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Abstract: Artificial Neural Networks (ANNs) have rapidly emerged as a promising tool to solve
damage identification and localization problem, according to a Structural Health Monitoring ap-
proach. Finite Element (FE) Analysis can be extremely helpful, especially for reducing the laborious
experimental campaign costs for the ANN development and training phases. The aim of the present
work is to propose a guided wave-based ANN, developed through the use of the Finite Element
Method, to determine the position of damages. The paper first addresses the development and
assessment of the modeling technique. The FE model accuracy was proven through the comparison
of the predicted results with experimental and analytical data. Then, the ANN was developed and
trained on an aluminum plate and subsequently verified in a composite plate, as well as under
different damage configurations. According to the results herein proposed, the ANN allowed to
detect and localize damages with a high level of accuracy in all cases of study.

Keywords: Artificial Neural Network (ANN); guided waves; Structural Health Monitoring (SHM);
Finite Element Analysis (FEA); damage detection; metals; composites

1. Introduction

Structural monitoring of primary and secondary structural elements is generally a
complex, costly and time-consuming process. All structural components are inspected at
regular intervals, using different non-destructive techniques (NDTs) that increase more
and more the total duration of the downtime.

Such inspections for health-condition assessment are of the utmost importance for the
safe and efficient operation of structures. A damage that cannot be reliably detected could
not be repaired on time, leading to eventually catastrophic failures.

To overcome these problems, in view to ensure the safety of the structure, Structural
Health Monitoring (SHM) systems able to monitor the actual structural integrity become
necessary [1–3]. The use of a SHM system brings with it numerous benefits in terms of
maintenance and repairing operations, including reduction in uncertainty in operators’
decision-making process, quasi-real time control of deficiencies and, thus, greater safety
through continuous monitoring. Moreover, SHM will provide a dataset useful for main-
tenance phases, improving in the meantime the engineering capabilities and the future
design of primary components with relative reduction in both medium- and long-term costs.

In the execution of SHM strategies, the most commonly used approach is that based on
guided (or Lamb) waves (GW) [4–6] because of their powerful capability of long-distance
propagation with high speed and little loss of energy. Several useful pieces of information
can be derived from implementing a Lamb-wave-based identification associated with a
damage detection method, such as qualitative indication of the occurrence of damage,
quantitative assessment of the position of damage, quantitative estimation of the severity
of damage and prediction of structural safety like the residual service life [7,8].
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Successful damage identification by using a GW-based SHM system can be performed
with transducers in a sparse configuration and using well-calibrated signal-interpretation
techniques. Some essential steps are the following: (i) activating the desired diagnostic
Lamb wave signal, using an appropriate transmitter and capturing the damage-scattered
wave signals using a sensor or a sensors network in accordance with either the pitch-catch
or the pulse-echo configuration; (ii) extracting and evaluating the characteristics of the
captured wave signals with appropriate signal post-processing tools; (iii) establishing
quantitative and/or qualitative connections between the extracted signal characteristics
and the damage parameters (presence, location, geometric identity, severity, etc.); and (iv)
figuring out the damage parameters of interest in terms of captured signals, based on the
quantitative connections established in Step (iii) [8].

However, the main challenge of guided waves is that they propagate with mul-
tiple modes and exhibit a strongly dispersive behavior when the excitation frequency
increases [9]. Thus, the attention is mainly paid on the zero-order symmetric and antisym-
metric modes, S0 and A0, respectively. Both the S0 and A0 modes are sensitive to structural
damage, and both can be used for identifying damage, though the S0 mode exhibits higher
sensitivity to damage in the structural thickness, fatigue damage and delamination. Mean-
while, the interpretation of the signals can be very challenging, limiting the extraction
of useful information on damages. Thus, a large number of experiments is required to
properly identify GW characteristics. To reduce time and costs, chirp broadband signals
can be used, together with the Finite Element Method (FEM), semi-analytical tools, etc.

With the latest advances in neurosciences and high-capability computing devices,
machine learning (ML) algorithms based on Artificial Neural Networks (ANNs) have
rapidly emerged as a promising tool to solve damage/defects identification and localization
problem [8,10]. Various techniques, including mode shapes, natural frequencies, strain
history and many others [11–15], have been used for damage identification during the
years for different application fields. This was achieved by utilizing different supervised or
unsupervised machine learning techniques for damage recognition [16–18].

Recent research has focused on damage quantitative estimation by using Lamb wave
signals features in combination with ANN and FEM in order to ensure the accuracy of
ANN (strictly related to the data used to train the network) [10,16]. A Lamb-wave-based
damage evaluation method assisted by an ANN model was presented by Qian et al. [19],
using Damage Indexes related to changes in amplitude and phase of recorded signals. They
found a good agreement between experimental and predicted results in a carbon fiber-
reinforced polymer composite plate. Sharif-Khodaei et al. [20,21] developed an Artificial
Neural Network (ANN) that is able to locate impact of different energies in a complex
structure, such as a composite-stiffened panel. Such an ANN was trained by means of
a large number of impact simulations, based on FEM, covering a wide range of impact
energies and locations. De Fenza et al. [10] used GW propagation and ANN to determine
the location and the degree of damage in a metallic plate: it was divided into sectors, and
for each one, the probability of occurrence of the damage was assessed.

Obviously, the performance of an ANN strictly depends on the size and complexity of
the obtained dataset. A very large or high-dimensional dataset could affect the accuracy of
the classification or clustering and make the model computationally expensive. Employing
data-preprocessing methods when dealing with high-dimensional sensory data is also of
great importance and impacts the ANN performance [18].

In this paper, a machine learning approach based on ANN is proposed in order to
demonstrate and discuss the usability of artificial intelligence for the purpose of detecting
and localizing a damage and its coordinates. A physical experiment and numerical simula-
tions on an aluminum plate were carried out. The aluminum plate was equipped with four
piezoelectric transducers to activate and receive the wave response in baseline (no damage)
and actual (damaged) configurations of the structure.

As the first step, the development and assessment of the Finite Element modeling
technique was addressed. The FE model accuracy was proven through the comparison of
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the predicted results with experimental and analytical data in terms of S0 and A0 group
velocities’ curves.

Once established with respect to GW propagation, the numerical data were used
for the training and validation process of the ANN. In particular, starting from the S0
wave packet extracted from the numerical dataset through a post-processing technique,
Damage Indexes (DIs), under different damaged configurations (in terms of both position
and dimension), were calculated. High value of DI means a damage very close to the
corresponding actuator–receiver path [22]. This was possible through the development
of an in-house Matlab® (The MathWorks Inc., Natick, MA, USA) code that automatically
extracts the S0 mode from the baseline and actual states of the structure and calculates the
DIs. The DIs dataset was used as input for the ANN, while the targets are represented by
the coordinates of the centers of the modeled damages. Achieved results prove that the
ANN can predict the damage location precisely.

Then, the developed ANN was verified on a CFRP (carbon fiber-reinforced polymer)
plate. According to the results herein proposed, the ANN allowed to detect and localize
damages with a high level of accuracy in all cases of study.

The trained algorithm could be directly applied to experimental measurements with-
out the need of retraining.

The layout of the paper is as follows. Details of the case study are outlined in Section 2.
Section 3 deals with the numerical methodology, based on FE, for a proper modeling
of the wave propagation mechanisms; dispersion curves (experimental, numerical and
semi-analytical) of the zero-order modes are shown and compared. The description of the
ANN-based damage detection procedure, using Damage Indexes, is detailed in Section 4.
Finally, the performance of the ANN and achieved results are discussed in Section 5 for
an aluminum and a composite panel under several damaged configurations. Section 6
concludes the paper.

2. Case Study

GW propagation mechanisms were investigated in a simple flat isotropic panel. For
isotropic materials, Lamb waves travel with the same velocity omni-directionally, and the
wavefronts form a circle. This case study, although simple, represents a starting point for
the development of an ANN useful for damage detection.

The plate under investigation has a square shape with dimension L = 287 mm, and a
thickness of ta = 2 mm (Figure 1). The mechanical properties are listed in Table 1. A four
Circular DuraAct (PI Ceramics) PIC255 piezoelectric transducers network was used for
both the actuation and sensing of Lamb waves. The thickness and the radius of the PZT
wafers are tPZT = 0.5 mm and dPZT = 10 mm, respectively. The PZTs, whose mechanical
properties are listed in Table 1, were surface-mounted onto the specimen. In particular, they
are located at a distance h = 55 mm from the edges (Figure 1). The adhesive EA 9466 from
Loctite (Henkel AG & Co. KGaA, Düsseldorf, Germany) was used to bond the transducers.
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Figure 1. Schematic of the geometry and map of PZTs network.

Table 1. Material properties of Al 6061 plate and PIC255 sensors.

Material Properties Symbol Units Al 6061 PIC255

Mass density ρ [kg m−3] 2700 7850
Young’s modulus E [GPa] 69 76

Shear modulus G [GPa] 26 29
Poisson’s ratio ν − 0.33 0.32

Dielectric constant K3 − − 1280
Piezoelectric charge constant d31 [10−9 mm V−1] − −180

In order to reduce the number of experiments to carry out, a chirp signal was used.
The chirp signal is given as follows:

Vchirp(t) = Vin

[
H(t)− H

(
t − tchirp

)]
sin

(
2π

(
f0t +

f1 − f0

tchirp
t2

))
, (1)

where tchirp = 0.25 ms is the duration of the chirp signal, f0 = 50 kHz is the start frequency,
f1 = 500 kHz is the end frequency, Vin is the input amplitude and H is the Heaviside
function. The chirp signal allows users to achieve in a single test all dispersion curves in the
selected frequency band. The tone-burst response, preferred due to the dispersive nature
of Lamb waves [23], was then extracted by using the reconstruction procedure described in
Reference [24] to allow for the comparison for each frequency.

A 16 V peak-to-peak input amplitude was applied to the actuator PZT, using a TiePie
waveform generator, and the TiePie Digital Oscilloscope was used to record the signals
acquired at the sensor PZTs with a sampling frequency of 2 MHz. The total recording
duration of the experimental signals is tot = 2 × 10−4 s, and each measurement is recorded
32 times and averaged to improve the signal to noise ratio. The acquired signals from all
four channels have a resolution of 12 bit. Each measurement was 0.200 ms long.
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3. Numerical Approach for Wave Propagation Modeling

In this section, at first, FE modeling techniques are compared in order to prove the
efficiency of 2D-Shell elements [25,26] in simulating GW propagation in the isotropic plate
under different frequencies against 3D ones. In fact, especially for complex structures, the
modeling via 3D-Solid Finite Elements can be prohibitive in terms of computational costs.
Thus, there is a need to adopt, as far as possible, shell elements.

Once established against experiment or analytical data, the FE model can be used to
predict wave-propagation mechanisms in a damaged configuration of the plate, and to get
a useful dataset for the training of the ANN.

In this work, numerical data were compared to the experimental ones, using sensor 1 as
actuator and the others as receivers. Such a comparison, although simple and well-studied,
offers the opportunity to validate the numerical models and evaluate their convergence by
using an isotropic material.

The geometry of the panel under investigation, described in Section 2, was modeled in
Abaqus® CAE environment (Dassault Systems Simulia Corp., Providence, RI, USA). Three
different element types from the Abaqus® Finite Elements library were considered: (i) 2D-
Shell (conventional shell), S4R element with 6 degrees of freedom per node; (ii) 3D-Shell
(continuum shell), SC8R element with 3 degrees of freedom per node; and (iii) 3D-Solid
(brick element), C3D8R element with 3 degrees of freedom per node.

In order to reduce the number of simulations, a chirp excitation signal was mod-
eled in the frequency range (50 ÷ 500 kHz), as described in the previous section. More-
over, it is well-known from the literature that, to correctly characterize the scattering
phenomena of Lamb waves across a modeled damaged area, a minimum number of
8–10 nodes per wavelength (NPW) should be set [8]. Thus, for the plate and sensor
average element size evaluation (lplate

e and lpzt
e , respectively), two different values of

NPW under 500 kHz carrier frequency (it is the actual end frequency of the chirp sig-
nal) were considered: 10 NPW, corresponding to lplate

e = 0.60 mm, lpzt
e = 0.37 mm and

step size tinc(10 NPW) = 1 × 10−7 s; and 20 NPW, corresponding to lplate
e = 0.30 mm,

lpzt
e = 0.18 mm and step size tinc(20 NPW) = 5 × 10−8 s.

This led to the development of different FE models: two 2D-Shell based, providing 10
and 20 NPW respectively; two 3D-Shell based, providing 10 and 20 NPW respectively; and
only one 3D-Solid based, providing 10 NPW (to reduce the computational costs). In all the
numerical analyses, the chirp actuation signal was imposed. This means that, for example,
taking into account lplate

e = 0.60 mm, the FE analysis discretises 100 NPW under 50 kHz
reconstruction frequency. For the sake of simplicity, the FE models are just named 10 and
20 NPW, respectively.

The wave propagation is a dynamic phenomenon, so the explicit environment was
chosen to simulate the actuation, propagation and sensing of GW. For this reason, to ensure
the accuracy of the numerical solution, the time step must be less than the ratio of the
minimum distance of any two adjacent nodes to the maximum wave velocity (often the
group velocity of the S0 mode), as follows:

tinc =
lmin
e
Cg

, (2)

where lmin
e is the size of the smallest element, and Cg is the group velocity [27].

The FE model is reported in Figure 2. For the actuation and receiving signal, the
sensors network was numerically modeled as in the experiment in terms of location
and material/geometry configurations. Each sensor was modeled by means of reduced
integration solid elements (C3D8R), while 3 elements were modeled through the thickness.
To ensure the contact between sensors and plate, a node-to-surface contact formulation
was employed at the “tied” interfaces to simulate the adhesive layer between sensors and
plate (not here modeled) [25].
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Finally, the translational degrees of freedom of the 4 corners of the plate were con-
strained as in the experiment, while, relative to the GW propagation, radial displacements
equivalent to the input voltage of Equation (1) were calculated through Equation (3):

dr = QV V, (3)

where QV is a conversion constant for the actuation, depending on the plate and sensor
geometry and material properties, as widely described in Reference [8].

This effective displacement was applied on the upper actuator edge (see also Figure 2b)
after having defined a proper polar coordinate system at the center of the actuator, as
effectively reported in Reference [8].

The implicit scheme could be used to handle either the wave propagation or mechanical–
piezoelectric problems. In fact, there is the option of using electric coupling PZT Finite
Elements. That means that the voltage can be directly applied to the terminals of the
transducers, and the corresponding strain response in the sensors is acquired through the
electro-mechanical coupling of the elements (Equation (3)). Such elements, however, are not
available for the explicit procedure used herein to perform the analyses. A comprehensive
overview about the modeling of PZT can be found in References [8,23,28–31].
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Figure 2. (a) FE model of the aluminum plate under study in Abaqus® CAE. (b) Focus on sensor
mesh and GW input signal.

Dispersion Curves

The wave propagation was simulated in the Abaqus® explicit environment. The test
case consists of a multi-frequency analysis with a chirp actuation signal, activated by ‘PZT
1’, due to isotropy of the plate, according to Equation (1). To avoid mode superimposition,
low-frequency Lamb waves should usually be chosen for damage detection. In this study,
the excited signal is a chirp one limited to the frequency range 50÷ 500 kHz. Then, in order
to concentrate the majority of the wave energy on a specific central frequency, recorded
data were reconstructed by means of a n-cycles sinusoidal tone-burst Hanning windowed
signal with a step of 25 kHz (50:25:500 kHz), allowing reducing spectrum leakage.

Numerical results in the selected frequency range were compared to the experimen-
tal ones and also to those obtained by means of the Dispersion Calculator (Center of
Lightweight Production Technology, German Aerospace Center (DLR), Augsburg, Ger-
many) [32]. It is a Matlab®-based general-purpose tool that interactively allows users to
create dispersion curves that simply define the material model and properties. It computes
the phase and group velocity dispersion, as well as internal stress and displacement fields
(mode shape) of Lamb and shear horizontal waves in isotropic and multilayered composites.
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Displacements field contour plots in Figure 3 show the wave propagation under
300 kHz carrier test for the three investigated FE models. As expected for an isotropic
material, the propagation speed is equal along all material directions and the guided
waves propagate in a circular pattern. Differences between 2D-Shell, 3D-Shell and 3D-Solid
can be attributed to the different representation of the panel boundaries, as also noted in
References [33,34].
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Figure 3. Guided wave propagation at 3 time instants in the aluminum plate modeled by the three
different element types—300 kHz carrier.

Predicted signals, recorded at sensor locations, were calculated as the average of
the in-plane strains, ε, reads by all nodes defining each sensor. Similar to Equation (3),
accordingly to piezoelectric relations, the voltage in PZTs can be calculated through the
strain measurements as follows:

V = Qs ε, (4)

where Qs is a conversion constant for the sensing (further mathematical details can be
found in Reference [8]). Then, converted signals were processed by means of the developed
code and compared in terms of ToF and amplitudes.

To validate the Finite Element models, the responses of the transducers were compared
for the numerical and experimental results. In particular, for the sake of brevity, in Figure 4,
only signals reconstructed under the 300 kHz carrier were compared to the respective
experimental ones. The same level of accuracy was achieved for all frequencies. Due to the
material symmetry, signals recorded at PZT 2 and PZT 4 are the same. In all three cases,
the numerical predictions are able to approximate the arrival of the first wave packet with
adequate accuracy for both 10 (Figure 4a) and 20 (Figure 4b) NPW. According to Figure 4,
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each signal was normalized with respect to the maximum amplitude of its own S0 wave
packet. This allows highlighting the differences between predicted and experimental data.

It is noted that attenuation phenomena were not considered in this study. Additionally,
the adhesive layer between the PZT wafer and the panel was modeled as a rigid link. These
effects can influence the amplitude of the received waves and justify the slight mismatch
existing between measured and predicted data [33,34].

Once the distances between actuator/receivers and the ToF on all paths are known, it
is possible to calculate the velocity of Lamb waves packet (cg) [35]. Considering that for an
isotropic material, cg does not depend on propagation’s direction, to compute the group
velocity, only the path actuator 1-receiver 2 was considered. As highlighted in Table 2, all
three element types can make group velocity estimations with small relative error compared
to the experimental measurement. As expected, the 3D-Solid modeling procedure permit
to achieve more accurate results, but the error associated with the 2D-Shell elements is
relatively small and can be considered widely acceptable.
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Table 2. Comparison of the relative error for the estimation of the S0 mode group velocity for each
element type with respect to the experiment—300 kHz carrier.

Data cg (m/s) Error (%)

Experimental 5201 −
Semi-Analytical 5268 −1.28

2D-Shell (20 NPW) 4996 3.94
3D-Shell (20 NPW) 5098.9 1.96
3D-Solid (10 NPW) 5117.4 1.60

To assess the proposed numerical procedure, the extracted dispersion curves were
validated against the experimental one and those provided by Dispersion Calculator
Software. Effectively, curves extracted from Dispersion Calculator were defined through a
semi-analytical method.

Guided wave dispersion curves for the S0 and A0 modes are reported in Figure 5,
in which dots represent the extracted values. As visible from Figure 5—10 NPW—the
conventional shell FE model (red dots) is not capable of accurately predicting the group
velocity of the A0 mode. Moving to 20 NPW, a good agreement between experimental, semi-
analytical and numerical data was found for all of the developed FE models, demonstrating
the good modeling of the wave-propagation phenomenon.
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Because of the good level of agreement, in order to reduce the computational costs
with respect to the 3D modeling technique, the 20 NPW 2D-Shell FE model can be adopted
to easily and accurately extract the dispersion curves for both the S0 and the A0 modes in
an isotropic panel, as is visible from Figure 5.

Focusing on the 20 NPW 2D-Shell FE model and its comparison to the experimental
and semi-analytical data, it can be observed that, by interpolating these points with an
2nd-order polynomial curve, the trend of the dispersion curve can be obtained. As it can
be seen from Figure 6, the numerical analyses provide very accurate results: the trend of
the polynomial curves (solid lines) interpolating numerical data (dots of Figure 5) matches
very well the 2nd-order polynomial related to experiments and semi-analytical values,
and this is true for both S0 and A0 modes. Even if the A0 mode is slower than S0, due to
reflections being more difficult to detect, the numerical trend is very similar to the actual
one, confirming the capability of the algorithm.
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Figure 6. Dispersion curves for the S0 and A0 modes—2nd-order polynomial fitting curves—20 NPW.

Lastly, considering the 2nd-order polynomial interpolations, the percentage differ-
ences with respect to the experimental and semi-analytical values were computed (Tables 3
and 4, respectively). For the S0 mode, the absolute percentage difference does not exceed
the 3%, while, for the A0 mode, it is limited to 12%, demonstrating, again, the efficiency of
the numerical modeling and the post-processing procedure.

Table 3. Percentage deviation between 20 NPW 2D-Shell FE and experimental group velocity values extracted from the
2nd-order polynomial interpolation.

Frequency
(kHz)

cg[m/s]S0Mode cg[m/s]A0Mode

Experimental 20 NPW
2D-Shell Difference (%) Experimental 20 NPW

2D-Shell Difference (%)

50 5315 5427 −2.10 1665 1561 6.25
100 5296 5369 −1.36 2184 2127 2.61
150 5277 5314 −0.69 2526 2550 −0.95
200 5256 5258 −0.02 2748 2888 −5.08
250 5231 5205 0.51 2883 3141 −8.94
300 5201 5154 0.92 2950 3310 −12.2
350 5164 5103 1.19 2990 3110 −4.01
400 5118 5054 1.26 2995 3118 −4.11
450 5061 5006 1.11 2996 3054 −1.94
500 4993 4960 0.67 2958 2920 2.60
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Table 4. Percentage deviation between 20 NPW 2D-Shell FE and semi-analytical group velocity values extracted from the
2nd-order polynomial interpolation.

Frequency
(kHz)

cg[m/s]S0Mode cg[m/s]A0Mode

Semi-Analytical 20 NPW
2D-Shell Difference (%) Semi-Analytical 20 NPW

2D-Shell Difference (%)

50 5352 5427 −1.40 1735 1561 10.03
100 5348 5369 −0.39 2133 2127 0.28
150 5337 5314 0.43 2465 2550 −3.45
200 5320 5258 1.17 2732 2888 −5.71
250 5296 5205 1.72 2932 3141 −7.13
300 5266 5154 2.13 3068 3310 −7.89
350 5229 5103 2.41 3138 3110 0.89
400 5186 5054 2.55 3142 3118 0.76
450 5136 5006 2.53 3081 3054 0.88
500 5080 4960 2.36 2955 2920 1.18

4. ANN-Based Damage Detection Procedure
4.1. Damage Indexes

Once we established the capability of the shell elements in simulating GW propaga-
tion behavior, square-shaped damages were introduced by degrading the elastic material
properties of the corresponding Finite Elements (softening technique) [36] of about 70%
(Figure 7). This technique allowed achieving a good agreement with reference to the
experiments, as well as reducing the modeling efforts with reference to the deleting tech-
nique [36].

A wide numerical campaign was set up in order to get a useful dataset for the training
of the ANN. In particular, the dataset consists of the signals reconstructed under a central
frequency 300 kHz. The chosen frequency enables the localization of damage with a diame-
ter greater than 7 mm more accurately (in recognition of the fact that the half wavelength of
a selected wave mode must be shorter than or equal to the damage size to allow the wave
to interact with the damage) [37,38]. On the other hand, as the frequency decreases, the
wavelength increases, making the minimum size of localized damage higher and higher.
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Thus, square-shaped damages with a size of 5 and 10 mm were modeled at different
points of the plate, as better specified in Table 5. The coordinates are expressed by consid-
ering the bottom left-hand corner of the plate as the origin of the Cartesian coordinates
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system, Figure 7. Figure 8 shows the positions of the damages (Table 5) on the plate (those
common to both damage dimensions). As visible, some damages external to the area
covered by the sensors network were also considered for the definition of the training set
in order to improve ANN efficiency.

Table 5. Analyzed damaged configurations.

Configuration # Damage Size (mm) Center Coordinates (mm)

d1 5/10 [143.5, 259.5]
d2 5/10 [259.5, 204.5]
d3 5/10 [232, 143.5]
d4 5/10 [204.5, 55]
d5 5/10 [143.5, 82.5]
d6 5/10 [70.5, 70.5]
d7 5/10 [40, 143.5]
d8 5/10 [82.5, 204.5]
d9 5/10 [143.5, 143.5]
d10 10 [60, 120]
d11 10 [55, 165]
d12 10 [143, 212]
d13 10 [168, 222]
d14 10 [216, 216]
d15 10 [215, 100]
d16 10 [190, 180]
d17 10 [110, 110]
d18 10 [175, 115]
d19 10 [120, 168]
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The signals were collected in a round-robin manner, where one transducer acts as
actuator and the others act as sensors until the signals from all the receivers are collected.
The presence of a damage alters the wave propagation, causing clear changes in the
damaged wave packets with respect to the healthy ones. In particular, the change in
amplitude and time of flight can be used to quantitatively indicate the most affected
path [22].

Thus, the first step in the damage-detection phase is to extract the S0 mode in the
pristine configuration and then in the “faulty” configuration. This was achieved by imple-
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menting an in-house code that allowed us to extract the S0 mode automatically without
the need for visual graphical support. For the sake of brevity, an example is reported in
Figure 9. The blue lines represent the recorded signals, the red one is the envelope and the
yellow-colored part of the signal is the extracted S0 mode.
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Figure 10 shows a comparison between the S0 mode extracted from the two config-
urations, pristine and damaged, in which it is possible to notice how the amplitude of
the signal recorded in the actual configuration changes. Such a comparison is quantified
through the evaluation of a Damage Index, DI. Specifically, in this work, the DI given by
Equation (5) was used [22]:

DI =

√√√√√∑i

(
C2

p − C2
d

)
C2

p
, (5)

where Cp and Cd are respectively the amplitude of the signal, at same time, in the config-
uration “pristine” and “damaged”. The high value of the Damage Index means that the
damage is placed along or close to the corresponding actuator–sensor path. Conversely,
low Damage Index means that the damage is far from the actuator–sensor path.

The developed code also allows automatically calculating the Damage Index for each
actuator–sensor path. The Damage Indexes obtained for each damage condition were
normalized with respect to the maximum value among all paths for the different actuators.
An example is reported in Figure 11 for the damage in position d8. As visible from the
figure, the DI enables the identification of the most affected paths. Moreover, by knowing
the damage position, the DIs suggest that the damage is localized closer to the PZT 4, since,
when this sensor is used as an actuator, the values of DI are much higher.
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4.2. ANN Modeling

An Artificial Neural Network requires datasets for building up the input-output
relation. In particular, as previously described, through an in-house code, it was possible
to extract signal features for the input vector xj. The ANN approach used in this work
is based on the Damage Index of Equation (5) [22] that was described in the previous
section. Therefore, the N-dimensional input vector consists of the DIs related to each
sensing (actuator–receiver) path. The output vector instead includes the (x, y) coordinates
of the localized damage. After generating the input and output vectors, the architecture of
the ANN can be defined. It is clearly stated that the efficiency of the ANN increases when
the dimension of the dataset increases. However, at the same time, this leads to an increase
of the computational cost.

As shown in Figure 12, the feed-forward neural network herein developed contains
one input layer of 12 features (4 sensors and 3 paths, for a total of 12 inputs for each
damaged configuration) and one output layer of two features, namely the damage center
coordinates (x, y). Two hidden layers with multiple (10) neurons were defined to connect
the input and output data, resulting in a fully connected neural network, according to the
literature [39]. Each k-th neuron of the hidden layer is connected with all neurons of the
previous layer, and its output zk can be described as follows:

zk = ϕ
(
∑N

j=0 Wkjxj + bk

)
, (6)

where xj is the value of the input vector at the discrete position, with j = 1, 2, . . . N; Wkj is
the weight connected to each neuron k at the discrete position, with j = 1, 2, . . . N; ϕ is the
transfer (activation) function; and bk is the bias value.
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Figure 12. Architecture of the ANN includes one input layer, two hidden layers and one output layer;
w, weights vector; b, bias vector (the image was produced by the MATLAB’s ANN toolbox).

5. ANN Results and Discussion
5.1. Training of the ANN

In the current work, the Levenberg–Marquardt algorithm was used to train the ANN,
as it appears to be the fastest method for training moderate-sized feedforward neural
networks [40]. This algorithm is one of the variations of the back propagation algorithm,
which is a gradient descent method in which the network weights are moved along the
negative of the gradient of the performance function. In the current case, the chosen
performance function is the mean squared error (MSE). The learning problem is considered
to be solved when the combination of weights is able to minimize the error function.

The results of this neural network (Figure 13a) show that the gradient is close to zero,
as expected, as well as the performance parameter. The u (Mu) parameter is the algorithm
damping factor: it decreases after each successful step (reduction in the performance
function), while it increases when a tentative step would result in a performance function
increment. In this case, it starts from 0.001 as initial default value, and it decreases with a
factor of 0.1, ending with a value of 0.0001.

The neural network was trained with fifteen of the nineteen 10 mm damage conditions,
while the remaining four were used for validation and testing purposes. Figure 13 shows,
as well, the performance obtained during the training, considering that the training was
carried out in several steps on different datasets (always 15 of 19) in order to avoid the
overspecialization of the network.

The ANN validation step consisted of the evaluation of the regression plot, which
simply shows the relationship between the outputs of the network and the defined tar-
gets [41]. In detail, if the training were perfect, the network outputs and the targets would
be exactly equal, but the relationship is rarely perfect in practice, especially when a limited
dataset is adopted. Three regression plots for training, validation and testing data, together
with the one for the overall dataset, are reported in Figure 13b. The dashed line in each
plot represents the perfect result, i.e., outputs = targets. The solid line represents the best
fit linear regression line between outputs and targets. The R value is an indication of
the relationship between the outputs and targets. R = 1 indicates that there is an exact
linear relationship between outputs and targets, while if R is close to zero, then there is no
linear relationship between outputs and targets. For the network herein proposed, the data
indicate a good fit: the network is sufficiently accurate even though a limited dataset was
used for the training phase.
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5.2. ANN Validation and Tests

In this section, the results provided by ANN are shown. Specifically, the fully trained
ANN was validated by means of the remaining four 10 mm damaged test cases. Figure 14
shows a good agreement between the predicted damage locations and the modeled ones.
When the inputs do not belong to the training set or to a neighborhood of it, the net-
works provide results that are different from the expected ones but comparable to them
(Figure 14). Thus, the 5 mm damage dataset, not adopted for the training procedure, was
used to test the ANN. It is herein underlined that, under 300 kHz carrier frequency, the
minimum detectable damage should be 7 mm. Thus, the capability of the ANN to identify
and successfully localize damages smaller than the defined threshold must be verified.
According to Figure 15, the ANN is also capable of predicting smaller damages; however,
it does so with a reduced but acceptable accuracy.
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5.3. ANN for a Damaged Composite Panel

The ANN developed, tested and used for damage detection for the aluminum panel
was herein used also to predict the damage location in a CFRP (carbon fiber-reinforced
polymer) composite panel.

The CFRP composite panel is made of eight layers with stacking sequence [0/90/+45/−45]s.
The thickness of the plate is t = 1.5 mm, while the horizontal and vertical dimensions are
the same of the aluminum panel of Figure 1. The 0◦ fiber direction is oriented along the
x-axis. Each layer of the prepreg is assumed to behave as an orthotropic material, and the
mechanical properties of the lamina are listed in Table 6.

Table 6. Lamina mechanical properties of CFRP composite.

E11
(GPa)

E22
(GPa)

E33
(GPa)

G12
(GPa)

G13
(GPa)

G23
(GPa) ν12 ν13 ν23

ρ

(kg m−3)

105 7.7 7.7 3.6 3.6 2.7 0.36 0.36 0.4 1540
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In detail, the 20 NPW 2D-Shell FE modeling approach was chosen for the plate, while
the 10 mm damage was modeled again by degrading the elastic material properties of
the corresponding Finite Elements (softening technique) of about 70%. In this case, four
damaged configurations, as shown in Figure 16, were investigated separately. The ANN
was applied to all of these new cases without any further training step with respect to the
ANN applied to the aluminum plate.

The main idea is to verify if the ANN developed and trained for an isotropic plate is
capable of predicting damage also for a composite one. According to the results shown
in Figure 16, the ANN produced accurate results. Moreover, the distances between the
real damage coordinates and the predicted ones are reported in Table 7. As visible, the
distance (error) is lower than 73 mm, and that can be considered to be acceptable, taking
into account the previous considerations about the ANN development and the fact that the
ANN was trained by using only the aluminum dataset. The error is expected to decrease
with an improved training phase. It must also be noticed that the error equal to 73 mm
represents a singularity. In fact, according to Table 7, the other errors range between 7.8
and 29.3 mm.
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Table 7. ANN accuracy for damage prediction in the composite panel.

Configuration # Real Damage
Coordinates (mm)

ANN Predicted Damage
Coordinates (mm)

Distance (Error)
between Points (mm)

d1 [143.5, 259.5] [96.4, 203.5] 73.1
d5 [143.5, 82.5] [141.9, 90.2] 7.8
d7 [40, 143.5] [27.7, 135.3] 14.8
d16 [190, 180] [219.2, 177.7] 29.3

6. Conclusions

In this paper, a machine learning approach based on ANN for damage detection and
localization was proposed. Specifically, this paper dealt with the development and the
assessment of an ANN for the damage detection based on the guided wave propagation
method. The ANN was developed and assessed through the Finite Element Method and
then used to simulate guided wave propagation in an aluminum plate under different
damage configurations. A first step of the research activities herein proposed was addressed
to the development of a reliable FE model aimed to calculate the S0 and A0 dispersion
curves. In particular, three FE modeling techniques were investigated: the former based on
2D-Shell elements, the second based on 3D-Shell elements and the latter based on 3D-Solid
elements. The reliability of the modeling techniques was assessed against experimental
data, as well as semi-analytic ones provided by Dispersion Calculator software. According
to the numerical–experimental–analytical comparison of the results, 2D-Shell FE model
was chosen for the development of the dataset useful for the ANN, allowing achieving the
highest level of accuracy to the computational time ratio. The possibility to use an accurate
and faster method to train an ANN is of relevant importance, enabling the training with
respect to a wider dataset.

Concerning the development of the ANN, it was trained with respect to an aluminum
plate under different damage configurations. Square-shaped damages with a size of 5 and
10 mm were modeled at different points of the plate. The Damage Index dataset was used
as the input vector for the ANN, while the coordinates of the modeled damages were the
targets. The procedure is based on an in-house code that automatically extracts the S0
mode from the baseline and actual states of the structure and calculates the DIs.

The trained ANN showed a good performance in terms of regression (even if a small
dataset was used for the training). The ANN was found to be able to detect all damages
with an acceptable level of accuracy. Because of the proven ANN reliability, its detection
capability was also assessed on a different plate made of CFRP laminate, modeled through
FEM. It is important to highlight that data achieved by the simulations involving the
CFRP plate were not used for the ANN training phase. Nevertheless, the ANN showed its
reliability in damage detection yet again.
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