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Cooperatively rearranging regions change shape
near the mode-coupling crossover for colloidal
liquids on a sphere
Navneet Singh 1✉, A. K. Sood2,3 & Rajesh Ganapathy 3,4

The structure and dynamics of liquids on curved surfaces are often studied through the lens

of frustration-based approaches to the glass transition. Competing glass transition theories,

however, remain largely untested on such surfaces and moreover, studies hitherto have been

entirely theoretical/numerical. Here we carry out single particle-resolved imaging of

dynamics of bi-disperse colloidal liquids confined to the surface of a sphere. We find that

mode-coupling theory well captures the slowing down of dynamics in the moderate to deeply

supercooled regime. Strikingly, the morphology of cooperatively rearranging regions changed

from string-like to compact near the mode-coupling crossover—a prediction unique to the

random first-order theory of glasses. Further, we find that in the limit of strong curvature,

Mermin–Wagner long-wavelength fluctuations are irrelevant and liquids on a sphere behave

like three-dimensional liquids. A comparative evaluation of competing mechanisms is thus an

essential step towards uncovering the true nature of the glass transition.
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Condensed phases can acquire a new life when confined to
curved surfaces1–4. For instance, the low temperature
phase of a single-component system on the hyperbolic

plane is a glass and not a crystal, like in flat space, since curvature
introduces an irreducible number of topological defects5,6.
Alternatively, while glassy dynamics in many metallic liquids is
thought to stem from the inability of the locally favored structure
—an icosahedron—to proliferate in flat space, these fivefold
symmetric motifs under certain conditions can perfectly tile the
3-sphere S3, ref. 7. Curving space can thus promote or alleviate
frustration8. However, how liquids vitrify on curved surfaces have
hitherto been investigated only in theory and numerics and has
never been interrogated through experiments. Further, and not
surprisingly, almost all these theoretical/numerical studies are in
the context of frustration-based approaches to the glass transition
and to what extent competing theories capture glass transition
phenomenology on such surfaces remains largely unexplored. It is
only recently that numerical studies of a single-component liquid
on a sphere, the simplest curved surface and denoted as S2, found
that mode-coupling theory (MCT) can qualitatively capture the
role of curvature on glassy dynamics9. The power-law scaling of
the structural relaxation time, τα, near the mode-coupling sin-
gularity and the nature of the singularity were also found to be
identical to that in Euclidean space. Subsequent experiments,
however, revealed that at high densities, liquids of monodisperse
particles on S2 do not vitrify but instead freeze into a defect-
ordered single crystal4. Freezing can be avoided by working with
liquids of bidisperse particles. MCT is yet to be tested on such
liquids on S2, and doing so opens the possibility of examining if
the relaxation processes envisaged by the thermodynamic fra-
mework of the random first-order transition theory (RFOT) of
glasses are at play10. Since MCT is a mean-field theory, the sin-
gularity predicted by this theory is only a crossover in finite
dimensions and across this crossover RFOT anticipates a change
in the shape of cooperatively rearranging regions (CRRs) from
string-like to compact11. This prediction, unique to RFOT, has
been validated in simulations and experiments in Euclidean
space12–16. Whether curving space fundamentally alters this
scenario is not known.

Probing the dynamics of liquids on curved surfaces can also
help address another key issue. There is now a consensus that in
d ≤ 2 dimensions, supercooled liquids, and glasses, like crystals,
are affected by long-wavelength Mermin–Wagner (MW) fluc-
tuations17–19. These fluctuations provide an additional channel
for structural relaxation and transient particle localization, a
signature feature of glassy dynamics in 3-dimensions, is absent. In
fact, even in the normal liquid regime where such localization
effects are absent, while in d= 3 the long-time diffusion constant
D / τ�κ

α with κ= 1, in d= 2 MW fluctuations result in an
anomalous scaling with κ > 120. MW fluctuations are also strongly
system size-dependent and their effects diminish systematically
on reducing system size17–21. In fact, for liquids on closed sur-
faces, like S2, system size and curvature effects are intertwined22.
The role of MW fluctuations on the dynamics of liquids on
curved surfaces, let alone on S2, is not known.

Motivated by these open issues and the lack of experiments
that have attempted to address them, here we investigated
dynamical slowing down of colloidal liquids, at the single-particle
level, on a sphere. We not only found that standard liquid state
theory quantitatively describes the structure of liquids on S2 but
also shows that MCT successfully captures the growth in τα in the
vicinity of the mode-coupling glass transition. Strikingly, on
approaching the MCT singularity from the liquid side, we find
that the shapes of CRRs evolve from being string-like to compact
as anticipated within the RFOT. By probing dynamics using both
conventional and cage-relative relaxation measures, we show that

in the limit of strong curvature, MW fluctuations do not sig-
nificantly influence dynamics and liquids on S2 behave like
liquids in d= 3.

Results
Structure of supercooled liquids and glasses on the surface of a
sphere. Our experimental system comprised of bidisperse charged
hydrophobic colloids that were bound to the interface between
spherical oil droplets and an aqueous phase due to image charge
forces2 (Supplementary Fig. 1 and Supplementary Movie 1). The
particle charge and its image constitute an electric dipole and the
colloids interact through repulsive dipolar forces (see “Methods”
section for details). Due to poor screening of the particle charge in
the oil phase, which is the suspending fluid for the particles,
interactions are long ranged and soft. By starting with different
initial particle number densities in the oil phase, we systematically
tuned the areal density of particles, n, adsorbed at the interface.
Single-particle dynamics were imaged using a confocal micro-
scope at maximum possible temporal resolution (Leica TCS SP8
II, 63× oil-immersion objective) (see “Methods” section for details
and Supplementary Note 1). Previous studies have found that the
complete phase behavior of this system can be parametrized
through a single dimensionless parameter, Γ, which is the ratio of
the total electrostatic dipole and thermal energies4,18. For a

bidisperse system, Γ¼ ðπnÞ3=2
8πϵkBT

ðξbpb þ ð1� ξbÞpsÞ2, where ϵ is the
dielectric constant of the suspending fluid, here the oil phase, ξb is
the fraction of big particles and pb and ps are the dipole moments
of the big and small particles, respectively. We directly deter-
mined Γ using the radial pair-correlation function method23.
Although the oil phase does not exactly match the particle den-
sity, gravitational effects are negligible. In all our experiments the
size of the oil droplet was nearly a constant and had a typical
radius of curvature R= (19.2 ± 1.2)r, where r ¼ rbþrs

2 . Here, rb=
0.908 μm and rs= 0.755 μm are the hard-sphere radii of the big
and small colloids, respectively.

Figure 1a, c shows representative snapshots of the
reconstructed upper hemisphere of particle-laden droplets at
low and high Γ, respectively. For monodisperse particles with
isotropic interactions, the preferred coordination in 2D-flat space
is six24. Frustration introduced through spatial curvature and
particle size bidispersity result in coordination defects, i.e.,
particles having a local coordination number different from six,
which act as topological charges. Although topology sets the net
charge, 12 for S2, it neither constrains the total number of these
charges nor does it determine their arrangement. To gain insights
into how these defects are arranged in our system, we tessellated
space using the radical Voronoi method that is appropriate for
bidisperse packings25,26. The tessellations corresponding to Fig. 1a
and c are shown in Fig. 1b and d, respectively. The Voronoi cells
in Fig. 1b and d are colored according to their topological charge
(6 minus the local coordination of the particle in the cell).
Hexagonal cells (shown in gray) have zero charge, while
pentagonal (shown in blue) and heptagonal cells (shown in
purple), which are the most frequently occurring defects, have a
charge of +1 and −1, respectively. Fourfold and eightfold
coordinated defects do occasionally appear, but these are rare as
they are energetically costly (Supplementary Fig. 2). At all Γ
studied, neither did we observe any semblance of crystalline order
nor did we observe any demixing with time (Supplementary
Fig. 3) and the topological defects uniformly covered the surface.
The net topological charge of 12, however, was entirely from
pentagonal defects. For large Γ (Fig. 1d), we observed defects
organized into chains that were branched and occasionally also
formed closed loops as seen in a recent numerical study of binary
mixtures on S2, ref. 27 (Supplementary Fig. 2). This is unlike what
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is observed for monodisperse particles at large Γ, where the 12
excess pentagons are localized at the vertices of an icosahedron
and the defect chains—also called scars—are linear and along its
edges4. Despite the very soft nature of the pair-potential, particle
bidispersity clearly thwarts the occurrence of the crystalline
ground state.

The short-range of structural correlations, as is expected for a
liquid, is evident from the radial pair-distribution function g(s)
which is plotted as a function of the geodesic distance s in Fig. 1e
(Supplementary Note 2). In Euclidean space, the hypernetted
chain (HNC) approximation has been found to well-capture the
structure of liquids when particle interactions are soft28. We
found this to be true even for liquids on S2 (lines in Fig. 1e are
HNC fits to g(s)) allowing us to directly calculate the particle pair-

potential and hence Γ (Supplementary Note 3). An exponential fit
to the envelope of g(s) yielded the correlation length which even
at large Γ is only ≈2σ, where σ is the position of first peak of g(s)
(Supplementary Fig. 5). Simulations of monodisperse particles
with Lennard–Jones interactions on S2 found a much larger
correlation length of almost 5σ possibly due to the presence of a
hexatically ordered phase at low temperatures. Since particle
interactions are soft, the position of the first peak in g(s) moved to
smaller s with increasing Γ. Interestingly, the height of the first
peak of g(s), g1, showed a nonmonotonic evolution with Γ (inset
to Fig. 1e). A maximum in g1 has been observed at the jamming
density in fluids of soft particles in Euclidean space and arises due
to competing contributions from entropy and energy29–31. On
approaching the jamming density from below, the system behaves
like a hard-sphere fluid and g1 grows systematically with density.
Since particle overlaps for soft spheres are not energetically costly,
for densities beyond the jamming density the system can gain free
energy by maximizing disorder and permitting overlaps and g1
begins to decrease with a maximum at jamming. Dense liquids of
soft particles on S2 thus show the same structural anomaly as
their counterparts do in Euclidean space.

Dynamics of supercooled liquids and glasses on a sphere. We
now turn our attention to dynamics. We first computed the self-
intermediate scattering function which on a sphere is defined as

Fsðk; tÞ ¼ 1
M

PM
j¼1 PkR cos

Δsjð0;tÞ
R

� �� �D E
9,22. Here, PkR is the

Legendre polynomial with kR being rounded-off to the nearest-
integer, k is the wavevector corresponding to the first peak of g(s),
M is the number of particles and Δsj(0, t) is the geodesic dis-
placement of particle j over time t. At large supercooling and due
to the very soft nature of the pair-potential, particles can undergo
substantial collective displacements without any cage-breaking
and this can lead to the decay of Fs(k, t). These effects may be
further exacerbated by MW fluctuations, which have been found
to be more pronounced for soft than for hard potentials32.
Since the α—relaxation process necessarily involves particles
breaking out of their confining cages, we computed the cage-
relative self-intermediate scattering function Fs−CR(k, t) which is
sensitive only to this process17–21. Calculating Fs−CR(k, t) involves
replacing Δsj(0, t) in the definition of Fs(k, t) with the cage-
relative displacement, Δsj−CR(0, t), where Δsj�CRðtÞ ¼ Δsjð0; tÞ�
1

NNj

PNNj

i¼1 ðsiðtÞ � sið0ÞÞ. Here, NNj is the number of nearest-

neighbors of central particle j and the second term is just the
average displacement of the cage over time t (Supplementary
Note 4). Figure 2a shows Fs(k, t) (dashed lines) and Fs−CR(k, t)
(symbols) versus t for various Γ. We did not observe any aging
behavior over the duration of our experiments (Supplementary
Fig. 7) and this allowed us to unambiguously define τα and τCRα as
Fsðk; ταÞ ¼ 1

e and Fs�CRðk; τCRα Þ ¼ 1
e, respectively. The rapid

slowing down of dynamics with Γ is apparent. More importantly,
while at small Γ the decay profiles Fs(k, t) and Fs−CR(k, t) are more
or less similar, the discrepancy between them grows with
increasing Γ and for Γ ≥ 63, Fs−CR(k, t) does not decay while
Fs(k, t) does. This suggests that a substantial contribution to the
decay of Fs(k, t) stems from processes that does not lead to
changes to the local connectivity of the particles. Focusing on
Fs−CR(k, t), we observed that the α—relaxation process becomes
an increasingly stretched exponential relaxation with under-
cooling, as is typical of liquids approaching the glass transition in
Euclidean space, and the stretching exponent βCR decreases at
small Γ and develops a plateau at intermediate Γ before decreasing
again near ΓMCT (Fig. 2b)33,34.

We next determined if the slowing down of dynamics with
supercooling can be captured by MCT35. When either the particle
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Fig. 1 Static structure of supercooled liquids on a sphere. a, c 3D Confocal
micrographs of bidisperse colloidal liquids wrapped on the surface of S2

at two areal densities. The red and the green colors represent big and
small particles which are of radius σb= 0.908 μm and σs= 0.755 μm,
respectively. b, d Radical Voronoi tessellations of particle packings shown in
(a) and (c). Blue, gray, and magenta polygons are associated with 5, 6, and
7 coordinated particles, respectively. These Voronoi tessellations show a
disordered phase with topological defects uniformly covering the surface.
e Pair-correlation function g(s) as a function of the geodesic distance s for
Γ= 22 (black open squares) and Γ= 63 (violet open triangles), displaying
liquid-like short-range order. The lines are hypernetted— chain (HNC) fit to
the data, indicating good agreement between theory and experiment. Inset
to (e) shows nonmonotonic evolution of the height of the first peak (g1) of
g(s) as a function of Γ.
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volume/area fraction, ϕ, or the temperature, T, is the parameter
that controls dynamical slowing down, as is usually the case,
MCT anticipates τα / ðC � CMCTÞ�γ. Here, C plays the role of
either ϕ or T, CMCT is the location of mode-coupling glass
transition and γ is a scaling exponent which ranges from 1.5 to 3
depending on the system under consideration33,34. For our
dipolar colloidal liquids, we carried out the MCT scaling analysis
with Γ as the control parameter (Fig. 2c). Most remarkably, the
growth of τα with supercooling indeed follows a power-law
(γ= 1.8), a value consistent with MCT predictions, and the
curves at various ks all yield a nearly identical mode-coupling
glass transition with ΓMCT= 67 ± 1. The quality of the scaling was
very poor when ϕ was chosen to be the control parameter
reaffirming that it is Γ that controls dynamics in our system.

Change in morphology of CRR’s near MCT crossover. An
increasingly stretched exponential relaxation with supercooling is
often attributed to increasingly heterogeneous dynamics. To
quantify these dynamical heterogeneities, we first calculated the
cage-relative non-Gaussian parameter, αCR2 ðtÞ using a definition
appropriate for S2. Particle dynamics are maximally non-
Gaussian over the cage-breaking time t* and this is manifest as

a peak in αCR2 ðt ¼ t�Þ (Supplementary Note 5 and Supplementary
Fig. 9). Figure 3a and b show the particle displacement maps over
t* for a low and high Γ value, respectively. The colors represent
the extent to which a particles’ position overlapped with itself
over t* with red representing high particle overlap (immobile
particle) and blue representing poor overlap (mobile particle).
While at low Γ, the dynamics appears homogeneous as is typical
of the high temperature/low density liquid state, at the larger Γ,
much of the system appears frozen with only a few particles
undergoing large displacements (Supplementary Movies 3, 4 &
Supplementary Fig. 10). Moreover, the dynamics was also highly
cooperative with the mobile particles being spatially clustered36.
Further, unlike in simulations of liquids of monodisperse particles
on S2, where dynamical heterogeneities were found to be largely
localized at topological defects at low temperatures22, the het-
erogeneities in our system appear at spatially random locations
and are reminiscent of standard supercooled liquid dynamics in
Euclidean space33. Next, we identified the top 10% of the most-
mobile particles over t* and clustered them if their centers were
within 1.4σ of each other. From the probability distribution of
cluster sizes P(n), we calculated the average cluster size of CRRs

hNci ¼
P

n
n2PðnÞP
n
nPðnÞ at all Γs studied. 〈Nc〉 increases with Γ until Γg
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beyond which it sharply decreases (Fig. 3c). 〈Nc〉 has been found
to decrease beyond ϕg in hard particle liquids and has been
attributed due to cooperative dynamics associated with the short-
time β-relaxation process14,16,36. A similar mechanism may also
be at play here. However, unlike in hard-sphere liquids where τα
diverges at ϕg, in soft particle liquids it stays finite31. Whether the
maximum in 〈Nc〉 at Γg in our system shares the same mechan-
istic origin as in hard particle liquids remains to be seen.

According to RFOT, the mode-coupling singularity is only a
dynamical crossover in finite dimensions10. RFOT further posits
CRRs to be composite objects that comprise of a compact core
surrounded by a ramified string-like shell11. While at mild
supercooling CRRs are predominantly string-like and grow in
length with increasing supercooling, near and beyond the mode-
coupling glass transition, the string-length decreases and the
compact core begins to dominate their overall morphology. A
change in the shape of dynamical heterogeneities on approaching
the MCT singularity has indeed been observed in both numerical
and experimental studies on liquids with12,14 and without13,15,16

quenched disorder. To determine if this was the case for liquids
on S2 as well, we computed the distribution of mobile nearest-
neighbors P(NN) to a mobile particle14. A P(NN) that is peaked
at NN= 2 indicates more string-like CRRs with mobile particles
predominantly have one neighbor ahead and behind them, while
a P(NN) that is peaked at NN > 2 indicates more compact CRRs.
Most remarkably, with Γ the peak of P(NN) shifts from NN= 2

to NN= 3 (Fig. 3d). To illustrate that the shifting of the peak of P
(NN) is not a trivial outcome of a growing 〈Nc〉, with Γ, we
analysed the morphology of CRRs of a fixed size of 12 particles
(Fig. 3e). We identified the core and the shell particles of the
CRRs, shown as red and blue spheres, respectively, following14.
As anticipated by RFOT, CRRs indeed have a core-shell structure
with the string-like shell dominating their morphology at low Γ
and the compact core dominating it at high Γ.

Mermin–Wagner fluctuations on the surface of a sphere. The
presence of dynamical heterogeneities in the supercooled regime
implies that D is no longer proportional to τα, like in simple
liquids, but instead scales as D / τ�κ

α with κ < 1. Recent studies
found that besides dynamical heterogeneities, MW fluctuations,
which are prevalent in 2D, also contribute to altering the value of
κ20. This implies that when MW fluctuations are removed using
cage-relative measures, the exponent κCR connecting the cage-
relative diffusivity DCR and τCRα is different from κ with 1 ≥ κCR >
κ in the supercooled regime. In 3D liquids, where MW fluctua-
tions have a lesser role, κCR ≈ κ20. A change in the value of
exponent between the normal and the cage-relative measures thus
serves as a readout for the presence of MW fluctuations. We
calculated D and DCR from the normal and the cage-relative
mean-squared displacement at various Γs (Supplementary Fig. 8).
Figure 4 shows a log–log plot of DCR versus τCRα (circles) and D
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versus τα (squares). The exponents κCR and κ are almost identical
suggesting that in the limit of strong curvature (Rσ � 4), studied
here, MW fluctuations are irrelevant and that these liquids behave
like liquids in 3D. This observation is also supported by the inset
to Fig. 4, where we find particle trajectories clearly showing
transient particle localization without correcting for cage-
displacements (Supplementary Movie 5). Such localization
effects would have been absent had significant MW fluctuations
been present17.

Discussion
Collectively, our experiments show for the first time that there are
striking parallels between the behavior of supercooled colloidal
liquids on a sphere and those in Euclidean space. By using a
bidisperse colloidal liquid to suppress the defect-ordered crystal
phase at high densities4, we have shown that standard liquid state
theory can quantitatively describe the structure of liquids on S2.
We not only found that MCT can describe dynamical slowing
down but also show that the shapes of CRRs changes from string-
like to compact near the MCT singularity. The latter finding in
particular is unique to RFOT11 and cannot be explained, as yet,
by other theories including kinetic approaches such as the
dynamical facilitation theory the glass transition34. Whether our
findings carry over to surfaces with negative curvature remain to
be seen. A natural step moving forward would be to examine
predictions of inhomogeneous MCT37,38 and also track the evo-
lution of static and dynamic correlation lengths with supercooling
on curved surfaces. Introducing quenched disorder by pinning
particles may prove useful, like in flat space, in helping prune
glass transition theories12,34. Our observation that MW fluctua-
tions do not contribute to the dynamics is possibly an immediate
consequence of the finiteness of a closed surface. Since no
boundary conditions need to be defined for a closed surface, our
experiments pave the way for studying the role of finite-size
effects on glassy dynamics39.

Methods
Experimental details. Our experimental system was a binary mixture of Poly
methylmethacrylate (PMMA) colloids of radii rb= 0.908 μm, rs= 0.755 μm (size
ratio rb/rs= 1.20). Initially, the colloidal particles are suspended in a low dielectric
constant oil mixture composed of cyclohexyl bromide (εCXB= 7.9) (65.5% v/v), and
decalin (εDec= 2.23) (34.5% v/v). The oil phase matches the refractive index and
density of the PMMA colloidal particles. We added 100 μl of the PMMA-in-oil
colloids to a 1 ml solution of glycerol and water (εGly= 42.5, εWater= 80.4) (50% v/
v) in a micro-centrifuge tube, which was manually shaken to create the oil droplets.
The manual shaking results in emulsion droplets sizes ranging from 10 to 200 μm
in radius. We focused our attention on emulsion droplets of radius R= (19.2 ± 1.2)
r, where r ¼ rb þ rs

2 . The PMMA particles in oil droplets become charged due to the
dissociation of cyclohexyl bromide into H+ and Br−, refs. 4,40. These charged
PMMA particles are drawn toward oil-aqueous interface due to the formation of
image charges of opposite sign in the aqueous phase (Supplementary Fig. 1). A
charge q embedded in a dielectric (εOil) at a distance d away from a planar interface
of another dielectric (εAqueous) will form an image charge qimage

41:

qimage ¼ �ðεAqueous � εOilÞ
ðεAqueous þ εOilÞ

q: ð1Þ

We filled the requisite amount of the oil-aqueous emulsion in an open
cylindrical cell. Oil droplets (1.18 g cm−3) are denser than the aqueous phase (1.1 g
cm−3) and sediment to the bottom of the cell. The dynamics of bi-dispersed
PMMA particles at the oil-aqueous interface was observed using a confocal
microscope (Leica SP8 with a 63× oil-immersion objective, N.A. 1.4). The images
acquired from the confocal microscope were processed and rendered using ImageJ
and Matlab, and the center-of-mass coordinates of the particles were obtained
using standard Matlab algorithms (Supplementary Movie 2)42. Further analysis was
done using custom codes written in Matlab.

Data availability
The source data sets generated for the current study are available from the corresponding
author upon reasonable request.
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