R occurring in the presence of 1,000 nM 
protease after 1 h and complete degradation being observed after 4 h in the presence 
of 500 nM of protease. If we consider CF lung, unregulated proteolytic activity is 
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the main contributor to pathology of this disease and is also responsible for reduced 
expression and activity of a number of important components of the immune 
response [ 130 ]. Targeting of IL-6 by NSPs [ 128 ] has previously been suggested as 
an explanation for the surprisingly low pulmonary expression of IL-6 in CF patients 
[ 131 ] however, this is the fi rst study to show specifi c proteolysis of this cytokine by 
serine proteases in CF BALF [ 129 ].  

6.4     Acute Lung Injury (ALI) and Acute Respiratory Distress 
Syndrome (ARDS) 

 These are infl ammatory disorders of the lung most commonly caused by trauma, 
sepsis, and pneumonia, the latter two being responsible for approximately 60 % of 
cases [ 132 ]. Early in the initiation of ALI and ARDS, massive number of neutrophils 
accumulates in the vasculature of the lung. Neutrophils and their cytotoxic products, 
including oxidants and proteases, have main pathological importance in ALI and 
ARDS. It has been observed that there is increased elastolytic activity [ 133 ] in 
patients with ARDS [ 134 ]. Increased levels of HNE in plasma and in BAL have also 
been observed with at-risk patients who later developed ALI [ 135 ,  136 ]. Pathologic 
effects of HNE are associated with microvascular injury, causing endothelial damage, 
increased capillary permeability, and interstitial edema. HNE may also potentiate the 
infl ammatory response by increasing the expression and release of cytokines [ 137 ] 
and by increasing mucin production [ 138 ]. In experimental animal models, intratra-
cheal administration of exogenous HNE induces lung hemorrhage and ALI, whereas 
administration of pharmacological HNE inhibitors prevents lung injury, which fur-
ther supports the role of NSPs in lung injury [ 22 ,  139 ,  140 ]. Owen  et al.  (2004) pro-
pose an interesting role of MMP-8 that it may be anti- infl ammatory during acute lung 
injury, because MMP-8 null mice given intratracheal LPS have signifi cantly greater 
accumulation of neutrophils in the alveolar space than wild-type mice [ 141 ]. 

 In patients with acute respiratory distress syndrome, salbutamol (b2-agonist) 
increases MMP-9 activity in bronchoalveolar lavage fl uid, and increases MMP-9 
but decreases TIMP-1 and -2 expressions in distal lung epithelial cells [ 142 ]. Similar 
fi ndings are reported for formoterol (b2-adrenoceptor agonist) in a rat model of 
pulmonary infl ammation [ 143 ]. From another study of Zhang  et al. , an interesting 
data found that formoterol and ipratropium bromide partially protect the lungs 
against the infl ammation by reducing neutrophilic infi ltration. This protective effect 
is associated with reduced MMP-9 activity known to play an important pro- 
infl ammatory role in acute infl ammatory process [ 143 ].  

6.5     Asthma 

 Asthma is characterized by episodic dyspnea, lung infl ammation, and in some 
patients, progressive irreversible airway dysfunction [ 144 ]. Expression of several 
MMPs has been associated with asthma; enhancement of MMP-1, MMP-2, MMP- 3, 
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MMP-8, and MMP-9 all have been found in sputum and BAL from patients with 
asthma [ 69 ]. With severe asthmatic conditions, patients have increased MMP9 activ-
ity in BAL relative to that from patients with mild asthma or control patients. Wenzel 
 et al.  [ 145 ] found an increase in MMP-9 activity in the subepithelial basement mem-
brane that is accompanied by higher TGF-β. These studies suggest that in patients 
with severe asthma, neutrophils play a key role in lung remodeling because they 
express both MMP-9 and TGF-β, which are involved in breakdown and repair of 
tissue, respectively. In asthma, MMP-9 is expressed in bronchial epithelium and sub-
mucosa, where its abundance correlates with tissue eosinophil number [ 146 ] because 
MMP-9 is also produced by eosinophils, macrophages, and neutrophils [ 147 ,  148 ]. 
In sputum, concentration of MMP-9 is positively correlated with neutrophil number 
[ 149 ] and also with the cumulative macrophage, neutrophil, and eosinophil count 
[ 150 ] during asthma. BAL taken from asthmatic patients after allergen challenge 
increases the mitogenic indices even more than a normal patient’s BAL [ 151 ]. This 
phenomenon could contribute to the airway remodeling observed in patients with 
chronic asthma; however, the pathway underlying the proliferation remains unclear. 
EGFR, TGF-β, or platelet-derived growth factors are all candidates based on their 
presence in lung during disease and their relationship to various MMPs [ 152 ]. 

 Asthmatic patients express an increased amount of PAR-2 on respiratory epithe-
lial cells but not on smooth muscle or alveolar macrophages [ 153 ,  154 ]. Schmidlin 
and colleagues [ 155 ] have studied the effect of PAR-2 on ovalbumin challenge of 
immunized mice. Compared with wild-type animals, eosinophil infi ltration was 
inhibited by 73 % in mice lacking PAR-2 and increased by 88 % in mice over 
expressing PAR-2. Similarly, compared with wild-type animals, airway hyperreac-
tivity to inhaled methacholine was diminished by 38 % in mice lacking PAR-2 and 
increased by 52 % in mice over expressing PAR-2. PAR-2 deletion also reduced IgE 
levels to ovalbumin sensitization 4-fold compared with levels seen in wild-type ani-
mals. Mast cell chymase induces eosinophil infi ltration, presumably by activating 
PAR-1 [ 156 ]. Secretary leukocyte protease inhibitor administered intratracheally 
before allergen challenge prevented bronchoconstriction, airway hyperresponsive-
ness, and leukocyte infl ux [ 157 ]. The actions of PARs and their activating protein-
ases in the airways have also been studied extensively to determine their role in 
various lung diseases [ 158 ].  

6.6      Pseudomonas aeruginosa  Infection in Lung 

  Pseudomonas aeruginosa  (Pa) is an opportunistic pathogen that infects over 80 % 
of CF adult lungs [ 159 ] and is a major cause of ventilator-associated pneumonia 
(VAP) in hospitalized patients [ 160 ]. A broad spectrum of Pa virulence factors has 
been identifi ed including proteases secreted by various mechanisms [ 161 ]. Proteases 
such as elastase (LasB), alkaline protease (AprA), staphylolysin (LasA) and 
Protease IV (a serine-endoprotease) have been identifi ed in CF lung [ 162 ,  163 ]. 
There are other virulence factors (proteases) of Pa which are capable to degrade host 
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proteins, including matrix components and components of the immune system such 
as immunoglobulins and serum alpha proteins [ 164 ]. The most studied Pa protease 
is the elastolytic metalloproteinase LasB, a type II secretion system enzyme. There 
are several functions of Pa elastase has been reported such as it can alters epithelial 
barrier function [ 165 ], disables PAR-2 receptor in lung epithelial cells [ 166 ], cleaves 
uPAR leading to disruptions of uPAR-dependent cellular interaction [ 167 ], inacti-
vates complement and immunoglobulins, and inhibits cell chemotaxis, phagocyto-
sis and microbicidal activities in human leukocytes [ 168 ,  169 ]. 

 The present fi ndings reveal a protective role for extracellular NE against the 
pathogen. It has been demonstrated that NE, an endogenous effecter, could also 
participate in the orchestration of lung infl ammatory response against  P .  aeruginosa  
infection by modulating the expression of cytokines (e.g., induction of the expres-
sion of the pro-infl ammatory TNF-α, MIP-2, and IL-6) [ 5 ].  

6.7     Allergic bronchopulmonary  Aspergillosis  

 Allergic Bronchopulmonary Aspergillosis (ABPA) occurs in nonimmunocompro-
mised patients and belongs to the hypersensitivity disorders induced by  Aspergillus  
sp. Genetic factors and activation of bronchial epithelial cells in asthma or cystic 
fi brosis are responsible for the development of a CD4 + Th2 lymphocyte activation 
and IgE, IgG and IgA-AF antibodies production [ 170 ]. It appears that total serum 
IgE levels are extremely high, and not all of it is specifi c antibody to  Aspergillus  
species antigens. The pathological changes such as pulmonary infi ltrates of eosino-
philic pneumonitis, granulomatous central bronchiectasis, and segmental pulmo-
nary fi brosis are seen [ 171 ].  Aspergillus  species produces proteases [ 172 – 176 ] 
which can desquamate epithelial cells and stimulate IL-6 and IL-8 production [ 172 ]. 
 Aspergillus  species proteases also initiate growth factor release from epithelial cells 
and are possibly responsible for the central bronchiectasis [ 177 ]. It still remains 
unclear what is abnormal about the response in the few patients in whom this dis-
ease develops and why it is especially common in individuals with cystic fi brosis.   

7      Conclusions 

 As we have mentioned before that generally three major classes of proteases—ser-
ine proteases, MMPs, and cysteinyl proteases—have been identifi ed in the lung. 
They are associated traditionally with various infl ammatory lung diseases and air-
way extracellular matrix destruction. From ample evidences it has been proved that 
each protease family has a multitude of regulatory functions, which makes them of 
pivotal importance in infl ammation, innate immunity, and infection. For example, if 
we consider role of NE in lung infl ammation, recent observations suggest that it’s 
role is more complex than the simple degradation of ECM components. Several 
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lines of evidence propose that NE aims specifi cally at a variety of regulatory func-
tions in local infl ammatory processes but their relevance under various pathophysi-
ological conditions still remains poorly understood and need further investigation. 
NE, acting as a link between pulmonary emphysema and fi brosis that could lead to 
a novel strategy for therapeutic interventions. 

 Among various lung infl ammatory diseases, in case of chronic infective lung 
diseases, the normal physiological processes become deregulated because of extra-
cellular protease activity, which leads ultimately to upregulation of proinfl amma-
tory mediators, increased recruitment of infl ammatory cells to the lung, impaired 
phagocytosis, enhanced mucin production, and inactivation of important innate and 
antimicrobial proteins. This results in sustained infl ammation and predisposition to 
infection. One way to treat such protease-mediated events in chronic infective lung 
disease is with antiprotease therapy, which neutralizes excessive extracellular prote-
ase activity without compromising the normal physiologic role of proteases. 
Antiprotease trials have been performed using α 1 -antitrypsin and secretary leuko-
protease inhibitor, both of which have successfully inhibited NE activity  in vivo  in 
CF and α1-antitrypsin defi ciency [ 178 – 180 ]. Other inhibitors of serine proteases 
and MMPs are being developed, including synthetic inhibitors to combat protease- 
induced lung destruction [ 181 ]. 

 As these NSPs participate in a variety of pathophysiological processes, they 
appear as potential therapeutic targets for drugs that inhibit their active site or impair 
activation from their precursor. Overall, the available preclinical and clinical data 
suggest that inhibition of NSPs using therapeutic inhibitors would suppress or atten-
uate deleterious effects of infl ammatory diseases, including lung diseases [ 182 ]. 

 MMPs compromise a structurally and functionally related group of proteolytic 
enzymes, which play a key role in the tissue remodeling and repair associated with 
infl ammation [ 183 ]. Among various MMPs, MMP-12 has massive importance for 
lung remodeling in patients suffering from COPD, and its importance was con-
fi rmed in MMP knockout mice that were protected against smoke-induced emphy-
sema [ 184 ]. Presently it has been found that MMP-12 activity was higher in 
ex-smokers with COPD compared with that seen in smokers with COPD, and this 
suggests that the smoking effect keep increasing MMP-12 activity, is irreversible 
and more severe disease can be associated with deregulated MMP-12 function [ 74 ]. 
Other MMP such as MMP-2 would be the target for treatment of cadmium induced 
lung infl ammation [ 76 ]. Animal models of human lung diseases and clinical studies 
have provided ample evidences for the involvement of MMPs in the development or 
progression of a number of common lung diseases such as COPD, emphysema, and 
asthma. However, merely detecting increases in MMPs expression in various lung 
infl ammatory conditions may not provide suffi cient information to understand the 
contribution of MMPs in human lung diseases [ 152 ]. 

 Metalloproteinases of the ADAM family have been recognized as potential ther-
apeutic targets in several diseases. However, due to their broad activity, systemic 
application of inhibitors may not represent an appropriate treatment strategy. 
ADAM17 mediates a number of shedding events that infl uence several components 
of acute lung infl ammation including vascular leakage, leukocyte recruitment and 
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cytokine release. Particularly in endothelial cells, ADAM17 appears to act as a cen-
tral regulator in pulmonary infl ammation. So, in near future inhibition of ADAM17, 
possibly locally to reduce systemic side effects, may be a promising approach for 
the treatment of Acute Lung Injury [ 100 ]. 

 Given that they are involved in the pathogenesis of various diseases, they can be 
good therapeutic targets along with their specifi c protease inhibitors [ 185 ]. There 
could be a further option of combining protease modulators with monoclonal anti-
bodies against cytokines to treat such infl ammatory lung diseases. From clinical 
point of view whether anti-protease treatment or use of these proteases along with 
their specifi c inhibitors for curing these infl ammatory lung diseases is benefi cial, 
needs further investigation and research.     
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