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Abstract

Protein Function Module (PFM) identification in Protein-Protein Interaction Networks

(PPINs) is one of the most important and challenging tasks in computational biology. The

quick and accurate detection of PFMs in PPINs can contribute greatly to the understanding

of the functions, properties, and biological mechanisms in research on various diseases

and the development of new medicines. Despite the performance of existing detection

approaches being improved to some extent, there are still opportunities for further enhance-

ments in the efficiency, accuracy, and robustness of such detection methods. Based on the

uniqueness of the network-clustering problem in the context of PPINs, this study proposed a

very effective and efficient model based on the Lin-Kernighan-Helsgaun algorithm for

detecting PFMs in PPINs. To demonstrate the effectiveness and efficiency of the proposed

model, computational experiments are performed using three different categories of species

datasets. The computational results reveal that the proposed model outperforms existing

detection techniques in terms of two key performance indices, i.e., the degree of polymeriza-

tion inside PFMs (cohesion) and the deviation degree between PFMs (separation), while

being very fast and robust. The proposed model can be used to help researchers decide

whether to conduct further expensive and time-consuming biological experiments and to

select target proteins from large-scale PPI data for further detailed research.

Introduction

Research on detecting Protein Function Modules (PFMs) has become one of the most impor-

tant research topics in both life sciences and computing sciences since the completion of the

human genome project. A PFM is a protein complex formed by groups of functionally associ-

ated proteins through disulfide bonds or other protein interactions, while a protein is made up

of a linear sequence of 20 kinds of amino acids. The activity catalysis, signal transduction, and

energy transportation in biological cells are the result of interactions based on groups of pro-

teins involved in the same cell. Protein-Protein Interactions (PPIs) can initiate or inhibit a spe-

cific function within a protein complex, have a significant impact on cell function, carry out
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the metabolism of the organism, and even become a major cause of many diseases [1]. A pro-

tein complex in Protein-Protein Interaction Networks (PPIN) is a biomolecule relationship

network consistent in both function and structure, which means the closely connected protein

areas in PPINs correspond to protein functional modules. Consequently, by detecting the

compactly connected structures of PPINs, it is possible to identify PFMs in order to under-

stand cellular organization, processes, and functions [2]. More importantly, this assists in fur-

ther research on various diseases, and the development of new medicines.

Given the significance of detecting PFMs in PPINs in both theory and application, this

topic has attracted significant research attention. Early researchers focused mainly on biologi-

cal experimental technologies, such as the yeast two-hybrid system [3], and affinity purifica-

tion followed by mass spectrometry [4]. This type of detection method usually predicts the

functions of the proteins by analyzing their physical interactions, properties, and chemical

characteristics. However, these methods have the disadvantages of a long inspection cycle, and

is expensive and time-consuming, especially when dealing with a large-scale PPIN. In recent

years, due to advancements in high-throughput experiment methods, PPI datasets have

become increasingly more available. With the rapid expansion of PPI data, the properties and

functional modules of many protein complexes are currently unknown. Since experimental

approaches are not up to the task, the development of new fast and accurate computational

approaches for detecting PFMs in PPINs is of particular importance in the post-genomic era.

To address this challenge, many PFM detecting methods have been proposed in recent

years. Using methodologies such as machine learning, network analysis, graph theory, and

complex network theory to identify clusters of interacting proteins can help researchers gain a

deeper understanding of PFMs and their evolutionary relationships. Such computational

approaches can not only make up for the shortcomings of biological experimental technolo-

gies, but can also help in understanding complex higher-level cell tissues, predicting the func-

tion of unknown proteins, studying the pathogenesis of diseases, and finding new drug targets.

These new computing approaches have yielded fruitful research results and progress in PFM

detection.

Despite the performance of existing detection approaches being improved to some extent,

there are still opportunities for further enhancements in the efficiency, accuracy, and robust-

ness of such detection methods. Since the Lin-Kernighan-Helsgaun (LKH) [5] algorithm is

one of the most effective algorithms for solving the Travelling Salesman Problem (TSP), this

study combines the LKH algorithm with biological gene ontology knowledge to develop an

effective and efficient model, called the Lin-Kernighan-Helsgaun Model (LKHM) for detecting

PFMs in PPINs. To the best of the authors’ knowledge, this study is the first to propose a PFM

detection model based on the LKH algorithm.

The remainder of this paper is organized as follows. Section 2 conducts a detailed literature

review of existing detection methods, describing the progress and challenges of current

research. Section 3 describes in detail the procedures for implementing LKHM. Section 4 dis-

cusses the experimental results on three commonly used benchmark sets of species and con-

ducts performance comparisons of the proposed approach with those of existing techniques by

critical measurements. Finally, Section 5 provides concluding remarks, with suggestions for

future research on detecting PFMs in PPINs.

Literature review

In the last decade, a vast amount of large-scale PPI data has been acquired using advanced

approaches. These PPI data provide a good opportunity to understand PFMs for revealing

unknown diseases and discovering novel therapeutic interventions. Since biological high-
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throughput experimental technologies remain limited by their high cost and time-consuming

application, developing effective and efficient computational approaches for detecting PFMs

in PPINs has become an essential and challenging problem in computational biology [6]. A

PPIN is a hierarchical and modular network, which can be typically represented by a connec-

tion graph, where the individual proteins and the interactions between proteins correspond to

nodes and edges in the network, respectively [7]. The weights on the edges can usually be des-

ignated as the properties of the PPIN, such as functional features. A functional module, also

called a cluster, in a PPIN appears as a group of densely interconnected nodes. Therefore, iden-

tifying clusters/subgraphs from PPINs by topology-based methods makes it possible to identify

families of proteins with similar functions to help researchers predict and understand protein

functions and their evolutionary relationships with each other.

Despite the computational complexity of the problem, a wide spectrum of topology-based

methods has been proposed for detecting PFMs in PPINs. Recent studies have shown that

using topology-based methods to cluster PPINs is an effective approach for identifying PFMs.

From the literature [8], representative topology-based methods can be classified into six broad

categories: hierarchical-based methods, density-based methods, partition-based methods,

flow-based methods, spectral-based methods, and intelligent algorithm-based methods. The

progress and challenges of the six categories of topology-based methods are discussed below.

Because of the hierarchical nature of biological networks, hierarchical-based methods are

applicable to the detection of PFMs by node-based and edge-based hierarchical clustering

methods. These methods iteratively merge nodes or recursively divide a graph into subgraphs

to accomplish the clustering of the protein nodes. For example, Aldecoa and Marı́n [9] used

the Jerarca suite to effectively convert networks of interacting units into a tree diagram and

then predicted network modules by iterative hierarchical clustering. This approach presented

alternative strategies for performing iterative hierarchical clustering, which can implement an

automatic evaluation of the hierarchical trees to obtain optimal partitions. Ahn et al. [10] indi-

cated that groups of related nodes in many PPINs often have pervasive overlap. Therefore,

they proposed an edge-based hierarchical clustering method to predict overlapping PFMs.

Min et al. [11] presented an ensemble hierarchical clustering framework to detect PFMs. By

integrating the clusters and co-complex affinity scores from different data sources, this

approach can improve the detection performance of the traditional ensemble clustering

method. The hierarchical-based method is a powerful tool for analyzing complex PPINs, but

the computational time required to find the minimum number of cuts usually places a signifi-

cant limit on its use. Besides, it is often not easy to detect overlapping protein modules when

using a node-based hierarchical clustering method.

Based on the topological property that proteins within the same protein complexes have rel-

atively high interactions than other proteins, density-based methods can be designed to iden-

tify PFMs in PPINs by searching densely connected subgraphs. Researchers have developed a

variety of density-based methods to detect PFMs in PPINs. For example, Wang and Qian [12]

proposed a two-step algorithm, called Finding Low-Conductance sets with Dense interactions

(FLCD), for detecting PFMs in PPINs which are densely connected inside, and well separated

from other networks. This approach can effectively reduce the number of edges and the search

space for identifying subgraphs. Experiments on four large-scale PPINs demonstrated that

FLCD outperformed the state-of-the-art algorithms. Other well-known density-based methods

include Molecular Complex Detection (MCODE) [13], Protein Complex Prediction (PCP)

[14], and Module Identification in Networks (MINE) [15]. The main advantage of density-

based methods is their ability to find high-density protein clusters without considering low-

density clusters, which is very efficient for detecting densely connected groups of proteins
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within a PPIN. Nevertheless, how to cluster either the sparsely connected or the relatively iso-

lated protein nodes are the key issues of this type of method.

PPINs have a module organization structure, which is composed of PPIN topology or func-

tionally independent subgraphs. Partition-based methods try to divide a PPIN into different

modules/clusters under the assumption that the number of clusters in the network is deter-

mined in advance. The objective is to partition the network into different clusters with the

largest similarity between proteins in the same cluster, and the smallest similarity between pro-

teins in different modules. For example, Dunn et al. [16] proposed an automated partition-

based method, called edge-betweenness algorithm, for separating PPINs into clusters/sub-

graphs of interconnected proteins, and retrieving protein annotations associated with these

protein clusters. This method can rapidly predict PFMs of small- to medium-size PPINs and

can resist the existence of false-positive interactions. Vlasblom and Wodak [17] compared the

performance of two successful clustering procedures, Affinity Propagation (AP) and Markov

Clustering (MCL), for detecting PFMs in PPINs. Experimental results showed that the MCL

procedure is more tolerant to noise, and behaves more robustly than the AP algorithm. Pizzuti

and Rombo [18] integrated Restricted Neighborhood Search Clustering (RNSC) with the

genetic approach to detect PFMs in PPINs. Experimental results showed that the clusters

obtained by the genetic approach are more accurate than those found by RNSC, though this

method predicts more true complexes. Partition-based methods are very simple and easy to

understand. However, this type of method usually requires prior knowledge of the exact num-

ber of clusters in the PPIN, and the clustering results depend on the quality of the initial parti-

tions. Besides, how to detect overlapping PFMs in PPINs is still a problem that needs to be

overcome in such methods.

Flow-based methods simulate the biological or functional flow in a PPIN, in which cluster-

ing is achieved by a series of flow “expansions” and “contractions” to identify clusters with

high intra-cluster flows and weak inter-cluster flows. For example, Van Dongen [19] proposed

a Markov Cluster (MCL) algorithm to simulate and calculate the probability of random walk-

ing nodes for predicting PFMs in PPINs. Hwang et al. [20] proposed a Signal Transduction

Model (STM), for detecting PFMs in PPINs. The STM selects representative proteins for each

cluster and iteratively refines clusters based on a combination of the signal transduced and

graph topology to predict PFMs. The experimental results showed that STM could effectively

detect both densely and sparsely connected, biologically relevant PFMs with fewer discards,

and its performance was superior to the other six competing approaches. Given that there is

often a significant overlap of proteins across PFMs, Shih and Parthasarathy [21] introduced a

Soft Regularized Markov Cluster (SR-MCL) algorithm to address this limitation, which often

leads to an impedance mismatch problem in MCL. The computational results showed that

R-MCL outperformed state-of-the-art approaches in terms of accuracy of identifying PFMs in

PPINs. Ochieng et al. [22] proposed a graph clustering method based on the MCL algorithm

to identify PFMs in highly interconnected PPINs. The results of simulations using human pro-

teins associated with type II diabetes mellitus revealed that this method was very reliable and

efficient for detecting PFMs in PPINs. Current available flow-based methods usually do not

emphasize intra-cluster connections and node density, thereby avoiding small-scale or only

one node clustering results. However, some proteins will be discarded during the clustering

process, and, because the information flow of all nodes must be considered, the time complex-

ity of this type of method is usually very high.

Spectral-based methods mainly apply matrix theory and linear algebra theory to detect

PFMs in PPINs. Over the last decade, several spectral clustering-based methods have been

applied in complex networks and biological networks. Kamp and Christensen [23] investigated

the relationship between a network’s spectral properties and its structural features within a

PLOS ONE Maximizing cohesion and separation for detecting PFMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0240628 October 13, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0240628


case study on the PPIN of Drosophila melanogaster. This case study showed that the discrete

part of the spectral density corresponds to the PPIN’s topological features, which could offer

important insight into a network’s structure in a less biased and more systematic way than cur-

rently available. Qin and Gao [24] proposed a spectral-based method for detecting PFMs in

PPINs which can determine the number of clusters based on the properties of a network.

Experimental results on PPINs from DIP data and MIPS data showed that the number of clus-

ters found by the proposed method could improve the clustering quality. The performance of

the proposed spectral-based method is comparable to several other typical PFM detection algo-

rithms. To address the heterogeneous or scale-free properties of PPINs, Inoue et al. [25] pro-

posed an adjustable diffusion matrix-based spectral clustering (ADMSC) algorithm. The

ADMSC algorithm analytically solves the clustering structure of PPINs as a problem of ran-

dom walks in the diffusion process in networks. Computational results revealed that ADMSC

can effectively partition PPINs into biologically significant clusters with almost equal sizes

while being very fast, robust, and appealingly simple. The limitations of spectral-based meth-

ods lie in the fact that the initialization of clusters, the number of clusters, the adjacency

matrix, and the choice of feature vectors will directly affect their solution quality. Besides, over-

lapping clusters cannot usually be predicted by spectral-based methods. Therefore, how to

determine these data and predict overlapping clusters are still key issues to be solved.

The intelligent algorithm-based method is a global probability search algorithm, which con-

siders each available solution as a biological entity. The search and optimization processes of

intelligent algorithm-based methods utilize evolutionary processes based on biological behav-

ior to identify clusters. For example, Sallim et al. [26] presented an Ant Colony Optimization

(ACO) algorithm combined with the Traveling Salesman Problem (TSP), called ACOPIN, to

predict PFMs in PPINs. The authors showed that ACOPIN is a feasible approach for detecting

PFMs in PPINs. Lei et al. [27] combined the Firefly Algorithm (FA) and Synchronization-

based Hierarchical Clustering (SHC) algorithm to detect PFMs in PPINs. They used SHC and

FA to perform clustering, and to determine the optimal threshold of the neighborhood radius

of synchronization, respectively. The testing and analysis results revealed that this method is

superior to traditional algorithms in terms of precision, recall, and f-measure value. However,

the running time of the algorithm was too long to process large-scale data. Since Particle

Swarm Optimization and Swarm Optimization related algorithms have been effectively

applied in solving different NP-hard problems, Zheng et al. [28] proposed an Enhanced Parti-

cle Swarm Optimization (EPSO) algorithm and a Simplified Swarm Optimization (SSO) algo-

rithm to cluster proteins; and then introduced the knowledge of Gene Ontology (GO) for

further identifying PFMs and improving detection accuracy. The results of experiments con-

ducted on four different categories of species datasets showed that SSO is superior to EPSO in

terms of prediction accuracy and solution efficiency. It can be seen from the above research

that intelligent algorithm-based methods have been effectively applied to PFM detection, and

the solution performance is very good. However, it remains to determine how to improve the

detection efficiency and appropriately introduce biological information to improve detection

accuracy.

In conclusion, many studies have shown that clustering PPINs by different topology-based

methods were effective approaches for identifying PFMs. The reader is referred to the compre-

hensive survey papers by Wang et al. [29], Ji et al. [1], Sourav et al. [30], and Yang [8] for in-

depth comparisons of various PFM detection methods. Using these topology-based methods

to predict PFMs in PPINs can avoid the weaknesses of using experimental-based methods.

These studies have laid a very important foundation for the theoretical development and prac-

tical application of PFM detection problems. However, as mentioned above, different topol-

ogy-based methods may have their advantages and limitations. Especially, time complexity,
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accuracy, and robustness will still be important practical requirements that need to be

improved by topology-based methods. Along with the growth of the practical needs of bioin-

formatics in the post-genomic era, no doubt developing robust topology-based methods will

be a necessity and continuously attract attention from the bioinformatics communities for

future research of PFM detection. Since the LKH algorithm has the advantages of low time

complexity, high accuracy, and high robustness [5], this study combines it with biological GO

knowledge to propose LKHM for detecting PFMs in PPINs.

Proposed PFM detection model

To improve the time complexity, accuracy, and robustness of the PFM detection algorithm,

this study proposes a new model, called the Lin-Kernighan-Helsgaun Model (LKHM), which

combines the LKH algorithm with biological gene ontology knowledge for detecting PFMs in

PPINs. The sketch map of LKHM is shown in Fig 1. As depicted in Fig 1, the complete PFM

detection process of LKHM is composed of four main stages: data pre-processing, the PPIN

connection graph modelling, the shortest path sequencing, and the clustering results post-pro-

cessing. In Stage 1, the datasets acquired from Database of Interaction Proteins (DIP) [31] and

Gene Ontology (GO) [32,33] are pre-processed to transform the format into a protein distance

matrix. Then, in Stage 2, the PPIN connection graph is modelled using distances between pro-

teins. In Stage 3, the shortest path of the PPIN connection graph is found using the revised

LKH algorithm. Finally, the preliminary clustering results are post-processed using biological

gene ontology knowledge to form the PFMs with biological meaning in Stage 4. The following

subsections describe in detail the four stages of LKHM.

1. Data pre-processing

To tackle the problem of the incompleteness and noise of the PPIN data, the datasets acquired

from existing databases must be pre-processed by three phases: noise filter, feature selection,

and feature extraction, and reformat. In the noise filter phase, the crawled data with noises

such as the existence of errors, blank, redundant or abnormal data must be filtered before fur-

ther processing. After the noise filter, feature data are selected through the manual inspection

of protein xml data in the feature selection phase. Finally, in the feature extraction and

Fig 1. Main stages of LKHM.

https://doi.org/10.1371/journal.pone.0240628.g001
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reformat phase, protein id and interactor id data are extracted and reformatted before being

stored in a structured dataset.

The performance of LKHM is compared with that of EPSO and SSO algorithms [28], which

are the two state-of-the-art algorithms of intelligent algorithm-based methods. To the best of

the authors’ knowledge, EPSO and SSO algorithms are the current best-performing intelligent

algorithm-based methods in the literature. To compare the performance of the proposed

LKHM on the same basis, the experiment in this study is conducted on three species datasets,

i.e., fruitfly, mouse, and human, as used by EPSO and SSO algorithms. The three species data-

sets are acquired from DIP and GO databases and pre-processed by Zheng et al. [28]. Table 1

lists the statistics of the three pre-processed datasets. To avoid changes in the test data version

and ensure the reproducibility of the experiment, all the pre-processed datasets, protein dis-

tance matrixes of PPINs, and identified PFMs related to this study are available from http://

swlin.cgu.edu.tw/data/PPIN-LKH/.

2. PPIN connection graph modelling

Based on the topological structure of PPINs, clustering proteins in PPINs can be transformed

to search the optimal tour in a connection graph, where nodes correspond to individual pro-

teins, edges connecting two nodes correspond to interactions between proteins, and the dis-

tance between two nodes corresponds to the difference between two proteins. Nodes joined by

an edge are said to be adjacent. To calculate the distance matrix of a PPIN, the adjacency

matrix of interacting proteins is used. If there is an interaction between two proteins, the cor-

responding value in the adjacency matrix is labeled 1; otherwise, it is labeled 0. Based on the

topology structure of the PPINs, the distance between nodes i and j,dij (8i,j = 1,2,. . .,n; i6¼j),
can be transformed from the adjacent matrix using the following equation of Czekanowski-

Dice distance (CD-Distance) [34]:

dij ¼
#ðIntðiÞ [ IntðjÞÞ � #ðIntðiÞ \ IntðjÞÞ
#ðIntðiÞ [ IntðjÞÞ þ#ðIntðiÞ \ IntðjÞÞ

ð1Þ

where # represents ’number of ’, and Int(i) and Int(j) denote the adjacency lists of proteins i
and j, respectively.

The CD-distance is a neighborhood-based similarity measure for clustering PPINs, which

has been previously employed by EPSO and SSO algorithms [28]. This distance measure has

already proved its effectiveness in delineating PFMs derived from the analysis of PPINs [34].

To compare the performance of the proposed LKHM with these two state-of-the-art algo-

rithms on the same basis, we also implement the CD-distance in this study.

Taking the PPIN in Fig 2 as an example, the corresponding adjacent matrix and distance

matrix are shown in Tables 2 and 3. If protein i and protein j both interact with the same other

proteins then the distance between them will be 0. For instance, if protein i interacts with pro-

teins X, Y, and Z. Meanwhile, protein j also interacts with proteins X, Y, and Z. Then, #(Int
(i)[Int(j)) = #(Int(i)\Int(j)) and the distance between protein i and protein j will be 0. When

Table 1. Statistics of the three pre-processed datasets.

Before Pre-processing After Pre-processing

Species Interaction Interactor GO Annotation Interactor & GO Annotation

Human 8,412 4,823 20,201 3,394

Mouse 2,498 2,259 1,480 1,447

Fruitfly 680 607 3,299 269

https://doi.org/10.1371/journal.pone.0240628.t001
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proteins i and j interact with completely different sets of proteins. Then, #(Int(i)\Int(j)) = 0

and the distance between protein i and protein j will arrive at the largest value 1. In other

cases, 0<dij<1. Proteins that have short distances between them are likely to jointly perform a

certain function. The closer the proteins are on the shortest path, the more potential they

locate in the same PFM. Therefore, the shortest path through all proteins can be interpreted as

a functional clustering for all proteins in a PPIN, and then the revised LKH algorithm

described in the following subsection can be employed to detect PFMs in a PPIN.

3. The shortest path sequencing

After modelling the PPIN as a connection graph, the revised LKH algorithm is implemented

to search the shortest path of the graph. As shown in Fig 3, the revised LKH is composed of

two phases. In the first phase, the nearest neighbour (NN) rule [35] is used to generate an ini-

tial tour for the PPIN. Subsequently, the LKH algorithm [5] is imported to improve upon the

obtained initial tour and searches the shortest path of the PPIN connection graph in the sec-

ond phase. The two phases of the revised LKH algorithm are described in detail below.

Fig 2. An example diagram of PPIN.

https://doi.org/10.1371/journal.pone.0240628.g002

Table 2. Adjacency matrix.

Protein A B C D E F

A 0 1 1 0 0 0

B 1 0 0 1 1 0

C 1 0 0 1 0 1

D 0 1 1 0 1 1

E 0 1 0 1 0 1

F 0 0 1 1 1 0

https://doi.org/10.1371/journal.pone.0240628.t002
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Phase I: After reading the specification of the problem to be solved, use the nearest neigh-

bour (NN) rule to generate an initial tour.

Step 1.1: Start from a dummy node as the current vertex.

Step 1.2: Find the shortest edge between the current vertex with an unvisited vertex V, and

add vertex V to the current tour.

Step 1.3: Update the current vertex to V, and mark V as a visited node.

Step 1.4: If all of the vertices in the PPIN connection graph have been visited, then terminate

and set the current tour as an initial tour; otherwise, go back to Step 1.2.

Phase II: Apply the LKH algorithm to search the shortest path of the PPIN connection

graph.

Step 2.1: Implement six partitioning schemes (i.e., tour segment partitioning, Karp parti-

tioning, Delaunay partitioning, K-means partitioning, Sierpinski partitioning, and Rohe parti-

tioning) to partition the problem into smaller sub-problems.

Step 2.2: Set the initial tour as the incumbent tour, and set the length of the incumbent tour

to a large floating-point number (denoted as DBL_MAX). Repeatedly perform the following

procedures for a specified number of runs to improve the incumbent tour.

Step 2.2.1: Repeatedly apply five revised Lin and Kernighan’s criteria (i.e., the sequential

exchange criterion, the feasibility criterion, the positive gain criterion, the disjunctive criterion,

and the candidate set criterion) to execute the general K-opt moves on the sub-problems to

Table 3. Distance matrix.

Protein A B C D E F

A - 1.0000 1.0000 0.3333 0.6000 0.6000

B 1.0000 - 0.3333 0.7143 0.6667 0.3333

C 1.0000 0.3333 - 0.7143 0.3333 0.6667

D 0.3333 0.7143 0.7143 - 0.4286 0.4286

E 0.6000 0.6667 0.3333 0.4286 - 0.6667

F 0.6000 0.3333 0.6667 0.4286 0.6667 -

https://doi.org/10.1371/journal.pone.0240628.t003

Fig 3. A sketch of the revised LKH algorithm.

https://doi.org/10.1371/journal.pone.0240628.g003
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reduce their lengths until no exchange can shorten the sub-tours, where K is an integer chosen

from the interval [2,n].

Step 2.2.2: Use the tour merging procedure to produce the best possible tour from the

given sub-tours.

Owing to space limitations, this paper does not provide details of the six partitioning

schemes, the five revised Lin and Kernighan’s criteria, the general K-opt moves, and the tour

merging procedure of the LKH algorithm. The reader is referred to the paper by Helsgaun [5]

for a detailed discussion of the LKH algorithm.

4. Clustering results post-processing

To improve the accuracy of clustering results, the preliminary clustering results are post-pro-

cessed using biological gene ontology knowledge. In this step, the following post-processing

procedures of function information-based PFM optimization and topology-based PFM opti-

mization are executed, respectively, to form the final PFMs with biological meaning.

4.1 Function information-based PFM optimization

The purpose of the function information-based PFM optimization is to iteratively merge mod-

ules that are functionally close by evaluating the similarity of two PFMs of the preliminary

clustering results. The functional similarity of any two PFMs MA and MB, S(MA,MB), is mea-

sured by the following equation [28]:

SðMA;MBÞ ¼

X

i2MA;j2MB

sði; jÞ

minfjMAj; jMBjg
ð2Þ

where |MA| and |MB| represent the number of proteins in PFMs MA and MB, respectively, and

s(i,j) is the similarity parameter of two proteins i and j that belong to MA and MB, respectively,

which can be calculated by the equation as follows:

sði; jÞ ¼
1; if i ¼ j

jgi \ gjj
jgi [ gjj

; if i 6¼ j
ð3Þ

8
><

>:

where gi and gj denote the comment values of protein i and j in the GO, respectively.

In this step, if the functional similarity of any two PFMs MA and MB, S(MA,MB), is greater

than a predefined threshold, θ, then MA and MB will be merged into one PFM. The merge pro-

cess continues until all cluster pairs satisfy the predefined threshold.

4.2 Topology-based PFM optimization

To further improve the accuracy of clustering results, PFMs with lower densities are filtered

and discarded using a lower boundary of the module density. The module density can be mea-

sured by the following equation:

Ds ¼
e

N � ðN � 1Þ=2
ð4Þ

Where N represents the number of current PFMs and e denotes the number of interactions

in the module.
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Experiment results

This section describes the experiments conducted in this study to evaluate the performance of

the proposed LKHM in detecting PFMs from PPINs. The proposed LKHM was coded in Java

and C++ programming languages. The revised LKH algorithm was implemented by C++ in

Visual Studio 2010, while the other part of LKHM was implemented by java, and was executed

using Eclipse 8.0. All experiments were conducted on a personal computer with an Intel1

Xeon1 E5-1620 v2 processor running at 3.70 GHz, with 64 GB of RAM. The following sub-

sections describe the performance evaluation indices and compare the computational results

obtained by LKHM with those obtained using the other two state-of-the-art algorithms on

three species datasets.

1. Performance evaluation indices

To compare the performance of LKHM with EPSO and SSO algorithms on the same basis, two

performance evaluation indices, cohesion (Co) and separation (Se), which were used by Zheng

et al. [28] to evaluate EPSO and SSO algorithms, are applied in this study. The values of Co and

Se are calculated by the following equations:

Co ¼
Sþ

1

D
; D 6¼ 0

S; D ¼ 0

ð5Þ

8
<

:

Se ¼
Dþ

1

S
; S 6¼ 0

D; S ¼ 0

ð6Þ

8
<

:

where S and D denote the values of nodes in the functional similarity matrix and distance

matrix, respectively.

Cohesion is a measure that denotes the degree of polymerization inside PFMs. The higher

the value of Co, the higher the similarity degree of proteins in the same PFMs. Separation refers

to the deviation degree between PFMs. The higher the value of Se, the higher the dissimilarity

between different PFMs.

2. Analytical results and discussion

For the three species datasets, the statistics results of Co and Se for the SSO, EPSO, and LKHM

under eight different threshold values are summarized in Tables 4 and 5. As revealed in

Table 4, when applied to the fruitfly, mouse, and human datasets, the total average values of Co

obtained by SSO, EPSO, and LKHM were (1.0940, 1.0302, 1.0281), (1.0835, 1.0319, 1.0304)

and (2.3073, 1.8937, 2.2324), respectively. On the other hand, as demonstrated in Table 5, the

total average values of Se obtained by SSO, EPSO, and LKHM for the fruitfly, mouse, and

human datasets were (19.9421, 23.4273, 22.9155), (20.3769, 23.8979, 22.8809), and (21.0179,

22.9875, 22.0317), respectively. The degree of polymerization inside PFMs obtained by LKHM

is significantly higher than that obtained by the SSO and EPSO approaches, whereas the devia-

tion degree between PFMs obtained by LKHM remained nearly at the same level as that

obtained by SSO and EPSO approaches. That is, the similarity degree of proteins in the same

PFMs generated by LKHM is significantly higher than that generated by the SSO and EPSO

approaches, especially for the fruitfly dataset; while the dissimilarity degree of proteins between

different PFMs of the three compared approaches are approximately the same. These analytical

PLOS ONE Maximizing cohesion and separation for detecting PFMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0240628 October 13, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0240628


results can also be seen in Fig 4. This improvement is significant, demonstrating that PFMs

can be identified from PPINs more accurately using LKHM.

Table 6 shows the average computational times (CPU times in seconds) spent by the three

compared approaches when applied to each species dataset. As seen in Table 6, when applied

to the fruitfly, mouse, and human datasets, the total average computational times required by

LKHM were 0.7 s, 71.5 s, and 421.2 s, respectively; whereas the corresponding values required

by SSO were 4.0 s, 78.2 s, and 460.5 s, respectively, and the corresponding values required by

EPSO were 4.9 s, 161.8 s and 699.0 s, respectively. Since computational times may vary with

different hardware, software, and programming skills, it is not very fair to directly compare the

efficiency of the SSO, EPSO, and LKHM approaches based on these experimental results.

However, the average computational times listed in Table 6 show that LKHM can cluster

PFMs better than can SSO and EPSO within a very short and reasonable computation time.

Notably, the computational time of LKHM is not affected by different threshold values. These

results demonstrate that LKHM outperforms the two state-of-the-art approaches in detecting

PFMs in PPINs in terms of cohesion, separation, and robustness.

Conclusions and recommendations for future studies

PFM identification in PPINs is one of the most important and challenging tasks in computa-

tional biology. The quick and accurate detection of PFMs in PPINs can contribute greatly to

the understanding of the functions, properties, and biological mechanisms in research on vari-

ous diseases and the development of new medicines. Based on the uniqueness of the network-

Table 4. Degrees of polymerization inside PFMs (Co) for compared approaches.

SSO EPSO LKHM

Threshold Fruitfly Mouse Human Fruitfly Mouse Human Fruitfly Mouse Human

0.050 1.0448 1.0280 1.0270 1.0842 1.0288 1.0272 2.1514 1.8548 2.2176

0.055 1.0906 1.0298 1.0242 1.0688 1.0278 1.0276 2.2928 1.9256 2.1338

0.060 1.0516 1.0296 1.0278 1.0666 1.0334 1.0274 2.4402 1.8886 2.2436

0.065 1.0634 1.0326 1.0276 1.0710 1.0310 1.0310 2.3326 1.9212 2.0004

0.070 1.0778 1.0306 1.0308 1.0852 1.0356 1.0312 2.3818 1.9446 2.3118

0.075 1.2486 1.0274 1.0276 1.0930 1.0296 1.0288 2.4328 1.8684 2.3538

0.080 1.0658 1.0300 1.0302 1.0980 1.0334 1.0296 2.1786 1.8596 2.3036

0.085 1.1094 1.0342 1.0302 1.1050 1.0362 1.0408 2.2484 1.8868 2.3032

Total Ave. 1.0940 1.0302 1.0281 1.0835 1.0319 1.0304 2.3073 1.8937 2.2324

https://doi.org/10.1371/journal.pone.0240628.t004

Table 5. Deviation degrees between PFMs (Se) for compared approaches.

SSO EPSO LKHM

Threshold Fruitfly Mouse Human Fruitfly Mouse Human Fruitfly Mouse Human

0.050 19.9450 23.8480 22.8452 21.1064 23.9212 22.7966 18.9636 22.8962 21.5276

0.055 20.3240 23.6394 23.0308 20.5620 24.0596 22.8374 19.1828 22.6266 21.9868

0.060 19.6422 23.5466 23.1240 19.6758 24.0378 23.0052 20.5374 22.8688 21.7224

0.065 20.1214 23.6064 22.8264 20.0156 24.0522 22.5876 21.8196 23.4734 21.9264

0.070 19.7058 23.2210 22.9818 20.5950 23.9542 22.9120 21.9656 22.9996 22.4988

0.075 19.5328 23.5762 22.8524 20.3126 23.6772 22.7920 21.9108 22.9906 22.2826

0.080 20.4202 23.2104 22.9208 20.0296 23.7938 23.0494 21.9372 23.1178 22.1316

0.085 19.8458 22.7710 22.7432 20.7184 23.6878 23.0670 21.8264 22.9274 22.1776

Total Ave. 19.9421 23.4273 22.9155 20.3769 23.8979 22.8809 21.0179 22.9875 22.0317

https://doi.org/10.1371/journal.pone.0240628.t005
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Fig 4. Degrees of polymerization inside PFMs.

https://doi.org/10.1371/journal.pone.0240628.g004
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clustering problem in the context of PPINs, this study proposed a very effective and efficient

model based on the LKH algorithm for detecting PFMs in PPINs. The simulation results show

that the proposed technique has superior performance in terms of cohesion and separation

when compared to other existing methods. The proposed technique is a very reliable method

for detecting PFMs in PPINs, which can effectively reduce the computational time and cost,

and improve the accuracy of PFM detection. It can be used to help researchers decide whether

to conduct further expensive and time-consuming biological experiments and to select target

proteins from large-scale PPI data for further detailed research. The authors hope that this

study will contribute to the theory of computational biology, and to applications in uncovering

the pathogenesis of diseases and developing new drug targets.

Given the significance of the PFM detection problem in both theory and application, there

is much room for further research in this field. Some important directions and interesting top-

ics for further studies are suggested as follows. First, it is necessary to develop other effective,

efficient, and robust computational methods, such as matheuristics, for detecting PFMs in

PPINs. Second, the development of PFM detection approaches with high tolerance to data

noises would be an interesting target of practical research. Third, the development of distrib-

uted and parallel algorithms to detect PFMs in large-scale PPINs within an acceptable compu-

tational time warrant further exploration. Fourth, new methods for combining PFM detection

methods with functional annotation and biological evolution messages would support a rich

body of future studies. Finally, the detection of PFMs in overlapping modules and dynamic

PPINs are still in their initial stages and are worth further research.
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