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Abstract

Sleep is essential for optimal brain functioning and health, but the biological substrates

through which sleep delivers these beneficial effects remain largely unknown. We used a

systems genetics approach in the BXD genetic reference population (GRP) of mice and

assembled a comprehensive experimental knowledge base comprising a deep “sleep-

wake” phenome, central and peripheral transcriptomes, and plasma metabolome data, col-

lected under undisturbed baseline conditions and after sleep deprivation (SD). We present

analytical tools to interactively interrogate the database, visualize the molecular networks

altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disrup-

tion of sleep already extensively reshaped the systems genetics landscape by altering

60%–78% of the transcriptomes and the metabolome, with numerous genetic loci affecting

the magnitude and direction of change. Systems genetics integrative analyses drawing on

all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of

insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of

insufficient sleep itself on the transcriptome and metabolome are far more widespread than

previously reported.

Author summary

Sleep is essential for optimal brain functioning and health, but the biological substrates

through which sleep delivers these beneficial effects remain largely unknown. We used a

systems genetics approach in a large, diverse reference population of mice and assembled

a comprehensive experimental knowledge base comprising “sleep-wake” data, central and

peripheral gene expression, and plasma metabolic indicators, collected under undisturbed

baseline conditions and after sleep deprivation (SD). We present analytical tools to inter-

actively interrogate the database, visualize the molecular networks altered by sleep loss,
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and prioritize candidate genes. We found that a brief, one-time disruption of sleep exten-

sively reshaped the transcriptome in cerebral cortex and liver, and the plasma metabo-

lome, with numerous genetic loci affecting the magnitude and direction of change.

Integrative analyses drawing on multiple sources of data imply α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as

substrates of the negative effects of insufficient sleep. Our analyses demonstrate that

genetic heterogeneity and the effects of insufficient sleep on gene expression and metabo-

lism are far more widespread than previously reported.

Introduction

Insufficient or disrupted sleep characterizes the 24 h lifestyle of modern society and represents

a serious public health concern, as it is associated with increased risk for, e.g., obesity, diabetes,

and high blood pressure, and impairs cognitive performance, which in turn increases the like-

lihood of accidents, medical errors, and loss of productivity [1,2]. Several hypotheses concern-

ing sleep’s still elusive function converge on the notion that staying awake imposes a burden

that can only be efficiently alleviated during sleep [3–7]. This concept of a need for sleep accu-

mulating during wakefulness and recovering while asleep is central in sleep research and is

referred to as sleep homeostasis. Insight into the molecular substrates of the sleep homeostatic

process is instrumental in advancing our basic understanding of sleep need under both physio-

logical and pathological conditions.

The impact of acute sleep deprivation (SD) on recovery sleep and cognitive performance is

under strong genetic control [8–13], and genetic approaches therefore seem promising in

uncovering the molecular pathways important in sleep homeostasis. Reductionist studies in

mice and flies deleting genes through gene targeting (for review, see [8]) or in mutagenesis

screens [14–16] have demonstrated that single genes can have large effects on various aspects

of sleep, including its homeostatic regulation. Such large single-gene (mendelian) effects—

often assessed on 1 genetic background only—are, however, likely to be the exception. Indeed,

susceptibility to sleep loss in the general population is assumed to be determined by the inter-

actions of many genes, their natural allelic variants, and their interaction with the environment

(lifestyle), a complexity that only recently has begun to be appreciated. Such complexity can

best be assessed in so-called genetic reference populations (GRPs), which are designed for the

study of complex traits inherited in a nonmendelian fashion. The BXD panel of advanced

recombinant inbred lines (ARILs) is the largest and best-characterized GRP to date, consisting

of well over 150 lines in which 2 parental (C57BL/6J [B6] and DBA/2J [D2]), now fully

sequenced genomes are segregating (www.genenetwork.org; [17]). As each line represents a

reproducible clone of animals, many mutually reinforcing datasets can be collected and com-

pared at multiple levels across many biological systems. This approach has been termed “sys-

tems genetics,” which in essence allows for making inferences about biological phenomena by

assessing the flow of information from DNA to phenotype at the level of a population and how

this flow is perturbed by environmental challenges. Because systems genetics generalizes

results to a population level, it is considered critical for predicting disease susceptibility [18].

Systems genetics has been applied with great success in the BXD set for, e.g., mitochondrial

function and metabolic- and aging-related phenotypes [19–21].

Systems genetics approaches for sleep have been pioneered in the fly and mouse [22,23],

but neither study reported on the effects of sleep loss on intermediate phenotypes, such as the

metabolome and transcriptome. Here, we present an extensive and comprehensive dataset
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interrogating the BXD set at the levels of the genome, the brain and liver transcriptomes, the

plasma metabolome, and finally, the phenome including sleep-wake state, electroencephalog-

raphy (EEG)-, and locomotor activity (LMA)-related phenotypes, both under undisturbed

baseline conditions and after an acute SD challenging the sleep homeostatic process. We

observed that SD profoundly impacted all 3 phenotypic levels and that genetic background not

only determined the magnitude but also the direction of the SD-evoked changes. The molecu-

lar pathways associated with these effects will be illustrated here to introduce our integrated

data resource. The molecular signaling circuitry underlying the equally profound phenotypic

differences observed under baseline conditions will be reported in subsequent molecular-

driven validations.

Systems genetics is an emerging field, and innovative ways to improve data access, portabil-

ity, and reproducibility; tools to display and mine these data; and statistical models to extract

the multidimensional relationships across datasets are areas of intense research [24]. The size

and complexity of our current dataset necessitated the development of new analytical tools

and data sharing strategies such as (i) a supervised machine learning–based algorithm to anno-

tate sleep-wake states on EEG/electromyogram (EMG) tracks, (ii) a gene-prioritization strat-

egy that draws on all levels of the experimental dataset to assist the search for candidate genes

within quantitative trait locus (QTL) intervals, and (iii) the implementation and integration of

a recently developed systems genetics visualization tool [25] in a dynamic web-based interface

that, in addition, provides access to the data presented and enables interactive data mining

(https://bxd.vital-it.ch).

Results

This section is organized as follows: study design and the types of data contributing to our

resource are shortly described first. We then ascertain the contribution of genetic factors to all

the intermediate and end phenotypes we quantified. Next, the tools to interactively visualize

the systems genetics relationships and to prioritize candidate genes will be described in detail.

Because our current focus is on the effects of enforced wakefulness, we describe the SD-evoked

changes at the level of the GRP, as well as the genetic effects thereon, before closing with 4

examples that, aided with the prioritization tool, point to novel molecular pathways shaping

the marked genetic variability in the response to sleep loss at all levels of organization.

Study design and input data

We subjected mice from 33 BXD/RwwJ lines (see https://bxd.vital-it.ch; Downloads, General_In-

formation.xlsx for a listing), the 2 parental strains (B6 and D2), and F1 individuals from recipro-

cal crosses between the parental lines to a deep behavioral and molecular phenotyping across 4

levels of organization. In 1 set of mice, we recorded sleep-wake behavior, brain activity (by EEG),

and LMA for 4 d (Fig 1, Experiment 1). On day 3, mice underwent an SD challenge during the

first 6 h of the light period, when mice normally sleep most of the time. During SD, an average of

8.6 ± 0.7 successful attempts at sleep were observed lasting 14.2 ± 0.6 s on average, resulting in a

total of 1.8 ± 0.1 min (range: 0.0–9.8 min, n = 198 over the 33 BXD lines) of sleep or 0.5% of the 6

h intervention. Both the number of sleep episodes and total time spent asleep varied according to

BXD line (1-way ANOVA, p< 0.0001 for both variables), while response time of the experi-

menter (i.e., episode duration) did not (p = 0.66). Aided by a specifically developed, supervised

machine learning–based algorithm (see Materials and methods and S1 Fig), we could extract a

comprehensive set of EEG/behavioral phenotypes (see https://bxd.vital-it.ch; Downloads, Gener-

al_Information.xlsx), which were separated into 3 main biological categories related to (i) LMA,

(ii) EEG signal features, and (iii) the prevalence and time structure of sleep-wake state, collectively
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referred to as “LMA,” “EEG,” and “State,” respectively. The 3 phenotypic categories were divided

further into subcategories (see Materials and methods) and by experimental condition (baseline,

SD, and recovery). Because some of the 341 phenotypes we quantified were tightly linked (e.g.,

the time spent in non-REM [NREM] sleep and wakefulness), we estimated the total number of

distinct phenotypic clusters or modules to be 120 or 148 when considering phenotypes of differ-

ent subclasses (e.g., “EEG,” “State,” or “LMA”) within a given module as separate (S2 Fig, Materi-

als and methods, and https://bxd.vital-it.ch; Downloads, General_Information.xlsx). Most

phenotypes were unique or were grouped in modules of 2 phenotypes only (67%; median: 2 phe-

notypes/module, range: 1–13). Several of these modules (49/120) were associated into 3 larger

“superclusters” (Supercluster I–III; S2 Fig), containing 18, 20, and 11 modules, respectively.

Fig 1. Study design. Thirty-three BXD lines plus the 2 parental strains and their reciprocal F1 progeny were

phenotyped. Mice were submitted to either one of 2 experiments. In Experiment 1 (left), EEG/EMG signals and LMA

were recorded under standard 12:12 h light–dark conditions (white and black bars under top-left panel) for 2 baseline

days (B1, B2), a 6 h SD (red bar) from ZT0–6 (ZT0 = light onset), followed by 2 recovery days (R1, R2). The deep sleep-

wake phenome consists of 341 sleep-wake state-, LMA-, and EEG-related phenotypes quantified in each mouse, among

which time spent in NREM sleep (gray area spans mean maximum and minimum NREM sleep time among BXD

lines, respectively, for consecutive 90 min intervals). Mice in Experiment 2 (right) were used to collect cortex, liver, and

blood samples at ZT6. Half of the mice were challenged with an SD as in Experiment 1, the other half were left

undisturbed and served as controls (labeled Ctr). Cortex and liver samples were used to quantify gene expression by

RNA-seq, blood samples for a targeted analysis of 124 metabolites by LC/MS, or with FIA/MS. For phQTLs, mQTLs,

and eQTLs, a high-density genotype dataset (Genome; approximately 11,000 SNPs) was created, merging identified

RNA-seq variants with a publicly available database (www.genenetwork.org). The entirety of the multilevel dataset was

integrated in a systems genetics analysis to chart molecular pathways underlying the many facets of sleep and the EEG,

using newly developed computational tools to interactively visualize the results and pathways, and to prioritize

candidate genes. EEG/EMG, electroencephalography/electromyogram; eQTL, expression quantitative trait locus; FIA/

MS, flow injection analysis/mass spectrometry; LC/MS, liquid chromatography/mass spectrometry; LMA, locomotor

activity; mQTL, metabolic quantitative trait locus; NREM, non-REM; phQTL, phenotypic quantitative trait locus;

RNA-seq, RNA sequencing; SD, sleep deprivation; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005750.g001
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Supercluster I grouped almost exclusively “State”-related phenotypes (80/83), while Supercluster

II was composed mostly of “EEG”-related phenotypes (65/73). Supercluster III was composed of

10 “LMA”-related and 30 “State”-related phenotypes. However, in our analyses, we still used all

available phenotypes to detect potential regulatory differences among even closely related pheno-

types and to avoid analysis bias arising from selecting a “representative” phenotype.

A second set of mice, representing the same lines, was processed in parallel for collection of

brain, liver, and plasma (Fig 1, Experiment 2) to measure gene expression in cortex and liver and

metabolites in plasma. These transcriptomic and metabolomic data are collectively referred to as

(intermediate) molecular phenotypes. We quantified 124 metabolites (see https://bxd.vital-it.ch;

Downloads, General_Information.xlsx) using targeted metabolomics covering 5 important

metabolite classes (i.e., amino acids, biogenic amines, acylcarnitines, sphingolipids, and glycero-

phospholipids). Cortex and liver transcript levels were measured using RNA sequencing (RNA-

seq), and we detected about 14,900 expressed genes in the cortex and about 14,100 genes in the

liver after filtering and normalization.

We used the RNA-seq alignments also to genotype the lines to verify that no mix-up

occurred during the breeding and data collection phase, and to increase mapping resolution.

We compared the around 500,000 detected genotypes with the publicly available 3,500-geno-

type set for the same BXD lines from GeneNetwork (2005 release; see Materials and methods).

We observed only an approximately 1% discrepancy and merged both genotype sets, resulting

in a set of about 11,000 tag variations, which increased the number of haplotype blocks from

551 (GeneNetwork) to 1,071 (RNA-seq + GeneNetwork). All analyses we report here were

based on our merged map (see https://bxd.vital-it.ch; Downloads, Genotypes.GeneNetwor-

k2005AndRNAseq.geno). Of note, by the completion of this publication, an updated set of

BXD genotypes was released with an estimated haplotype block number of 816 for the specific

lines we used (GeneNetwork, 2017 release http://genenetwork.org). Of the 61 significant phe-

notypic quantitative trait loci (phQTLs) we detected (see below), 54 were also detected using

either GeneNetwork genotypes (the 2005 or 2017 release), while the remaining 7 significant

phQTLs were unique to our merged genotype map.

Heritability and QTLs

To obtain a first sense of the contribution of genetic factors to the phenotypic variability con-

tained within our BXD set, we examined the heritability of the EEG/behavioral and metabolic

phenotypes. The estimated narrow sense heritability [26] among the EEG/behavioral pheno-

types was high overall (median h2 = 0.68, Fig 2A), consistent with what has been reported in

previous human and mouse studies [27]. We also confirm that various aspects of the EEG sig-

nal are among the most heritable traits with, in our dataset, theta-peak frequency (TPF) in

REM sleep ranking highest (h2 = 0.89). The heritability for differential EEG/behavioral pheno-

types (i.e., recovery versus baseline; green symbols in Fig 2A) were consistently lower by

around 0.2 points compared with the heritabilities obtained for recovery or the baseline values

per se. By contrasting individual recovery values to the baseline strain averages, instead of to

each animal’s individual baseline value (thereby keeping within strain variance similar to that

of the absolute recovery values), we found that this effect did not simply reflect increased vari-

ability due to combining recovery and baseline values and thus suggests a smaller genetic con-

tribution to the response to sleep loss. The overall heritability of plasma metabolite levels was

somewhat lower than for EEG/behavioral phenotypes (median h2 = 0.50), with alpha-aminoa-

dipic acid (α-AAA) displaying the highest heritability (h2 = 0.88; Fig 2A).

Average-to-high heritabilities are a requirement to attribute phenotypic variation to gene

loci, but even then, there is no guarantee to find genome-wide significant QTL(s); e.g., for the

Systems genetics of sleep loss
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Fig 2. Genetic diversity in the BXD panel greatly impacts behavioral, metabolic, and molecular traits. The phenome was divided into 3 phenotypic categories: (i)

LMA, (ii) EEG features (labeled EEG), and (iii) sleep-wake state characteristics (labeled State), which were subdivided further (see Materials and methods). The 5 classes

of metabolites and the gene expression represent intermediate molecular phenotypic categories. (A) Heritability for EEG/behavioral and metabolite phenotypes. Dots

represent single phenotypes within each category and subcategory indicated along the x-axis. Red dots represent phenotypes recorded in baseline (labeled bsl; B1 and

B2), blue in recovery (labeled rec; R1 and R2), purple during SD, and green dots refer to the recovery-to-baseline contrasts. Values represent narrow-sense heritability.

(B) Overview of significant and highly suggestive (FDR< 0.1) QTLs obtained for all 341 EEG/behavioral phenotypes (phQTLs: LMA in red, EEG in blue, and sleep-

wake state in green) and 124 blood metabolite levels in baseline and recovery (mQTLs; purple). Note that overlap of neighboring QTLs renders color shading

darker. (C) Venn diagram of genes under significant cis-eQTL effect in liver and cortex for the two experimental conditions (SD and controls [labeled Ctr]). EEG,

electroencephalography; eQTL, expression quantitative trait locus; FDR, false discovery rate; LMA, locomotor activity; mQTL, metabolic quantitative trait locus; phQTL,

phenotypic quantitative trait locus; QTL, quantitative trait locus; SD, sleep deprivation.

https://doi.org/10.1371/journal.pbio.2005750.g002
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TPF in REM sleep phenotype mentioned above, only 4 suggestive phQTLs of small effect size

were identified (see https://bxd.vital-it.ch; Downloads, QTL_Mapping.xlsx) that together

could nevertheless account for 58% of the variance (estimated using an additive model, see

Materials and methods), suggesting that perhaps higher-order loci interactions (e.g., epistasis),

which cannot be captured using the single-marker linkage analysis we used here, underlie

Fig 3. How to visualize multidimensional networks and prioritize candidate genes? (A) Classical network visualization methods strongly depend on the layout

algorithm used for positioning nodes, making structure interpretation and reproducibility difficult. (B) Hiveplot network visualization and structure strategy. See text

for details. (C) The classical network visualization for the 3 phenotypes (blue nodes 1–3) in panel A can be represented with our method with 1 hiveplot per phenotype.

Phenotype 1 showed more cortex–liver correlations than the 2 other phenotypes through 1 metabolite, connecting up- and down-regulated genes in cortex after SD and

down-regulated genes in liver. Phenotype 2 shows genomic regions with strong allelic effect over multiple genes in liver and cortex through a high number of trans-
eQTLs. Phenotype 3 was mostly connected to cortically expressed genes correlating strongly with up-regulated metabolites; most cis/trans-eQTLs affected only cortical

genes. The number of significant (labeled sf) and suggestive (labeled sg) phQTLs detected for each phenotype are indicated on bottom left. The 3 phenotypes were

related to active wake behaviors during recovery (Phenotype 1 and 2: LMA per hour awake and time in TDW, respectively, both during ZT12–24; Phenotype 3: Gain in

time spent awake during ZT24–6). (D) Gene prioritization strategy to identify candidate genes associated with phenotype/metabolite variation, illustrated for 6 genes.

Five types of analyses were integrated into a single score for each gene to reflect its strength as candidate gene, namely from left to right (i) and (ii) QTL mapping for

gene expression (eQTLs) and ph- or mQTLs, respectively, (iii) DE after SD, (iv) gene expression/phenotype correlations, and (v) analysis of protein-damaging genetic

variations relating genes to an allelic effect. See text for further details. (E) To illustrate and validate our scoring, strategy, genes in liver were prioritized for levels of α-

AAA after SD. Dhtkd1 was identified as top-ranked candidate gene. Results from QTL mapping (red line) and prioritization analysis (green line); red and black

horizontal lines indicate significant thresholds for the QTL and prioritization, respectively. α-AAA, alpha-aminoadipic acid; DE, differential expression; eQTL,

expression quantitative trait locus; FDR, false discovery rate; LMA, locomotor activity; LOD, logarithm of odds ratio; mQTL, metabolic quantitative trait locus; QTL,

quantitative trait locus; phQTL, phenotypic quantitative trait locus; SD, sleep deprivation; TDW, theta-dominated waking; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005750.g003
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differences in this EEG trait. Genome scans revealed a total of 61 “significant” (false discovery

rate [FDR]� 0.05), 65 “highly suggestive” (0.05< FDR� 0.10), and 923 “suggestive”

(0.10< FDR� 0.63) [28,29] phQTLs and 21 significant, 40 highly suggestive, and 528 sugges-

tive metabolic quantitative trait loci (mQTLs; Fig 2B).

Several phenotypes from distinct phenotypic categories were associated with overlapping

genomic regions. For example, differences in baseline wake consolidation, gain in REM sleep

time after SD, EEG delta power (1.0–4.0 Hz) in REM sleep, baseline levels of serotonin and

phosphatidylcholine acyl-alkyl (PC-aa)-C34:4, and levels of PC-aa-C34:4 and PC-aa-C36:6

after SD all mapped to one 30 Mb region on chromosome 10 (50–80 Mb), each with a signifi-

cant or highly suggestive QTL (Fig 2B). These overlapping QTLs may point to pleiotropic

effects of 1 underlying gene or close but distinct underlying QTLs.

We also performed QTL analysis for gene expression, but because many more linkage tests

were required for transcriptome mapping, we used a more suitable method than for ph- and

mQTL mapping. The format for reporting expression quantitative trait loci (eQTLs) will there-

fore differ from that used for ph- and mQTLs (see Materials and methods). The expression of

individual genes was mapped separately for cis-eQTLs with genetic markers within a 2 Mb

window and trans-eQTLs with markers positioned throughout the genome (see Materials and

methods). The transcriptome of BXD mice showed strong linkage with genotypic variation.

For example, in the cortex, the expression of 5,704 genes (i.e., 38% of all expressed genes) was

significantly driven by a cis-variation (Fig 2C and https://bxd.vital-it.ch; Downloads,

cis_eQTL.xlsx). Moreover, 2,465 (34%) of all genes under cis-eQTL effect in both tissues passed

the 0.05 FDR cutoff in a single condition and tissue. Factors contributing to this tissue/condi-

tion specificity are the absence of gene expression in one of the 2 tissues or a different gene reg-

ulatory environment on which SD had pervasive effects (see Pervasive effects of SD at all

levels). This important tissue/condition specificity also applied to trans-eQTLs with 5,537

(53% of 10,450) being under trans-eQTL effect only in one specific tissue or condition.

Although the observation that a large portion of eQTLs reached significance in 1 tissue and

condition only does suggest widespread gene × environment interactions regulating gene

expression, reaching the 0.05 FDR threshold or not does not prove this. We therefore com-

pared linkage strength of significant cis-eQTLs that were specific for 1 tissue and condition

with that in the 3 other RNA-seq sets. Among the 870 genes with a significant cis-eQTL effect

in sleep-deprived cortex only (Fig 2C), 175 (20%) showed a significant difference in linkage

signal (FDR < 0.05). This proportion was similar in the control cortex and liver (19% and

21%, respectively) and somewhat higher in sleep-deprived livers (32%).

Systems genetics visualization

The complexity of multilevel networks can only be appreciated through visual aids. Because

the widely used “hairball” representation, in which biological factors are represented as

“nodes” and their interconnections as “edges,” is hardly interpretable due to its nondetermin-

istic structure (Fig 3A), we opted for a structured representation more suitable for the visuali-

zation of complex systems, namely, “hiveplots” [25]. The hiveplots were laid out as follows:

each plot represents 1 EEG/behavioral phenotype and its associated molecular network—i.e.,

only the genes and metabolites strongly correlated with a given phenotype are displayed (Fig

3B; see Materials and methods for details). Each hiveplot is composed of 3 radial axes contain-

ing the molecular data with nodes assigned to the 2 bottom axes for genes expressed in the cor-

tex (Fig 3B left, in blue) and liver (Fig 3B right, in red), while nodes on the vertical axis (Fig 3B

top, in yellow) represent metabolites. On top, we added a separate “genetic” axis (Fig 3B top,

white) containing the genotypes. The node position on the 3 (molecular) radial axes was
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determined by the response to SD—i.e., molecules positioned closer to the center were down-

regulated more strongly, while more up-regulated genes/metabolites can be found closer to

the axes’ perimeter. Edges connecting nodes represent positive/negative correlations (red/

blue, respectively) between measurements of expression/metabolite levels. Genetic markers

linked to genes by eQTLs connect the genetic and molecular space.

The hiveplot representation allows investigation of the molecular network associated with

an EEG/behavioral phenotype in a structured manner and comparison of phenotypes using all

intermediate phenotypic layers available in the dataset. The difference in presence or absence

of nodes/edges between 2 phenotypes indicates which association was gained or lost. Further-

more, the importance of the SD effect on these nodes can be visually estimated by their posi-

tion along the axis (Fig 3C). Although the interphenotype connectivity present in the hairball

representation is lost in the printed format of these hiveplots, this aspect can be easily accessed

through our web interface (https://bxd.vital-it.ch) by highlighting common edges. The web

interface also allows for an in-depth exploration of the data by displaying node details, such as

gene and metabolite name, and variation identifiers. It also lets the user modify the parameter

settings, such as the correlation strength used to include correlated genes and metabolites,

with which the hiveplots are generated (see S3 Fig and the tutorial on https://bxd.vital-it.ch;

Help).

Systems genetics prioritization

We developed an unbiased, data-driven approach to select candidate genes associated with our

EEG/behavioral and metabolic phenotypes. We focused on genes located in the associated

genomic regions found by QTL analyses (see Fig 2B). To investigate these often quite large

regions (mean = 9.8 Mb, range = 0.7–34.7 Mb for significant and highly suggestive phQTLs),

we implemented a scoring strategy inspired by the “similarity profiling prioritization strategy”

[30], which combines multiple sources to prioritize a gene. For each gene, we computed an

integrated score composed of (i) the genomic position of the gene with respect to the ph-/
mQTL peak, (ii) a detected cis-eQTL driving the expression of the gene, (iii) a protein-damag-

ing annotation of a variant, (iv) differential expression (DE) after SD, and (v) correlation

between expression and phenotype of interest (Fig 3D, S4 Fig, see Materials and methods for

details). Our prioritization strategy thus aimed at identifying genes that are sensitive to sleep

loss, correlated with the phenotype being evaluated, associated to a cis-eQTL, and/or carrying

a protein-damaging variant that could contribute to trait variance. A Henikoff weighting algo-

rithm was applied to correct for intrinsic correlations among the 5 analysis scores. One infor-

mative example of such intrinsic correlation is a cis-eQTL located within a phQTL region, in

which case the phenotype–gene expression correlation will be influenced by linkage. The algo-

rithm decreases the cis-eQTL score accordingly, and cis-eQTLs therefore usually contributed

with a low score to the prioritization (see S1 Table for examples). The integrated score for each

gene was computed with the given formula (Fig 3D), and an FDR was computed by perform-

ing 10,000 permutations (S4 Fig and Materials and methods). For each QTL, we kept the gene

with the highest significant integrated score. This scoring strategy was applied to cortex and

liver data separately.

To illustrate our prioritization algorithm, we applied it to the metabolite with the highest

heritability, α-AAA (see above), and for which we obtained a highly significant mQTL on

chromosome 2 (logarithm of odds ratio [LOD] = 9.25, 1–11 Mb). We readily identified

Dhtkd1 as the top-ranked significant candidate gene in liver within the chromosome 2 mQTL

(Fig 3E) because of (i) the strong correlation of Dhtkd1 expression with α-AAA levels, (ii)

Dhtkd1 is under a cis-eQTL effect (rs222492362, chr2: 5.8 Mb, q = 1.5e−17), (iii) the marker of
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the cis-eQTL is located within the peak of the mQTL, and (iv) both α-AAA and Dhtkd1 levels

are affected similarly by SD. The 5 scores and weights of this example and those obtained in

Examples 1–4 (see below) are detailed in S1 Table.

This result can be taken as a first validation of our scoring strategy because Dhtkd1 encodes

an enzyme subunit involved in lysine degradation known to control α-AAA levels in BXD

lines [31]. Although with this particular example, the prioritization tool did successfully select

the causative gene underlying the α-AAA mQTL, it is important to note that, as opposed to

other tools that have been developed (e.g., [32,33]), our algorithm cannot infer causality and is

designed to help select likely candidate genes within m- and phQTLs.

Pervasive effects of SD at all levels

The EEG/behavioral and molecular phenotypes were assessed both under undisturbed baseline

conditions and after 6 h SD. SD profoundly and significantly impacted a majority of measure-

ments at all levels. We observed the well-known increase in EEG delta power (1.0–4.0 Hz) dur-

ing NREM sleep as well as the increase in the time spent asleep (Fig 4A), both reflective of an

accumulated homeostatic sleep pressure during SD. The gain in time spent in NREM sleep

was strongest during the initial 12 h following the SD, with an average gain of +23 min (com-

pared with values reached during corresponding baseline hours) during the first 6 h after the

SD (zeitgeber time [ZT]6–12) and +32 min during the first 6 h of the following dark period

(ZT12–18). The most strongly affected sleep phenotype concerned time spent in REM sleep,

which displayed a 3.3-fold gain during the first 6 h of darkness (ZT12–18) after SD (Fig 4A).

SD thereby doubled the proportion of REM sleep to NREM sleep in this interval. Locomotor

activity and waking phenotypes were generally decreased during the light period immediately

following the SD (ZT6–12).

In addition, the plasma metabolome was profoundly altered by SD. Of the 124 measured

metabolites, 75 (60%) were significantly up- or down-regulated. The levels of all amino acids

were significantly altered after SD, the majority being down-regulated, with the exception of

glutamine, glutamate, and tryptophan, which were up-regulated (Fig 4B). A recent publication

reported similar effects on amino acid levels in brain dialysates of sleep-deprived rats [35], sug-

gesting that plasma can report on central changes in amino acid levels. By contrast, tryptophan

was the only amino acid that was found significantly changed during SD in humans using the

same methodology [36]. The 2 acylcarnitines present in our dataset (C18:1 and C18:2) were

both strongly up-regulated with a greater than 2-fold change. Similar results were found in

humans, with acylcarnitines levels increased in blood and carnitines increased in urine after

sleep loss [36,37].

The transcriptome was especially sensitive to SD, with 78% of all expressed genes being dif-

ferentially expressed in cortex and 60% in liver. In cortex, the most strongly differentially

expressed genes were activity-regulated cytoskeletal-associated protein (Arc), early growth
response 2 (Egr2), and perilipin 4 (Plin4), with an almost 8-fold increase in expression after SD

(see S2 Table). Arc is an immediate early gene crucial for long-term synaptic plasticity and

memory formation [38]. Arc is among the most consistently up-regulated transcripts after SD

[39] and features in a short list of 78 genes, the expression of which we found reliably and sig-

nificantly changed by extended wakefulness under a number of experimental conditions [34].

Forty-nine other genes in this short list featured among the top 5% most affected transcripts of

the current experiment (S2 Table and blue symbols in Fig 4C left; enrichment p = 5.6e−43,

Fisher test). The remaining 29 of this short list were all significantly affected by SD also in the

current study, 15 of which were found in the 5%–10% tile, and all ranked in the top 26% of

most differentially expressed genes. Similarly, Egr2 is 1 of 3 Egr genes that are rapidly induced
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by SD in several species [39]. Egr1 and Egr3 appear on our short list of 78, and all 3 Egrs are

among the top-100 differentially expressed cortical genes in the current study (S2 Table). The

Egr family are immediate early genes encoding transcription factors important in neuronal

plasticity [40]. Plin4, which encodes a lipid droplet–associated protein involved in lipid storage

Fig 4. Profound effects of SD on transcriptome, metabolome, and phenome. EEG/behavioral phenotypes, metabolites, and transcripts are organized into 3

“columns” (from left to right). Top 3 panels show the SD response (recovery/baseline fold change). Bottom 3 panels depict examples of allelic effects on the SD

responses, with color-coding indicating the presence of a C57BL/6J or DBA/2J haplotype under the mapped QTL peaks (B6: gray for BXD and black for parental; D2:

light brown for BXD and dark brown for parental). White bars mark the F1s and hatched bars strain in which haplotype could not be unambiguously determined. (A)

Phenotypic changes after SD. The top significantly changed phenotype was the increase in NREM sleep EEG delta power (1–4 Hz) after SD (far-left blue data point). The

most up-regulated phenotype was time spent in REM sleep during the first 6 h of darkness (ZT12–18) after SD (highest green data point). (B) Metabolite changes after

SD. Most amino acids (blue) were down-regulated and most sphingolipids (brown) up-regulated after SD. The acylcarnitines C18:1 and C18:2 (highest red dots)

increased the most. Vertical red line: significant threshold (FDR-adjusted p-value = 0.05). (C) DE analysis (SD/Ctr) for cortex (left) and liver (right). Genes were sorted

according to their ranked p-value along the x-axis. Significantly affected transcripts in red (FDR-adjusted p-value< 0.05), nonsignificant results in black. Blue dots

indicate 78 genes considered core molecular components of the sleep homeostatic response in the cortex [34]. Note that no low fold change threshold was applied. (D-F)

Examples of genetically driven EEG/behavioral, metabolic, and transcriptional responses to SD, respectively. See text for details. Arc, activity-regulated cytoskeletal-
associated protein; Ctr, control; DE, differential gene expression; EEG, electroencephalography; Egr2, early growth response 2; Fam107a, family with sequence similarity
107, A; FDR, false discovery rate; LMA, locomotor activity; Mlycd, malonyl-CoA decarboxylase; NREM, non-REM; Plin4, Perilipin 4; Pla2g4e, phospholipase A2, group
IVE; QTL, quantitative trait locus; SD, sleep deprivation; Ttll8, tubulin tyrosine ligase-like family 8; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005750.g004
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[41], has not been reported previously as part of the SD response. Tubulin tyrosine ligase-like
family 8 (Ttll8), encoding a ligase that glycylates microtubules [42], and family with sequence
similarity 107, A (Fam107a), a stress- and glucocorticoid-regulated gene [43,44], were the top

differentially expressed genes in liver (S3 Table). Although the short list of 78 was based on

forebrain samples, 17 genes were also present in the top 5% differentially expressed genes in

the liver (blue symbols in Fig 4C right). Moreover, 13 genes were common to the top 5% list in

cortex, liver, and the 78 genes of the short list (Hspa1a/b, Cirbp, Fos, P4ha1, Chordc1, Dusp1,

Slc5a3, Hsph1, Creld2, Tra2a, Zbtb40, and Pfkfb3). These genes might be interesting candidates

for tissue-independent biomarkers of sleep pressure.

Genetics of the effects of SD

In the context of our project, a key question is whether genetic background modifies these per-

vasive effects of SD. We found evidence for this at all 3 levels of organization and detected

genomic loci predicting differences not only in the magnitude of the response to SD but also

in the direction of the response (illustrated in Fig 4D–4F). In the analyses, we included both

the levels reached after the SD and these levels contrasted with their baseline levels. These con-

trasts will be referred to as “change,” “increase,” “gain,” “decrease,” or “DE”.

For 7 EEG/behavioral “gain” phenotypes we discovered a significant QTL (https://bxd.

vital-it.ch; Downloads, QTL_Mapping.xlsx). Illustrated in Fig 4D is the gain in time spent in

REM sleep, which mapped significantly to chromosome 18 (LOD = 3.9; 57–62 Mb) with

B6-allele carriers gaining more REM sleep than D2-carriers (genotype × SD interaction:

p = 2.0e−5). Three more “gain” phenotypes will be discussed in detail below (see Example 1, 3,

and 4 in the Systems genetics of the effects of SD section). Also illustrated in Fig 4D is an EEG/

behavioral gain phenotype with a pronounced genotype effect on the direction of change. The

SD-induced changes in EEG activity in the fast gamma band (55–80 Hz) in NREM sleep

mapped suggestively to chromosome 6 (LOD = 2.83; 77–89 Mb), with a majority of B6-allele

carriers at the QTL peak position having a significant decrease in fast gamma, while several

D2-allele carriers showed a significant increase (genotype × SD interaction: p = 1.0e−5).

Examples of 2 genetically driven metabolic responses to SD are illustrated in Fig 4E. The

change in PC-ae-C32:2 after SD mapped significantly to chromosome 5 (LOD = 3.6; 58–69

Mb; genotype × SD interaction: p = 2.0e−3). The change in acylcarnitine C18:1, the strongest

among all metabolites assayed (Fig 4B), mapped suggestively to chromosome 18 (LOD = 3.6;

73–75 Mb; genotype × SD interaction: p = 2.0e−3). For an additional 79 metabolites, a signifi-

cant genotype × SD interaction was obtained that mapped at the suggestive level (see https://

bxd.vital-it.ch; Downloads, Genotype_SD_Interaction.xlsx). Finally, significant cis-eQTLs

were detected for the DE (i.e., recovery versus control) of 195 genes after SD in cortex and 62

in liver (see https://bxd.vital-it.ch; Downloads, Genotype_SD_Interaction.xlsx and cis_eQTL.

xlsx). The strongest cis-allele in cortex was found for the DE of phospholipase A2, group IVE
(Pla2g4e; rs47077493, chr2: 118.3 Mb, q = 1.2e−9) with a down-regulation that was 2-fold

larger in B6- than in D2-allele carriers (genotype × SD interaction: p = 1.0e−9; Fig 4F). Also

illustrated are the effects of SD on malonyl-CoA decarboxylase (Mlycd) expression for which a

cis-eQTL was identified (rs33610973, chr8: 120.8 Mb, q = 1.9e−5). In BXD lines carrying a

B6-allele at the cis-eQTL position, a down-regulation of Mlycd was observed, while the oppo-

site was true for D2-allele carriers (genotype × SD interaction: p = 2.0e−4; Fig 4F). Pla2g4e
encodes a phospholipase promoting the formation of free fatty acids (FFAs), while Mlycd
encodes an enzyme promoting mitochondrial fatty acid oxidation. One last example of a sig-

nificant differential cis-eQTL, for Werner syndrome RecQ like helicase (Wrn), will be discussed

in detail below (see Example 1 in the Systems genetics of the effects of SD section). It should be
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noted that for most of the significant differential cis-eQTLs, including Wrn, DE and the abso-

lute expression after SD were highly correlated (>0.5; 140/195 in cortex), and both were regu-

lated by shared cis-eQTLs (161/195).

Systems genetics of the effects of SD

In the following 4 sections, we highlight 4 phenotypes quantified during recovery from SD

that emerged from our systems genetics analyses because of the presence of strong genetic evi-

dence at all levels of organization. Two concern the levels of EEG delta power reached after

SD, 1 concerns the gain in time spent in NREM sleep during recovery, and, as a last example,

the changes in TPF during REM sleep in recovery. While for the first 3 phenotypes abundant

evidence exists documenting their change with SD and their relevance in optimal daytime

functioning and health, the latter phenotype (which has not been reported on previously) illus-

trates that, depending on genotype, a phenotype can either increase or decrease after sleep loss.

Moreover, this example shows that phenotypes considered strictly “central” (i.e., the frequency

of hippocampal theta oscillations) are strongly associated with genomic loci affecting gene

expression in the periphery and not in the brain. It is important to point out that the genomic

loci identified for these 4 recovery phenotypes appear after SD only and not (even at the sug-

gestive level) under baseline conditions. Of equal importance is pointing out that our analyses

cannot provide causal proof; instead, the systems genetics approach’s power lies in generating

new hypotheses that need experimental confirmation. A first step in that direction was made

in Example 4 below.

Example 1: Genetic heterogeneity in the gain of slow and fast EEG delta power after

SD. The prevalence and amplitude of EEG oscillations in the delta frequency range (1.0–4.0

Hz) during NREM sleep can be quantified as EEG delta power. The sleep-wake-dependent

changes in EEG delta power have been widely used as a marker of the sleep homeostatic pro-

cess and form the basis of leading hypotheses on sleep-wake regulation and function [4,6,45].

The sleep-wake-dependent changes do not, however, affect all delta frequencies to the same

extent, and therefore, the presence of slow (δ1) and fast (δ2) delta bands have been recognized

in humans, rats, and mice, each with different dynamics and different response to experimen-

tal interventions [46–51]. As a neurophysiological correlate of the increased EEG activity in δ1

activity after SD, increased noradrenergic tone in the cortex has been proposed [52], while the

acceleration of the clocklike delta oscillations generated by thalamocortical neurons at increas-

ing levels of hyperpolarization that accompany deep NREM sleep could contribute to increases

in δ2 activity [53,54]. Although the various studies used different frequencies ranges to delin-

eate the δ1 and δ2 delta bands, we here used the 1.0–2.25 and 2.5–4.25 Hz bands, respectively,

according to our previous publications [46,47].

In the current dataset, we confirmed that EEG activity in the 2 bands responded differently

to SD; e.g., lines that showed the lowest/highest gain in δ1 power (i.e., BXD81 and BXD67,

respectively; Fig 5A bottom) only ranked 12th and 23rd (out of 33) for the gain in δ2 power.

Moreover, while δ1 power gain clustered with the absolute levels of delta and δ1 reached after

SD (S2 Fig), δ2 power gain shared an unrelated phenotypic module with delta power gain.

Although we did not find loci with strong linkage for the gain in EEG delta power after SD

when analyzed for the entire delta frequency range (see S1 Text), we did identify genetic loci

contributing to increases in either δ1 or δ2 power over baseline. While 1 suggestive QTL

(LOD = 2.58; chr1: 165–176 Mb) was found using the full 1.0–4.0 Hz band, we detected 1 sug-

gestive QTL on chromosome 8 (LOD = 2.86; 18–37 Mb) for the gain in δ1 power, explaining

33% of the phenotypic variance across the BXD lines, and 5 suggestive QTLs for δ2 power

gain, none of which overlapped with the δ1 and “full” delta power gain QTLs. Although each
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of these 5 QTLs explained only <5% of the total variance in δ2 power gain, combined they

explained no less than 75% of the variance (estimated using an additive model; see Materials

and methods). These genetic findings extend our previous observations that δ1 and δ2 power

gain are regulated through distinct signaling pathways.

Gene prioritization significantly scored the DNA-helicase Wrn as a candidate for δ1-power

gain, while no significant candidates were found for the full delta gain and for the δ2-power

gain, probably due to the low effect size for each of the 5 suggestive QTLs. Wrn is located

within the suggestive QTL on chromosome 8 (Fig 5B bottom), and its expression was strongly

associated with a long phosphatidylcholine (PC-ae-C38:5; Fig 5C bottom). We found that Wrn
expression in the cortex specifically was driven by a cis-eQTL (rs51740715, chr8: 35.2 Mb,

q = 1.9e−7) with D2-allele carriers having higher expression levels than B6 carriers under con-

trol conditions. Moreover, this same cis-eQTL region determined the magnitude of the SD-

induced decrease in Wrn expression, such that after SD, D2-allele carriers now displayed

lower levels than B6-allele carriers (genotype × SD interaction: p = 5.2e−10; Fig 5D right).

Moreover, a higher gain in δ1 power was associated with a stronger down-regulation of Wrn
after SD (Fig 5E right).

Wrn encodes a DNA-repair protein involved in several aging-related diseases [55] and is

regulated by Sirt1 [56], which, in turn, is involved in redox homeostasis, senescence, and wake-

fulness [57,58]. Down-regulation of Wrn alters redox homeostasis through a metabolic shift,

impacts glucose metabolism, and increases oxidative stress [59,60]. Wrn helicase mutants also

showed up-regulation of long phosphatidylcholines [61] relevant for the significant association

between Wrn expression and PC-ae-C38:5 we reported above. The down-regulation of Wrn
after SD and its association with the sleep-wake-dependent changes in EEG delta power raise

questions concerning its involvement in the known sleep loss–related increases in oxidative

stress [62,63] and the age-related reduction in EEG delta power [64,65].

Example 2: The level of fast delta activity in the NREM sleep EEG after SD. Apart from

the sleep-wake-driven gain in EEG power in the 3 delta bands discussed in Example 1, the

prevalence and magnitude of the delta oscillations per se are under strong genetic control both

in human and mouse [66,67]. The capacity to generate widespread synchronized cortical activ-

ity in the delta frequency range during NREM sleep and the effects of SD thereon represent 2

unrelated EEG phenotypes governed by different genetic factors [68]. Accordingly, the QTLs

Fig 5. EEG delta power in NREM sleep after SD is associated with Kif16b and Wrn. (A) NREM sleep EEG spectra in the first 3 h after SD

(ZT6–9) for the 2 BXD lines that displayed the lowest and highest EEG activity in the fast delta frequency band (2.5–4.25 Hz, δ2; top, see panel E)

and for the 2 BXD lines that displayed the smallest and largest increase (or gain) in EEG power in the slow delta band (1.0–2.25 Hz, δ1; bottom,

see panel E). Spectra were “1/f-corrected” (and therefore not directly comparable to the values in panel E) for better visualization of activity in

higher frequency bands (theta [5–9 Hz, θ], sigma [11–16 Hz, σ], beta [18–30 Hz, β], and slow [32–55 Hz, γ1] and fast gamma [55–80 Hz, γ2]).

Subsequent analyses were performed without this correction. (B) QTL mapping and prioritization for δ2 power identified a significant association

on chromosome 2 and Kif16b in cortex as top-ranked gene (top). For the δ1 increase after SD, we obtained a suggestive QTL on chromosome 8

and a significant prioritization score for the DNA-helicase Wrn. (C) Hiveplot visualization of network connections for the δ1 and δ2 power after

SD (top-left panels) and the SD-induced increase in δ1 and δ2 power over baseline (bottom-left panels). Note the marked differences in the

networks and QTLs regulating the expression of these 2 delta bands. Right hiveplots highlight Kif16b in the δ2 power–associated network (top),

and Wrn in the network associated with the δ1 increase (bottom). Only Kif16b expression in the cortex was linked to the chromosome 2 cis-eQTL

and was not associated with any metabolite. Wrn expression was significantly linked to the chromosome 8 cis-eQTL and to the long

phosphatidylcholine, PC-ae-C38:5. (D) Kif16b is highly significantly down-regulated in cortex (left), while it remains unchanged in liver after SD

(p = 0.15; not shown). Also, Wrn expression was strongly down-regulated by SD in cortex (right) and only marginally so, albeit significantly, in

liver (p = 0.02; not shown). (E) Strain distribution patterns. BXD lines carrying a B6-allele on the chromosome 2–associated region showed higher

δ2 power after SD (left) and a significantly higher Kif16b expression (p = 1.3e−15; second to left) than D2-allele carriers. D2-allele carriers of the

chromosome 8–associated region showed a larger δ1 increase after SD (second to right) as well as a significantly larger decrease in Wrn
expression after SD (right) than B6-allele carriers. For color-coding of genotypes, see Fig 4. CPM, counts per million; Ctr, control; EEG,

electroencephalography; eQTL, expression quantitative trait locus; FDR, false discovery rate; Kif16b, Kinesin family member 16B; NREM, non-

REM; PC-ae, phosphatidylcholine acyl-alkyl; QTL, quantitative trait locus; SD, sleep deprivation; Wrn, Werner syndrome RecQ like helicase; ZT,

zeitgeber time

https://doi.org/10.1371/journal.pbio.2005750.g005
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associated with the gain in δ1 power and in δ2 power presented in Example 1 did not associate

with the levels of δ1 power and δ2 power reached after SD. Moreover, as for the δ1- and

δ2-gain phenotypes, the levels in delta power measured after SD differed between the δ1 and

δ2 frequency bands and did not cluster together, although both were associated with Superclu-

ster II (S2 Fig). For example, the lowest/highest powers for the δ2 band were found in BXD75

and BXD44, respectively (Fig 5A top), while these 2 lines ranked 2nd and 14th (out of 33) for

δ1 power. For δ2 power after SD, a significant QTL was identified on chromosome 2

(LOD = 3.87; 136–144 Mb) that explained 42% of the variance. This QTL was specific for δ2

power and did not associate with δ1 power, for which no QTL was found. We did, however,

find a suggestive QTL at the same locus for the power in the full delta band explaining a mere

2% of its variance among the BXD lines. This QTL was specific also for recovery sleep, and no

linkage was observed in this region for the absolute δ2 power levels in baseline (https://bxd.

vital-it.ch; Downloads, QTL_Mapping.xlsx) nor for the significant recovery/baseline gain in δ2

power discussed above in Example 1.

Our prioritization strategy revealed kinesin family member 16B (Kif16b) as the top signifi-

cant candidate gene for δ2 power after SD (Fig 5B top). The high prioritization score was

based on the strong cis-eQTL associated with Kif16b expression in both cortex and liver (Fig

5C highlight; novel marker, chr2: 142.4 Mb, q = 1.3e−15 in cortex, q = 7.13e−5 in liver), the

pronounced down-regulation of Kif16b expression in cortex after SD (Fig 5D left), and the

positive correlation between δ2 power after SD and Kif16b expression (Fig 5E left). Lines carry-

ing a B6-allele at the chromosome 2–associated region displayed higher δ2 power after SD and

a significantly higher Kif16b expression compared to D2-allele carriers (Fig 5E left).

Kif16b encodes a kinesin involved in early endosome and receptor transport, including of

receptors that play a role in sleep regulation such as fibroblast growth factor (FGF) [69], nerve

growth factor (NGF) [70], and ionotropic glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazo-

lepropionic acid [AMPA]) [71] receptors. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor (AMPA-R) levels are sleep-wake driven, associated with changes in EEG delta

power, and have been explored as therapeutic targets to counter the deleterious effects of SD

on cognition [72–76]. Our results thus corroborate a link between fast delta EEG activity after

SD and AMPA-R trafficking and implicate Kif16b as a candidate molecular go-between. Of

interest, given the large changes in Arc expression after SD (reported in the section Pervasive

effects of SD at all levels), is that increased Arc expression reduces the number of AMPA-Rs

through its direct interaction with components of the endocytic pathway, thereby contributing

to homeostatic synaptic scaling [38,77]. Whether Arc-dependent AMPA-R trafficking through

the endocytic pathways involves Kif16b’s role in the localization of early endosomes requires

further study.

Example 3: SD shifts TPF in the REM sleep EEG. The EEG during REM sleep in the

mouse is dominated by an almost single-frequency theta oscillation in the 5–9 Hz range of hip-

pocampal origin [78], the main frequency of which can be easily determined with a Fourier

transformation (Fig 6A). Theta activity during REM sleep is important for memory consolida-

tion [79]. Our current data (see h2 analysis above) confirm our previous observations that

most of the variance in TPF among inbred strains of mice can be explained by additive genetic

factors [80,81]. Here, we discovered that increased sleep pressure shifts REM sleep TPF (com-

pared to REM sleep TPF in corresponding baseline hours, i.e., ZT6–12) and that the direction

of this shift strongly depends on genetic background (Fig 6A). TPF was a unique phenotype

not part of any phenotypic module or supercluster (S2 Fig).

For this phenotype, we found a significant QTL on chromosome 4 (LOD = 4.94, 104–123

Mb; 50% variance explained) and a suggestive QTL chromosome 8 (LOD = 2.73, 0–15 Mb;

32% variance explained; Fig 6C top). The prioritization strategy identified cytochrome P450,
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family 4, subfamily a, polypeptide 32 (Cyp4a32) as the top candidate gene in the liver (Fig 6C

bottom). Cyp4a32, which was not expressed in cortex, is located within the associated chromo-

some 4 phQTL region; is under strong cis-eQTL effect (rs27480007, chr4: 115.2 Mb, q = 1.0e

−12), greatly increasing its expression in D2-allele carriers; and contains a nonsynonymous

protein-damaging variation in the coding region of the D2 allele (V314E, PolyPhen2

score = 1.0, see Materials and methods). SD causes TPF to accelerate in carriers of the D2-allele

at the Cyp4a32 cis-eQTL locus and to slow down in B6 carriers. Cyp4a32 expression in

D2-allele carriers is high in baseline and increases further after SD while remaining low and

Fig 6. Changes in the frequency of theta oscillation during REM sleep after SD are associated with Cyp4a32. (A) Spectral profiles of the REM sleep EEG for 2 strains

displaying an opposite shift in the frequency of theta oscillations after SD relative to baseline. This shift was quantified by the decrease and increase in TPF for BXD61

and BXD101, respectively (see panel F). (B) Hiveplot for the SD-induced shift in TPF. (C) One significant QTL for the TPF shift was detected on chromosome 4 and 1

suggestive QTL on chromosome 8. Prioritization yielded Cyp4a32 as the top-ranked significant gene, based on the significant cis-eQTL modifying its expression in liver

and a predicted damaging variation (V314E). (D) Effects of SD and genotype on liver Cyp4a32 expression. Carrying a B6-allele at the Cyp4a32 cis-eQTL–associated

marker greatly decreased its expression. (E) Hiveplot for the SD-induced shift in TPF, highlighting Cyp4a32’s links to the amino acid Valine and the chromosome 4

eQTL marker. (F) Strain distribution patterns for TPF differences and liver Cyp4a32 expression after SD. B6-allele carriers at the chromosome 4–associated region had

lower Cyp4a32 liver expression and a decrease in TPF after SD, while D2-carriers increase TPF and have higher Cyp4a32 expression. CPM, counts per million; Ctr,

control; Cyp4a32, Cytochrome P450, family 4, subfamily a, polypeptide 32; DE, differential expression; EEG, electroencephalography; eQTL, expression quantitative trait

locus; lod, logarithm of odds ratio; QTL, quantitative trait locus; SD, sleep deprivation; TPF, theta-peak frequency

https://doi.org/10.1371/journal.pbio.2005750.g006
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stable under both conditions in B6-allele carriers (Fig 6D). The 2 F1 hybrids both have a posi-

tive TPF shift, suggesting a dominance of the D2 allele, although some D2 allele–carrying lines

did show a negative TPF shift (Fig 6F), indicating that this variation is not sufficient and possi-

bly interacts with other loci, such as the suggestive QTL on chromosome 8, and with metabo-

lites. Hiveplot visualization revealed that the TPF shift was associated with several amino acids

(Fig 6B), which were all significantly down-regulated after SD (see above and Fig 4B). The 3

top-ranked associated amino acids were the branched-chain amino acids (BCAAs) leucine,

isoleucine, and valine. Plasma levels of valine, in turn, were significantly linked to Cyp4a32
expression (Fig 6E highlight), although no common mQTL was found.

Cyp4a32 and its human ortholog CYP4A11 are part of the Cyp4a gene family encoding cyto-

chrome 450 liver enzymes that can ω-hydroxylate fatty acids and which are induced by starva-

tion and diabetes [82]. Cyp4a32 encodes a peptide targeting the degradation of arachidonic

acid (ARA) specifically. ARA is abundant in the brain, but its levels largely depend on supply

by blood [83]. ARA and its metabolites, such as prostaglandins and endocannabinoids, are

involved in many processes in the brain—including signaling, synaptic plasticity, long-term

potentiation, and neurogenesis—and have been associated in cognitive performance, mood,

and neurodegenerative disease [83–85]. The relation between TPF and fatty acid metabolism

has already been suggested with the identification of Acads, an acyl-CoA dehydrogenase

involved not only in fatty-acid β-oxidation but also in BCAA degradation (Kyoto Encyclopedia

of Genes and Genomes [KEGG]: mmu00280), as the causative gene explaining REM sleep TPF

differences between 2 inbred strains [81] but not the SD-induced shift in TPF reported here.

BCAAs, in turn, are involved in fatty acid biosynthesis [86,87] and are also implicated in insu-

lin resistance [88]. These results suggest a pathway relating the SD effects on BCAA, and possi-

bly ARA, through fatty acid metabolism in the periphery, with the marked SD-induced

changes in TPF during REM sleep.

Example 4: Compensation for NREM sleep time lost. During recovery sleep, mice com-

pensate for the sleep lost during the preceding SD not only by sleeping deeper (quantified as

the increase in EEG delta power discussed in Example 1) but also by sleeping more [89]. We

quantified the gain in NREM and REM sleep time over the 24 h recovery period following the

SD by contrasting these recovery values to time-matched baseline values within individual

mice. We found that the gain for both NREM and REM sleep was largest in the first 6 h of the

recovery dark period (ZT12–18; Fig 7A), consistent with our earlier observations [89]. How-

ever, only for the NREM sleep gain during that period did we identify a significant QTL on

chromosome 4 (LOD = 4.38; 103–110 Mb), explaining 45% of the variance in this trait (Fig

7C). A second suggestive QTL was found on chromosome 1 (LOD = 3.14; 169–173 Mb; 35%

variance explained). Together, the 2 loci explained 55% of the variance in NREM sleep gain

(estimated using an additive model; see Materials and methods). Neither QTL was associated

with the gain in REM sleep during this period (not even at the suggestive level), further under-

scoring the different regulation, both genetic and physiological, of these 2 sleep states.

NREM sleep gain during ZT12–18 clustered with the loss of time spent awake over the

same time interval only (S2 Fig) and not with NREM sleep gain in the other 6 h intervals dur-

ing the 24 h recovery. Hiveplot visualization of NREM sleep gain over the 24 h recovery period

readily revealed the contrasting systems genetics “landscapes” for the 4 consecutive 6 h recov-

ery intervals, with the ZT12–18 interval yielding far more connections at all 4 levels of analysis

(Fig 7B). For instance, during this interval, 15 metabolites were highly correlated to NREM

sleep gain, none of which were observed in the hiveplots of the other 6 h recovery intervals. All

15 metabolites were long phosphatidylcholines, and for 2 among those (PC-ae-C38:2

[LOD = 3.27; chr4: 101–110 Mb; 37% variance explained] and PC-ae-C42:5 [LOD = 3.02;

chr4: 101–110 Mb; 31% variance explained]), suggestive mQTLs were identified, both
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mapping to the chromosome 4 phQTL for NREM sleep gain (Fig 7C). Moreover, the ZT12–18

NREM sleep gain was correlated with the expression of 88 genes in cortex and 145 genes in

liver that were all but 1 unique to this recovery interval. The genes with the highest number of

connections to metabolites (�10) were Phf23, Rad54b, and Slc38a2 in the cortex and Noc4l and

Nat1 in liver.

Gene prioritization identified acyl-CoA thioesterase 11 (Acot11) as the top candidate gene

independently for the gain in NREM sleep and for PC-ae-C38:2 levels (Fig 7C), while for PC-

ae-C42:5, no gene passed the prioritization FDR threshold. Nevertheless, both metabolites

were significantly linked to Acot11 expression, as can be seen in the hiveplot highlight for

NREM sleep gain at ZT12–18, along with 6 other phosphatidylcholines (Fig 7D). A significant

cis-eQTL was found that explained the differences in Acot11 expression levels among BXD

lines in liver after SD (rs28135130, chr4: 106.3Mb, q = 1e−13) but not in cortex. Liver Acott11
expression in mice carrying the D2-allele at the cis-eQTL region was close to zero (Fig 7E and

7F). This near-zero expression in D2-allele carriers was even more pronounced for the shorter

Acot11 isoform (NM_025590), which was the more abundant isoform in the liver of B6-allele

carriers (S5 Fig). By contrast, the D2-allele did not alter the expression of the short isoform in

the cortex, and in both genotypes, its expression was higher than that of the less prevalent, lon-

ger isoform (NM_001347159; S5 Fig). Moreover, expression of the longer isoform was not

affected by genotype. Besides the tissue- and isoform-specific regulation of Acot11 expression,

SD differentially modified Acot11 expression in cortex and liver. The strong cis-eQTL effect

associated with Acot11 expression in the liver after SD was not present in the cortex for the

control condition (q = 0.5) and only marginal after SD (q = 7e−4). Acot11 was down-regulated

in liver after SD but up-regulated in the cortex (Fig 7F).

D2-allele carriers display lower plasma PC-ae-C38:2 levels and have a larger NREM sleep

gain during ZT12–18 (Fig 7E). While the majority of the BXD lines compensated by sleeping

significantly more than baseline during ZT12–18 (+33.0 min on average), only BXD83 showed

a negative gain (−1.3 min, Fig 7A). BXD83 is also the line with the highest PC-ae-C38:2 plasma

levels and the third-highest Acot11 expression in liver after SD (Fig 7E). It is intriguing that the

NREM sleep gain and PC-ae-C38:2 levels measured in the parental strains are closer to that in

BXD lines carrying the opposite allele (Fig 7A and 7E). This reinforces the idea that these phe-

notypes are due to multiple gene × gene interactions. It should be kept in mind that in these

analyses, the metabolome and transcriptome data were obtained in tissues collected

Fig 7. NREM sleep gain in the first 6 h of the dark period after SD is associated with Acot11. (A) Time course of hourly values of time

spent in NREM sleep in baseline, SD (red area), and recovery for the 2 BXD lines showing the largest (BXD70; green) and lowest (BXD83;

blue) NREM sleep gain during ZT12–18 (left). NREM sleep gain during 4 consecutive 6 h intervals during recovery compared to

corresponding baseline intervals shows that in the recovery dark period (gray area), BXD83 mice did not accumulate extra NREM sleep,

while BXD70 mice gained 88 min (middle). Strain distribution of ZT12–18 NREM sleep gain (right). B6-allele carriers compensated less for

NREM sleep lost during SD than D2-allele carriers. For color-coding, see Fig 4. (B) Hiveplots for NREM sleep gain in 4 six-hour recovery

intervals after the end of SD at ZT6. Compared to the other 3 intervals, NREM sleep gain was strongly associated with a number of

metabolites during the second 6 h interval, i.e., ZT12–18. (C) NREM sleep gain during ZT12–18 mapped to a significant QTL on

chromosome 4, explaining 45% of the total phenotypic variance (top left). PC-ae-C38:2 mapped suggestively to the same region (top right).

Prioritization of liver transcripts for both phenotypes yielded Acot11 as top-ranked, significant gene (bottom). (D) Hiveplot for the ZT12–

18 NREM sleep gain, highlighting Acot11. Acot11 was positively correlated with several phosphatidylcholines and to Ovgp1expression in

the cortex. (E) Allelic effect of the chromosome 4–associated region on Acot11 expression and PC-ae-C38:2 levels in the BXDs. Acot11
expression in liver after SD was under a strong eQTL effect (p = 1.6e−13) with B6-allele carriers showing a higher Acot11 expression than

D2-allele carriers. B6-allele carriers also showed higher PC-ae-C38:2 levels after SD. (F) Both Acot11 and PC-ae-C38:2 levels changed after

SD. Acot11 in liver and PC-ae-C38:2 in blood were significantly down-regulated. In the cortex, Acot11 was, however, significantly up-

regulated, and the chromosome 4–associated region did not modulate cortical Acot11 expression. (G) Mice carrying 1 or 2 KO alleles for

Acot11 displayed less extra NREM sleep during recovery. In contrast to the BXD panel, this difference was present in the second (ZT18–24,

right) and not during the first (ZT12–18, left panel) 6 h of the recovery dark period. Acot11, acyl-CoA thioesterase 11; CPM, counts per

million; Ctr, control; eQTL, expression quantitative trait locus; KO, knockout; NREM, non-REM; PC-ae, phosphatidylcholine acyl-alkyl;

QTL, quantitative trait locus; SD, sleep deprivation; ZT, zeitgeber time

https://doi.org/10.1371/journal.pbio.2005750.g007
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immediately after the SD (ZT6), while the gain in NREM sleep time was quantified in the ensu-

ing recovery. Thus, changes in Acot11 expression and/or PC-ae-C38:2 levels seem to predis-

pose to differences in NREM sleep recovery occurring later.

Acot11 is an acyl-CoA thioesterase that catalyzes the hydrolysis of long fatty acyl-CoAs to

form FFAs and is therefore important in the homeostatic regulation and turnover of FFAs

[90]. Acot11-knockout mice show increased energy expenditure and are resistant to diet-

induced obesity and its metabolic consequences [91]. We used these Acot11-knockout mice to

verify the causal involvement of Acot11 in NREM sleep gain in mice. In the line used, the

knockout allele was brought onto a B6 background through repeated (>20) backcrossing.

Both heterozygous and homozygous null allele carriers were deficient in NREM sleep gain

compared to their wild-type littermate controls (Fig 7G), confirming that Acot11 is causally

implicated in NREM sleep recovery. The difference in NREM sleep gain occurred, however, in

the second half (ZT18–24) and not, as was the case in the BXD panel, in the first half (ZT12–

18) of the recovery dark period.

In humans, SD induces an increase in circulating FFAs [92]. Because both elevated plasma

FFA levels [93,94] and sleep restriction [95,96] can lead to insulin resistance and predispose to

metabolic disease, including type 2 diabetes, Broussard and colleagues proposed that the effects

of sleep restriction on FFA levels might present a mechanism by which sleep restriction causes

insulin resistance and increased type 2 diabetes risk [92]. Our data implicate Acot11 as a

molecular player in this mechanistic link between sleep restriction and its adverse effects on

fatty acid metabolism.

Discussion

We have generated a rich, multidimensional, experimentally determined knowledge base,

drawing on 4 levels of organization from the DNA level to steady-state RNA levels in brain

and liver, circulating metabolites, and a deep phenome of sleep-wake-related phenotypes, all

under 2 experimental conditions. At the core of this knowledge base is the BXD ARIL

resource. This mouse GRP provides a “population model” with a controlled and stable degree

of genetic variation, each line carrying a fixed and unique pattern of recombination of the 2

parental chromosomes [17]. The panel segregates for approximately 5.2 million sequence vari-

ants corresponding to about half of all common genetic variation among classic laboratory

mouse strains [97]. This level of genetic complexity exceeds that in many human populations,

such as the Icelandic and Finnish populations that have been so useful in genetics of disease

[98–100]. Our results underscore the power of the BXD panel in discovering the genetic and

molecular underpinnings of clinically relevant traits already demonstrated in other research

fields [19–21].

We extracted 341 sleep-wake-related phenotypes belonging to 120 distinct phenotypic

modules from each individual mouse. Half of these phenotypes had higher than 0.68 heritabil-

ity, indicating that they are amenable to genetic dissection even when using only 33 ARILs.

Although numerous knockout studies have shown that (lack of) single genes impact many of

the phenotypes we quantified (for review, see [8,101]), we demonstrate here that even highly

heritable traits are determined by the interaction of several small-effect loci. Two striking

examples of such traits are TPF during REM sleep and the gain in δ2 power after SD, for which

we identified 4 and 5 suggestive QTLs, respectively, that together explained 58% and 75% of

the genetic variance in these 2 traits. Thus, while reductionist approaches have been successful

at identifying genes affecting sleep in a mendelian fashion, when studied at a more natural

population level, most of these phenotypes represent complex traits, and mendelian (or null)

alleles are likely to play a lesser role. To systematically explore these nonadditive, multiloci
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interactions at the level of the whole genome, innovative algorithms in the area of machine

learning are needed. Currently, more than 2-way epistatic interactions are computationally

challenging. We are therefore now exploring novel multiloci epistatic approaches to extract

this type of information (see, e.g., [102,103]).

With the 4 examples described, we could only illustrate a fraction of all the novel informa-

tion contained in our experimentally derived knowledge base. Here, we focused on the effects

of sleep loss exclusively because systems genetics resources in this research domain are lacking

and because of the immediate clinical relevance of these effects. Importantly, the pathways we

identified were unique to the sleep-deprivation condition and did not explain phenotypic vari-

ance of the respective traits under undisturbed baseline conditions. This illustrates that already

a relatively mild sleep disruption (preventing sleep during half of the rest phase) extensively

reshapes the systems genetics landscape.

The power of systems genetics lies in generating hypotheses. In the current dataset, several

observations imply SD to challenge fatty acid turnover. Besides Acot11—which regulates the

levels of FFAs and, as we show here, the recovery of NREM sleep—also Cyp4a32, which con-

tributes to the SD-induced shift in the frequency of theta oscillation in REM sleep, encodes an

enzyme regulating fatty acid levels. This frequency shift was strongly correlated with levels of

the branched amino acids leucine, isoleucine, and valine, which, in turn, are part of a fatty acid

biosynthesis pathway. The link between Cyp4a32 and the dominant frequency of theta oscil-

latory activity also illustrates the importance of a peripheral molecular pathway in regulating

brain activity, as Cyp4a32 was not expressed in brain. This finding is of relevance because

although many studies have emphasized the deleterious effect of sleep loss on peripheral sys-

tems, research on the substrate of sleep need largely remains brain centric. In addition, Pla2g4e
and Mlycd, the 2 genes with the strongest cis-eQTL effect for their DE after SD, both encode

enzymes affecting fatty acid metabolism. Acot11, the Cyp4a gene family, FFA levels, and sleep

restriction have all been linked to obesity and insulin resistance [82,91,93–96]. Another path-

way of importance in mediating the effects of sleep loss concerns AMPA-R trafficking sup-

ported by the 8-fold increase in cortical Arc expression and Kif16b’s role in shaping δ2 power

after SD. Both genes encode proteins involved in the endosomal trafficking of AMPA-Rs (see

Results) that have already been explored as therapeutic targets to counter the deleterious effects

of SD on cognition [73,76]. Finally, Wrn‘s association with EEG slow waves during NREM

sleep offers a model system to mechanistically study the molecular pathways underlying the

characteristic age-related decrease in the prevalence of EEG slow waves and sleep quality.

Hypotheses concerning the involvement of the pathways in the sleep homeostatic process

we discovered need to be further tested experimentally. With a reverse genetics approach, we

could already confirm Acot11’s role in the recovery of sleep time lost. This approach is, how-

ever, not always informative or possible, because a lack of protein on a given genetic back-

ground is unlikely to mimic the impact of an allelic variant in a genetically diverse population,

or the knockout might be lethal, as is the case for Kif16b [69]. Efforts to comprehensively phe-

notype (including sleep) knockouts for all known and predicted mouse genes by the Interna-

tional Mouse Phenotyping Consortium (IMPC; www.mousephenotype.org) are ongoing, but

unfortunately, no knockouts for the 4 genes we highlight here have been submitted for pheno-

typing. Another important community resource is the mostly mouse-oriented database Gene-

Network (www.genenetwork.org), which hosts a massive amount of phenotypic and

molecular information collected by the many researchers using the same BXD resource. We

are in the process of structuring our database to enable sharing of the integrated data in Gene-

Network according to the FAIR data management concepts [104]. Furthermore, cross-species

validation in, e.g., humans, flies, and Caenorhabditis elegans and Genome-Wide Association

Study (GWAS) and biobank database searches are important additional ways of validating and
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extending our mouse observations. According to the human GWAS databases grasp.nhlbi.nih.

gov and www.ebi.ac.uk/gwas/, SNP variants in Acot11 are significantly associated with (among

others) the rate of cognitive decline in Alzheimer disease, behavioral disinhibition, cardiovas-

cular disease, and triglyceride levels. Variants in Wrn are associated with aging and time to

death, cardiovascular disease, cholesterol, and daytime rest. Finally, variants in the human

ortholog of Cyp4a32, CYP4A11, are associated with blood metabolite levels, including amino

acids and acyl carnitines, and Kif16b variants with intelligence.

A first evaluation of the systems genetics field has highlighted a clear need for better com-

munication, “open science,” and collaboration among groups [24]. Toward this aim, we have

shared our results and analyses through an easily accessible and reproducibility-oriented web

interface that accompanies this publication. We hope that the interactivity of the web interface

will encourage the reader to further mine our data, thereby reproducing our conclusions and,

hopefully, discovering other key regulators and pathways. In our analyses, we have also strived

to follow the concepts of the FAIR data management approach [104], resulting in a data life

cycle management plan, open access provided by the web interface for data mining, and,

importantly, interoperability. The implementation of the FAIR approach will be illustrated in

an accompanying publication.

In summary, we have applied a systems genetics approach to uncover new genes and path-

ways associated with the effects of sleep loss, an approach thought critical for predicting disease

susceptibility [18]. This integrative, multilevel approach allowed us to follow the flow of infor-

mation from DNA variants to molecular intermediate phenotypes to behavioral and

electrophysiological end phenotypes, and to assess how this network of multiscale effects is

perturbed by an environmental challenge. The information gained could not have been

achieved through other genetic approaches that are based on the “1-gene-to-1-phenotype”

approach. Moreover, with the tools and web interface we developed, our open-access knowl-

edge base provides a unique resource that goes well beyond merely cataloguing and ranking

ph-, m-, and eQTLs. Furthermore, owing to the use of a GRP, the database and its content are

easily scalable. A first challenge will be to complement the dataset with females of the same

lines. In addition, we are expanding the database with an additional intermediate phenotype—

namely, the SD-induced changes in chromatin accessibility—aiming to identify the variants in

noncoding regulatory elements that could predict the varying molecular and phenotypic

response to sleep loss. Proteome, microbiome, and inflammasome data are obvious other

intermediate phenotypes that will further strengthen this knowledge base and increase its

value to, e.g., assist with identifying biomarkers gauging sleep pressure and potential therapeu-

tic targets for sleep-wake-related disorders.

Materials and methods

Ethics statement

All experiments followed international guidelines and were approved by the veterinary author-

ities of the state of Vaud, Switzerland (SCAV authorization #2534). Animals assigned to Exper-

iment 1 (see Experimental design below and Fig 1) were equipped with chronic EEG and

EMG electrodes under deep anesthesia according to methods described in detail in [105]. In

short, IP injection of Xylazine (10 mg/kg)/Ketamine (100 mg/kg) ensures a deep plane of anes-

thesia for the duration of the surgery (i.e., around 30 min). Analgesia was provided the evening

prior and the 3 d after surgery with Dafalgan in the drinking water (200–300 mg/kg). Mice

were allowed to recover for at least 10 d prior to baseline recordings. Animals assigned to

Experiment 2 (see Experimental design below and Fig 1) were killed by decapitation after
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being anesthetized with isoflurane, upon which blood, cerebral cortex, and liver samples were

collected immediately.

Animals, breeding, and housing conditions

We phenotyped 33 BXD RI strains originating from the University of Tennessee Health Sci-

ence Center (Memphis, TN, United States of America). The 33 lines were randomly chosen

from the then available, newly generated ARIL panel [17], although lines with documented

poor breeding performance were not considered. Two breeding trios per BXD strain were pur-

chased from a local facility (EPFL-SV, Lausanne, Switzerland) and bred in-house until suffi-

cient offspring was obtained. The parental strains D2 and B6 and their reciprocal F1 offspring

(B6D2F1 [BD-F1] and D2B6F1 [DB-F1]) were bred and phenotyped alongside. Suitable (age

and sex) offspring was transferred to our sleep-recording facility, where they were singly

housed, with food and water available ad libitum, at a constant temperature of 25˚C and under

a 12 h light/12 h dark cycle (LD12:12, fluorescent lights, intensity 6.6 cds/m2, with ZT0 and

ZT12 designating light and dark onset, respectively). Male mice aged 11–14 wk at the time of

experiment were used for phenotyping, with a mean of 12 animals per BXD line among all

experiments. Note that 3 BXD lines had a lower replicate number (n), with respectively BXD79

(n = 6), BXD85 (n = 5), and BXD101 (n = 4) because of poor breeding success. For the remain-

ing 30 BXD lines, replicates were distributed as follows: for EEG/behavioral phenotyping

(Experiment 1 in Fig 1; mean = 6.2/line; 5� n� 7) and for molecular phenotyping (Experi-

ment 2 in Fig 1; mean = 6.8/line; 6� n� 9). Additionally, to assess the stability of outcome

variables over time, parental lines were phenotyped twice—i.e., at the start (labeled B6-1 and

D2-1) and end (labeled B6-2 and D2-2) of the breeding and data-collecting phase, which

spanned 2 y (March 2012–December 2013). To summarize, distributed over 32 experimental

cohorts, 227 individual mice were used for behavioral/EEG phenotyping (Experiment 1) and

256 mice for tissue collection for transcriptome and metabolome analyses (Experiment 2), the

latter being divided into sleep deprived (SD) and controls (“Ctr”; see Experimental design sec-

tion below). We strived to randomize the lines across the experimental cohorts so that biologi-

cal replicates of 1 line were collected/recorded on more than 1 occasion while also ensuring

that an even number of mice per line was included for tissue collection so as to pair SD and

“Ctr” individuals within each cohort (for behavioral/EEG phenotyping, each mouse serves as

its own control).

Experimental design

The study consisted of 2 experiments, i.e., Experiments 1 and 2 (Fig 1). Animals of both exper-

iments were maintained under the same housing conditions. Animals in Experiment 1 under-

went surgery and, after a>10 d recovery period, EEG and LMA were recorded continuously

for a 4 d period starting at ZT0. The first 2 d were considered baseline (B1 and B2). The first 6

h of Day 3 (ZT0–6), animals were sleep deprived in their home cage by “gentle handling”

[105]. The remaining 18 h of Day 3 and Day 4 were considered recovery (R1 and R2). Half of

the animals included in Experiment 2 were sleep deprived (SD) alongside the animals of

Experiment 1. The other half was left undisturbed in another room (i.e., control or Ctr). Both

SD and “Ctr” mice of Experiment 2 were killed at ZT6 (i.e., immediately after the end of the

SD) for sampling of liver and cerebral cortex tissue as well as trunk blood. All mice were left

undisturbed for at least 2 d prior to SD.

Experiment 1: EEG/EMG and LMA recording and analysis. EEG/EMG surgery was per-

formed under deep anesthesia according to our standard methods [105]. EEG and EMG sig-

nals were amplified, filtered, digitized, and stored using EMBLA (Medcare Flaga, Thornton,
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CO, USA) hardware (A10 recorder) and software (Somnologica). LMA was recorded by pas-

sive infrared (PIR) sensors (Visonic, Tel Aviv, Israel) at 1 min resolution for the duration of

the 4 d experiment, using ClockLab (ActiMetrics, IL, USA).

Offline, the sleep-wake states wakefulness, REM sleep, and NREM sleep were annotated on

consecutive 4 s epochs, based on the EEG and EMG patterns. To assist the annotation of this

extensive dataset (around 20 million 4 s epochs), we developed a semiautomated scoring sys-

tem. The 4 d recordings of 43 mice (19% of all recordings), representing animals from 12

strains, were fully annotated visually by an expert according to established criteria [105]. Due

to large between-line variability in EEG signals, even after normalization, a partial overlap of

the different sleep-wake states remained, as evidenced by the absolute position of the center of

each state cluster, which differed even among individuals of the same line (precluding the use

of 1 “reference” mouse), even per line, to reliably annotate sleep-wake states for the others (S1

Fig). To overcome this problem, 1 d out of 4 (i.e., Day 3 or R1, which includes the SD) was

visually annotated for each mouse. These 4 s sleep-wake scores were used to train the semiau-

tomatic scoring algorithm, which took as input 82 numerical variables derived from the analy-

ses of EEG and EMG signals using frequency- (discrete Fourier transform [DFT]) and time-

domain analyses performed at 1 s resolution. We then used these data to train a series of sup-

port vector machines (SVMs) [106] specifically tailored for each mouse, using combinations of

the 5 or 6 most informative variables out of the 82 input variables. The best-performing SVMs

for a given mouse were then selected based on the upper-quartile performance for global clas-

sification accuracy and sensitivity for REM sleep (the sleep-wake state with the lowest preva-

lence) and used to predict sleep-wake states in the remaining 3 d of the recording. The

predictions for 4 consecutive 1 s epochs were converted into 1 four-second epoch. Next, the

results of the distinct SVMs were collapsed into a consensus prediction, using a majority vote.

In case of ties, epochs were annotated according to the consensus prediction of their neighbor-

ing epochs. A representative example of prediction is shown in S1 Fig. To prevent overfitting

and assess the expected performance of the predictor, only 50% of the R1 manually annotated

data from each mouse were used for training. The classification performance was assessed by

comparing the automatic and visual scoring of the fully manually annotated 4 d recordings of

43 mice. The global accuracy was computed using a confusion matrix [107] of the completely

predicted days (B1, B2, and R2; S1 Fig). For all subsequent analyses, the visually annotated Day

3 (R1) recording and the algorithmically annotated days (B1, B2, and R2) were used for all

mice, including those for which these days were visually annotated.

We quantified 341 phenotypes based on the sleep-wake states, LMA, and the EEG signal,

constituting 3 broad phenotypic categories. The 96 h sleep-wake sequence of each animal was

used to directly assess traits in 3 “state”-related phenotypic subcategories: (i) duration (e.g.,

time spent in wakefulness, NREM sleep, and REM sleep, both absolute and relative to each

other, such as the ratio of time spent in REM versus NREM); (ii) aspects of their distribution

over the 24 h cycle (e.g., time course of hourly values, midpoint of the 12 h interval with high-

est time spent awake, and differences between the light and dark periods); and (iii) sleep-wake

architecture (e.g., number and duration of sleep-wake bouts, sleep fragmentation, and sleep-

wake state transition probabilities). Similarly, overall activity counts per day, as well as per unit

of time spent awake, and the distribution of activity over the 24 h cycle were extracted from

the LMA data. EEG signals of the 4 different sleep-wake states (wakefulness, NREM sleep,

REM sleep, and theta-dominated waking [TDW], see below) were quantified within the 4 s

epochs matching the sleep-wake states using DFT (0.25 Hz resolution, range 0.75–90 Hz, win-

dow function Hamming). Signal power was calculated in discrete EEG frequency bands—i.e.,

delta (1.0–4.25 Hz, δ), slow delta (1.0–2.25 Hz; δ1), fast delta (2.5–4.25; δ2), theta (5.0–9.0 Hz;

θ), sigma (11–16 Hz; σ), beta (18–30 Hz; β), slow gamma (32–55 Hz; γ1), and fast gamma (55–
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80 Hz; γ2). Power in each frequency band was referenced to total EEG power over all frequen-

cies (0.75–90 Hz) and all sleep-wake states in days B1 and B2 to account for interindividual

variability in absolute power. The contribution of each sleep-wake state to this reference was

weighted such that, e.g., animals spending more time in NREM sleep (during which total EEG

power is higher) do not have a higher reference as a result [80]. Moreover, the frequency of

dominant EEG rhythms was extracted as phenotypes, specifically that of the theta rhythm

characteristic of REM sleep and TDW. The latter state, a substate of wakefulness, defined by

the prevalence of theta activity (6.0–10.0 Hz) in the EEG during waking [78,108], was quanti-

fied according to the algorithm described in [46]. We assessed the time spent in this state, the

fraction of total wakefulness it represents, and its distribution over 24 h. Finally, discrete, par-

oxysmal events were counted, such as sporadic spontaneous seizures and neocortical spin-

dling, which are known features of D2 mice [109], which we also found in some BXD lines.

All phenotypes were quantified in baseline and recovery separately, and the effect of SD on

all variables was computed as recovery versus baseline differences or ratios. The recovery-to-

baseline contrasts are the focus of this paper. Obviously, some of the 341 phenotypes are

strongly correlated (e.g., the time spent awake and asleep in a given recording interval), result-

ing in identical QTLs (albeit with different association strengths). To estimate the number of

unique phenotypes, we clustered highly correlated phenotypes into modules. We then counted

the number of phenotype categories and subcategories within each module (S2 Fig). We

obtained 120 modules or 148 when considering phenotypes of different subclasses (e.g.,

“EEG,” “State,” or “LMA”) within a module as separate. Please see the “Swiss-BXD” web inter-

face (https://bxd.vital-it.ch; Downloads, General_Information.xlsx) for a full listing of all phe-

notypes quantified and the modules they were part of.

Experiment 2: Tissue collection and preparation. Mice were killed by decapitation after

being anesthetized with isoflurane, and blood, cerebral cortex, and liver were collected imme-

diately. The whole procedure took no more than 5 min per mouse. Blood was collected at the

decapitation site into tubes containing 10 ml heparin (2 U/μl) and centrifuged at 4,000 rpm

during 5 min at 4˚C. Plasma was collected by pipetting, flash-frozen in liquid nitrogen, and

stored at −80˚C until further use. Cortex and liver were flash-frozen in liquid nitrogen imme-

diately after dissection and were stored at −140˚C until further use.

For RNA extraction, frozen samples were homogenized for 45 s in 1 ml of QIAzol Lysis

Reagent (Qiagen; Hilden, Germany) in a gentleMACS M tube using the gentleMACS Dissocia-

tor (Miltenyi Biotec; Bergisch Gladbach, Germany). Homogenates were stored at −80˚C until

RNA extraction. Total RNA was isolated and purified from cortex using the automated nucleic

acid extraction system QIAcube (Qiagen; Hilden, Germany) with the RNeasy Plus Universal

Tissue mini kit (Qiagen; Hilden, Germany) and were treated with DNAse. Total RNA from

liver was isolated and purified manually using the Qiagen RNeasy Plus mini kit (Qiagen; Hil-

den, Germany), which includes a step for effective elimination of genomic DNA. RNA quan-

tity, quality, and integrity were assessed utilizing the NanoDrop ND-1000 spectrophotometer

(Thermo scientific; Waltham, Massachusetts, USA) and the Fragment Analyzer (Advanced

Analytical). The 256 mice initially killed for tissue collection yielded 222 cortex and 222 liver

samples of good quality.

Equal amounts of RNA from biological replicates (3 samples per strain, tissue, and experi-

mental condition, except for BXD79, BXD85, and BXD101; see above under Animals, breed-

ing, and housing conditions) were pooled, yielding 156 samples for library preparation. RNA-

seq libraries were prepared from 500 ng of pooled RNA using the Illumina TruSeq Stranded

mRNA reagents (Illumina; San Diego, California, USA) on a Caliper Sciclone liquid handling

robot (PerkinElmer; Waltham, Massachusetts, USA). Libraries were sequenced on the Illu-

mina HiSeq 2500 using HiSeq SBS Kit v3 reagents, with cluster generation using the Illumina
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HiSeq PE Cluster Kit v3 reagents. A mean of 41 M 100 bp single-end reads were obtained (29

M� n� 63 M).

Targeted metabolomics analysis was performed using flow injection analysis (FIA) and

liquid chromatography/mass spectrometry (LC/MS) as described in [36,110]. To identify

metabolites and measure their concentrations, plasma samples were analyzed using the Abso-

luteIDQ p180 targeted metabolomics kit (Biocrates Life Sciences AG, Innsbruck, Austria) and

a Waters Xevo TQ-S mass spectrometer coupled to an Acquity UPLC liquid chromatography

system (Waters Corporation, Milford, MA, USA). The kit provided absolute concentrations

for 188 endogenous compounds from 6 different classes, namely acyl carnitines, amino acids,

biogenic amines, hexoses, glycerophospholipids, and sphingolipids. Plasma samples were pre-

pared according to the manufacturer’s instructions. Sample order was randomized, and 3 lev-

els of quality controls (QCs) were run on each 96-well plate. Data were normalized between

batches, using the results of quality control level 2 (QC2) repeats across the plate (n = 4) and

between plates (n = 4) using Biocrates METIDQ software (QC2 correction). Metabolites below

the lower limit of quantification or the limit of detection, as well as above the upper limit of

quantification, or with standards out of limits, were discarded from the analysis [110]. Out of

the 188 metabolites assayed, 124 passed these criteria across samples and were used in subse-

quent analyses. No hexoses were present among the 124 metabolites. Out of the 256 mice killed

for tissue collection, 249 plasma samples were used for this analysis. An average of 3.5 animals

(3� n� 6) per line and experimental condition were used (except for BXD79, BXD85, and

BXD101 with respectively 2, 1, and 1 animal/condition used; see above under Animals, breed-

ing, and housing conditions). Note that in contrast to the RNA-seq experiment, samples were

not pooled but analyzed individually.

In the same plasma samples, we determined corticosterone levels using an enzyme immu-

noassay (corticosterone EIA kit; Enzo Life Sciences, Lausen, Switzerland) according to the

manufacturer’s instructions. All samples were diluted 40 times in the provided buffer, kept on

ice during the manipulation, and tested in duplicate. BXD lines were spread over multiple

96-well plates in an attempt to control for possible batch effects. In addition, a “control” sam-

ple was prepared by pooling plasma from 5 C57BL/6 mice. Aliquots of this control were mea-

sured along with each plate to assess plate-to-plate variability. The concentration was

calculated in pg/ml based on the average net optical density (at λ = 405 nm) for each standard

and sample.

RNA-seq analyses

RNA-seq data were processed using the Illumina Pipeline Software version 1.82. All RNA-seq

samples passed FastQC quality thresholds (version 0.10.1) and could thus be used in subse-

quent analysis. For gene expression quantification, we used a standard pipeline that was

already applied in a previous study [111]. Reads were mapped to MGSCv37/mm9 using the

STAR splice aligner with the 2pass pipeline [112]. Count data was generated using htseq-count

from the HTseq package using parameters “stranded = reverse” and “mode = union” [113].

Gene boundaries were extracted from the mm9/refseq/reflat dataset of the UCSC table

browser. EdgeR was then used to normalize read counts by library size. Genes with a mean

raw read count below 10 were excluded from the analysis, and the raw read counts were nor-

malized using the TMM normalization [114] and converted to log counts per million (CPM).

Although for both tissues, the RNA-seq samples passed all quality thresholds, and among-

strain variability was small, more reads were mapped in cortex than in liver (S6 Fig), and we

observed a somewhat higher coefficient of variation in the raw gene read count in liver than in

cortex (S6 Fig). To assess the DE between the sleep-deprived and control conditions, we used
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the R package limma [115] with the voom weighting function followed by the limma empirical

Bayes method [116]. RNA-seq data are deposited in NCBI GEO (accession code GSE114845).

The RNA-seq dataset was also used to complement the publicly available GeneNetwork

genetic map (www.genenetwork.org), thus increasing its resolution. RNA-seq variant calling

was performed using the Genome Analysis ToolKit (GATK) from the Broad Institute, using

the recommended workflow for RNA-seq data [117]. To improve coverage depth, 2 additional

RNA-seq datasets from other projects using the same BXD lines were added [111]. In total, 6

BXD datasets from 4 different tissues (cortex, hypothalamus, brainstem, and liver) were used.

A hard filtering procedure was applied as suggested by the GATK pipeline [117–119]. Further-

more, genotypes with more than 10% missing information, low quality (<5,000), and redun-

dant information were removed. GeneNetwork genotypes, which were discrepant with our

RNA-seq experiment, were tagged as “unknown” (mean of 1% of the GeneNetwork geno-

types/strain [0.05%� n� 8%]). Finally, GeneNetwork and our RNA-seq genotypes were

merged into a unique set of around 11,000 genotypes, which was used for all subsequent analy-

ses. This set of genotypes was already used successfully in a previous study of BXD lines [111]

and is available through our “Swiss-BXD” web interface (https://bxd.vital-it.ch; Downloads,

Genotypes.GeneNetwork2005AndRNAseq.geno).

Although overall, a close to 50/50 balance between B6 and D2 genotypes was observed

across the genome, a minority of sites displayed a strong imbalance toward either genotype (S7

Fig). We also confirmed a minor but general trend toward more D2 than B6 genotypes per

strain (S7 Fig), which was also found in the GeneNetwork genotypes for the BXD strains used

in our study.

QTL mapping

The R package qtl/r [120] was used for interval mapping of behavioral/EEG phenotypes

(phQTLs) and metabolites (mQTLs). Pseudomarkers were imputed every cM, and genome-

wide associations were calculated using the Expected-Maximization (EM) algorithm. p-values

were corrected for FDR using permutation tests with 1,000 random shuffles. The significance

threshold was set to 0.05 FDR, a suggestive threshold to 0.63 FDR, and a highly suggestive

threshold to 0.10 FDR according to [28,29]. QTL boundaries were determined using a 1.5

LOD support interval. To preserve sensitivity in QTL detection, we did not apply further p-

value correction for the many phenotypes tested. Effect size of single QTLs was estimated

using 2 methods. Method 1 does not consider eventual other QTLs present and computes

effect size according to 1 − 10^(−(2/n)�LOD). Method 2 does consider multi-QTL effects and

computes effect size by each contributing QTL by calculating first the full, additive model for

all QTLs identified and, subsequently, estimating the effects of each contributing QTL by com-

puting the variance lost when removing that QTL from the full model (“drop-one-term” analy-

sis). For Method 2, the additive effect of multiple suggestive, highly suggestive, and significant

QTLs was calculated using the fitqtl function of the qtl/r package [121]. With this method, the

sum of single QTL effect estimation can be lower than the full model because of association

between genotypes. In the Results section, Method 1 was used to estimate effect size, unless

specified otherwise. It is important to note that the effect size estimated for a QTL represents

the variance explained of the genetic portion of the variance (between-strain variability) quan-

tified as heritability and not of the total variance observed for a given phenotype (i.e., within-

plus between-strain variability).

For detection of eQTLs, cis-eQTLs were mapped using FastQTL [122] within a 2 Mb win-

dow for which adjusted p-values were computed with 1,000 permutations and beta distribu-

tion fitting. The R package qvalue [123] was then used for multiple-testing correction as
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proposed by [122]. Only the q-values are reported for each cis-eQTL in the text. Trans-eQTL

detection was performed using a modified version of FastEpistasis [124], on several million

associations (approximately 15,000 genes × 11,000 markers), applying a global, hard p-value

threshold of 1E−4.

Protein damage prediction

Variants detected by our RNA-seq variant calling were annotated using Annovar [125] with

the RefSeq annotation dataset. Nonsynonymous variations were further investigated for pro-

tein disruption using Polyphen-2 version 2.2.2 [126], which was adapted for use in the mouse

according to recommended configuration.

Hiveplot visualization

Hiveplots were constructed with the R package HiveR [25] for each phenotype. Gene expres-

sion and metabolite levels represented in the hiveplots come from either the “Ctr” (control) or

SD molecular datasets according to the phenotype represented in the hiveplot; i.e., the “Ctr”

dataset is represented for phenotypes related to the baseline (“bsl”) condition, while the SD

dataset is shown for phenotypes related to recovery (“rec” and “rec/bsl”). For a given hiveplot,

only those genes and metabolites were included (depicted as nodes on the axes) for which the

Pearson correlation coefficient between the phenotype concerned and the molecule passed a

data-driven threshold set to the top 0.5% of all absolute correlations between all phenotypes on

the one hand and all molecular (gene expression and metabolites) on the other. This threshold

was calculated separately for “Bsl” phenotypes and for “Rec” and “Rec/Bsl” phenotypes and

amounted to absolute correlation thresholds of 0.510 and 0.485, respectively. The latter was

used for the recovery phenotypes in Results Examples 1–4 and for the printed hiveplots (other

thresholds can be chosen in the interactive website https://bxd.vital-it.ch). Cross-associations

between genes and metabolites represented by the edges in the hiveplot were filtered using

quantile thresholds (top 0.05% gene–gene associations, top 0.5% gene–metabolite associa-

tions). We corrected for cis-eQTL confounding effects by computing partial correlations

between all possible pairs of genes (see Results and Fig 4B and 4C for details).

Candidate-gene prioritization strategy

In order to prioritize genes in identified QTL regions, we chose to combine the results of the

following analyses: (i) QTL mapping (phQTL or mQTL, Fig 2C), (ii) correlation analysis, (iii)

expression QTL (eQTL, Fig 2B), (iv) protein damaging–variation prediction, and (v) DE (Fig

3A). Each result was transformed into an “analysis score” using a min/max normalization, in

which the contribution of extreme values was reduced by a winsorization of the results (S4

Fig). These analysis scores were first associated with each gene (see below) and then integrated

into a single "integrated score" computed separately for each tissue, yielding 1 integrated score

in cortex and 1 in liver. The correlation analysis score, eQTL score, DE score, and protein

damaging–variation score are already associated to genes, and these values were therefore sim-

ply attributed to the corresponding gene. To associate a gene with the ph-/mQTL analysis

score (which is associated to markers), we used the central position of the gene to infer the

associated ph-/mQTL analysis score at that position. In case of a cis-eQTL linked to a gene or a

damaging variation within the gene, we used the position of the associated marker instead (S4

Fig). To emphasize diversity and reduce analysis score information redundancy, we weighted

each analysis score using the Henikoff algorithm. The individual scores were discretized before

using the Henikoff algorithm, which was applied on all the genes within the ph-/mQTL region

associated with each phenotype (S4 Fig). The integrated score (formula in Fig 4D) was
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calculated separately for cortex and liver. We performed a 10,000-permutation procedure to

compute an FDR for the integrated scores. For each permutation procedure, all 5 analysis

scores were permutated, and a novel integrated score was computed again. The maximal inte-

grated score for each permutation procedure was kept, and a significance threshold was set at

quantile 95. Applying the Henikoff weighting improved the sensitivity of the gene prioritiza-

tion. E.g., among the 91 behavioral/EEG phenotypes quantified with 1 or more suggestive/sig-

nificant QTL after SD, 40 had at least 1 gene significantly prioritized with Henikoff weighting,

against 32 without. Examples of analysis scores and weight can be found in S1 Table.

Supporting information

S1 Fig. EEG/EMG semiautomatic scoring. (A) Comparison of the normalized signal for 2

individual mice (top and bottom rows) of 2 BXD lines (left and right) and 1 parental line

(DBA/2J; Middle), visually annotated by an expert scorer. Plotted are the peak-to-peak EMG

amplitude (y-axis) against EEG delta (1.0–4.0 Hz) power (x-axis). (B) Example of predicted

sleep-wake states of a representative 28 min section (420 four-s epochs) of mouse BXD045-1.

Top row: state manually assigned by the expert. Second row: consensus of the automated pre-

diction. Third row: results obtained for 11 distinct SVM predictors from which the consensus

prediction is derived. (C) Accuracy values of the prediction for the 43 mice for which the 4 d

recordings were fully annotated by the expert. The SVMs were trained on the R1 recording

and then used to predict sleep-wake state for days B1, B2, and R2. Predicted sleep-wake states

were compared to manual annotation using a confusion matrix (see Materials and methods).

EEG, electroencephalography; EMG, electromyography; SVM, support vector machine

(TIF)

S2 Fig. Relatedness among EEG and behavioral phenotypes. To quantify the relationship

among phenotypes and to identify unique phenotype modules, we cross-correlated all 341

phenotypes using Spearman correlations followed by hierarchical clustering (average linkage).

The resulting dendrogram was cut at a height of 0.3, thereby defining 120 modules. Pheno-

types belonging to the same module but not to the same (sub-) category were counted sepa-

rately, yielding 148 distinct phenotypic modules. The modules are represented by node color,

and phenotype categories by node shape (see Fig 2A and Materials and methods). Edges were

filtered for top correlation (|s|� 0.7). Three “superclusters” (Supercluster I–III) grouping sev-

eral modules were observed. The 4 recovery phenotypes discussed in Results section (Examples

1–4) are marked. EEG, electroencephalography.

(TIF)

S3 Fig. BXD web application. All data presented are available in our web application: https://

bxd.vital-it.ch. Examples and a tutorial can be found on the website. (A) Options to search

genes and metabolites in either cortex or liver, with Pearson correlation thresholds selection.

(B) Search can be initiated by phenotypes or by genes. A search by phenotype(s) will output

genes correlated (�threshold set in A) to the submitted phenotype(s) and vice versa. (C) Out-

put is displayed as a heatmap. (D) The related hiveplot of each phenotype present in the heat-

map is displayed. (E) Filtering options specific for the hiveplots. (F) Tables containing all

genes, markers, and metabolites in the hiveplots and their relation. (G) Gene details: known

functions, link to other databases, and strongest relations in the BXD dataset with other genes

and metabolites. For details, see the online tutorial.

(TIF)

S4 Fig. Gene prioritization strategy. (A) Five analysis scores (right; see Fig 3, main text, and

Materials and methods) are derived from the actual statistics (left) for (i) ph-/mQTL FDR-
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adjusted p-value, (ii) eQTL q-value, (iii) genetic variant annotation, (iv) Pearson correlation p-

value, and (v) DE FDR-adjusted p-value (from top to bottom). To compute a single gene vari-

ant score, we sum the following values for each gene and for each detected variant: splicing = 10;

stop-gain = 10; stop-loss = 10; frameshift indel = 10; nonsynonymous = 10 � polyphen2-prob-

ability value. (B) We used the central position of the gene to infer the associated ph-/mQTL

analysis score at that position. However, in cases where the associated cis-eQTL score or the

damaging gene variant score gave a higher value than the ph-/mQTL score, the position of the

relevant associated marker was used instead. A case of the former is illustrated with the gene

Naa30. This gene is located near a recombinant region with the central gene position (green

arrow) located in a low ph-/mQTL associated region, while the cis-eQTL-associated marker

(red arrow) is located in a highly associated ph-/mQTL region. In the case of Naa30, its associ-

ated cis-eQTL score was used. (C) Henikoff weighted scores computed for each phenotype

after sleep deprivation. The black line at 0.2 represents the line of equality among the 5 scores

(summed weight = 1.0). The ph-/mQTL scores generally have higher weights than the other 4

scores because it is the only non-transcript-derived score. The other scores are based in part

on the RNA-seq data, and the Henikoff lowers their respective weights because of this depen-

dency. DE, differential expression; eQTL, expression quantitative trait locus; FDR, false discov-

ery rate; ph-/mQTL, phenotypic/metabolic quantitative trait locus; RNA-seq, RNA sequencing

(TIF)

S5 Fig. Acot11 isoforms. (A) Structure of the 2 Acot11 isoforms: NM_001347159 and

NM_025590. The 2 isoforms differ by a single exon at the start of the transcript. (B) Estimated

expression of the 2 Acot11 isoforms (FPKM) for cortex and liver samples, under the control

(“Ctr”) and SD conditions. In cortex, isoform NM_025590was highly expressed compared to

NM_001347159, independent of condition and genotype. Note that for 22 out of the 39 lines,

NM_001347159 expression was near 0. In liver, NM_025590was only highly expressed in carri-

ers of the B6 allele for the chromosome 4–associated region for Acot11 expression, while D2

carriers had close to 0 levels. As in cortex, liver expression of the long isoform was low. Expres-

sion was estimated using Cufflinks with option -G for the Acot11 refseq file. Acot11, acyl-CoA
thioesterase 11; B6, C57BL/6J; D2, DBA/2J; FPKM, fragments per kilobase of transcript per

million mapped reads; SD, sleep deprivation

(TIF)

S6 Fig. RNA-seq raw gene count. (A) Distribution of raw gene read counts using HTSeq (see

Materials and methods) in cortex and liver samples for both the Ctr and SD conditions. Paren-

tal strains B6 and D2 are filled with black and brown, respectively. (B) Coefficients of variation

in the 4 datasets after normalization. Genes in the liver display a slightly higher coefficient of

variation than in cortex. B6, C57BL/6J; D2, DBA/2J; RNA-seq, RNA sequencing; Ctr, control;

SD, sleep deprivation

(TIF)

S7 Fig. Allelic distribution in the BXD set. (A) Allelic ratios in the 33 BXD lines at all mark-

ers. Several genomic regions display a higher genetic imbalance (either toward the D2 or B6

genotype), among which is a region on chromosome 13 containing the QTL Dps1
(MGI:2135996; see S1 Text). Such imbalance decreases statistical power, making it less likely

to map QTLs in these regions. (B) To measure the similarity of the BXD set with C57BL6, we

used the Jaccard distance metric with our 11,000 genotypes. We found that a majority of BXD

lines have slightly more D2 alleles than B6 alleles. B6, C57BL/6J; D2, DBA/2J; QTL, quantita-

tive trait locus

(TIF)
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S1 Table. Prioritization scores and weights. Examples of scores and weights obtained with

the prioritization algorithm for the 4 phenotypes in the Results section (Examples 1–4) and

alpha-aminoadipic acid (top). For each phenotype (and metabolite), the top-5 scored genes are

listed per tissue. First column: gene name, columns 2–6: their weighted scores for QTL, eQTL,

correlation, variation, and DE, column 7: integrated score, column 8: integrated score FDR.

Row below fifth gene contains the prioritization weights/phenotype/tissue. Orange highlights

the gene that passed the 5% FDR. DE, differential expression; eQTL, expression quantitative

trait locus; FDR, false discovery rate; QTL, quantitative trait locus.

(XLSX)

S2 Table. Top-100 differentially expressed cortical genes after sleep deprivation. Genes are

sorted according to fold change. Down-regulated genes are highlighted in gray. Of the 78

genes we considered core molecular components of the sleep homeostatic response in the cor-

tex [34], 13 also made it to this top-100 list (�), and 36 more are among the top 5% most signifi-

cantly affected genes in the current experiment.

(DOCX)

S3 Table. Top-100 differentially expressed liver genes after sleep deprivation. Genes are

sorted according to fold change. Down-regulated genes are highlighted in gray.

(DOCX)

S1 Text. Lack of reproducibility of the Dps1 QTL in the old versus the new BXD panel.

QTL, quantitative trait locus.

(PDF)
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Pagni, Martial Sankar, Robin Liechti.

Supervision: Shanaz Diessler, Nicolas Guex, Debra J. Skene, Marco Pagni, Ioannis Xenarios,

Paul Franken.
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83. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease.

Nature reviews Neuroscience. 2014; 15(12):771–85. https://doi.org/10.1038/nrn3820 PMID:

25387473

84. DeCostanzo AJ, Voloshyna I, Rosen ZB, Feinmark SJ, Siegelbaum SA. 12-Lipoxygenase regulates

hippocampal long-term potentiation by modulating L-type Ca2+ channels. J Neurosci. 2010; 30

(5):1822–31. Epub 2010/02/05. https://doi.org/10.1523/JNEUROSCI.2168-09.2010 PMID: 20130191;

PubMed Central PMCID: PMCPMC2835505.

85. Williams JH, Errington ML, Lynch MA, Bliss TV. Arachidonic acid induces a long-term activity-depen-

dent enhancement of synaptic transmission in the hippocampus. Nature. 1989; 341(6244):739–42.

Epub 1989/10/26. https://doi.org/10.1038/341739a0 PMID: 2571939.

86. van der Hoeven RS, Steffens JC. Biosynthesis and elongation of short- and medium-chain-length fatty

acids. Plant physiology. 2000; 122(1):275–82. PMID: 10631271

87. Crown SB, Marze N, Antoniewicz MR. Catabolism of Branched Chain Amino Acids Contributes Signifi-

cantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS ONE.

2015; 10( 12). https://doi.org/10.1371/journal.pone.0145850 PMID: 26710334

88. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resis-

tance. Cell metabolism. 2012; 15(5):606–14. https://doi.org/10.1016/j.cmet.2012.01.024 PMID:

22560213

89. Franken P, Malafosse A, Tafti M. Genetic determinants of sleep regulation in inbred mice. Sleep.

1999; 22(2):155–69. PMID: 10201060

90. Cohen DE. New players on the metabolic stage: How do you like Them Acots? Adipocyte. 2013; 2

(1):3–6. https://doi.org/10.4161/adip.21853 PMID: 23700546

91. Zhang Y, Li Y, Niepel MW, Kawano Y, Han S, Liu S, et al. Targeted deletion of thioesterase superfam-

ily member 1 promotes energy expenditure and protects against obesity and insulin resistance. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2012; 109(14):5417–

22. https://doi.org/10.1073/pnas.1116011109 PMID: 22427358

92. Broussard JL, Chapotot F, Abraham V, Day A, Delebecque F, Whitmore HR, et al. Sleep restriction

increases free fatty acids in healthy men. Diabetologia. 2015; 58(4):791–8. https://doi.org/10.1007/

s00125-015-3500-4 PMID: 25702040

93. Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance

and type 2 diabetes. Experimental and clinical endocrinology & diabetes: official journal, German Soci-

ety of Endocrinology [and] German Diabetes Association. 2003; 111(3):121–4. https://doi.org/10.

1055/s-2003-39781 PMID: 12784183

94. DeFronzo RA. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. International journal of clinical

practice Supplement. 2004;( 143):9–21.

Systems genetics of sleep loss

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005750 August 9, 2018 37 / 39

https://doi.org/10.3389/fnsys.2017.00017
http://www.ncbi.nlm.nih.gov/pubmed/28408870
https://doi.org/10.1177/0269881111405353
https://doi.org/10.1177/0269881111405353
http://www.ncbi.nlm.nih.gov/pubmed/21940760
https://doi.org/10.1016/j.neuron.2006.09.031
http://www.ncbi.nlm.nih.gov/pubmed/17088212
http://www.ncbi.nlm.nih.gov/pubmed/11832222
https://doi.org/10.1126/science.aad5252
https://doi.org/10.1126/science.aad5252
http://www.ncbi.nlm.nih.gov/pubmed/27174984
https://doi.org/10.1038/ng1174
https://doi.org/10.1038/ng1174
http://www.ncbi.nlm.nih.gov/pubmed/12796782
http://www.ncbi.nlm.nih.gov/pubmed/9813074
https://doi.org/10.1038/nrn3820
http://www.ncbi.nlm.nih.gov/pubmed/25387473
https://doi.org/10.1523/JNEUROSCI.2168-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20130191
https://doi.org/10.1038/341739a0
http://www.ncbi.nlm.nih.gov/pubmed/2571939
http://www.ncbi.nlm.nih.gov/pubmed/10631271
https://doi.org/10.1371/journal.pone.0145850
http://www.ncbi.nlm.nih.gov/pubmed/26710334
https://doi.org/10.1016/j.cmet.2012.01.024
http://www.ncbi.nlm.nih.gov/pubmed/22560213
http://www.ncbi.nlm.nih.gov/pubmed/10201060
https://doi.org/10.4161/adip.21853
http://www.ncbi.nlm.nih.gov/pubmed/23700546
https://doi.org/10.1073/pnas.1116011109
http://www.ncbi.nlm.nih.gov/pubmed/22427358
https://doi.org/10.1007/s00125-015-3500-4
https://doi.org/10.1007/s00125-015-3500-4
http://www.ncbi.nlm.nih.gov/pubmed/25702040
https://doi.org/10.1055/s-2003-39781
https://doi.org/10.1055/s-2003-39781
http://www.ncbi.nlm.nih.gov/pubmed/12784183
https://doi.org/10.1371/journal.pbio.2005750


95. Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin

resistance and Type 2 diabetes. Journal of applied physiology (Bethesda, Md: 1985). 2005; 99

(5):2008–19. https://doi.org/10.1152/japplphysiol.00660.2005 PMID: 16227462

96. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week

reduces insulin sensitivity in healthy men. Diabetes. 2010; 59(9):2126–33. https://doi.org/10.2337/

db09-0699 PMID: 20585000

97. Wang X, Pandey AK, Mulligan MK, Williams EG, Mozhui K, Li Z, et al. Joint mouse-human phenome-

wide association to test gene function and disease risk. Nature communications. 2016; 7:10464.

https://doi.org/10.1038/ncomms10464 PMID: 26833085; PubMed Central PMCID: PMC4740880.

98. Arnar DO, Andersen K, Thorgeirsson G. Genetics of cardiovascular diseases: lessons learned from a

decade of genomics research in Iceland. Scandinavian cardiovascular journal: SCJ. 2016; 50(5–

6):260–5. https://doi.org/10.1080/14017431.2016.1230679 PMID: 27572422.

99. Milani L, Leitsalu L, Metspalu A. An epidemiological perspective of personalized medicine: the Esto-

nian experience. Journal of internal medicine. 2015; 277(2):188–200. https://doi.org/10.1111/joim.

12320 PMID: 25339628; PubMed Central PMCID: PMC4329410.

100. Peltonen L, Palotie A, Lange K. Use of population isolates for mapping complex traits. Nat Rev Genet.

2000; 1(3):182–90. https://doi.org/10.1038/35042049 PMID: 11252747.

101. Franken P, Tafti M. Genetics of sleep and sleep disorders. Frontiers in bioscience: a journal and virtual

library. 2003; 8:97.

102. He D, Parida L. Muse: A Multi-Locus Sampling-Based Epistasis Algorithm for Quantitative Genetic

Trait Prediction. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2016;

22:426–37. https://doi.org/10.1142/9789813207813_0040 PMID: 27896995.

103. Llinares-Lopez F, Grimm DG, Bodenham DA, Gieraths U, Sugiyama M, Rowan B, et al. Genome-wide

detection of intervals of genetic heterogeneity associated with complex traits. Bioinformatics. 2015; 31

(12):i240–9. Epub 2015/06/15. https://doi.org/10.1093/bioinformatics/btv263 PMID: 26072488;

PubMed Central PMCID: PMCPMC4559912.

104. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Scientific data. 2016; 3:160018. https://

doi.org/10.1038/sdata.2016.18 PMID: 26978244; PubMed Central PMCID: PMC4792175.

105. Mang GM, Franken P. Sleep and EEG Phenotyping in Mice. Current protocols in mouse biology.

2012; 2(1):55–74. https://doi.org/10.1002/9780470942390.mo110126 PMID: 26069005

106. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department

of Statistics (e1071), TU Wien. http://CRANR-projectorg/package=e1071. 2014.

107. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, et al. caret: Classification and Regres-

sion Training. http://CRANR-projectorg/package=caret. 2014.

108. Welsh DK, Richardson GS, Dement WC. A circadian rhythm of hippocampal theta activity in the

mouse. Physiology & behavior. 1985; 35(4):533–8.

109. Ryan LJ. Characterization of cortical spindles in DBA/2 and C57BL/6 inbred mice. Brain research bul-

letin. 1984; 13(4):549–58. PMID: 6441615

110. Isherwood CM, Van der Veen DR, Johnston JD, Skene DJ. Twenty-four-hour rhythmicity of circulating

metabolites: effect of body mass and type 2 diabetes. FASEB J. 2017. Epub 2017/08/20. https://doi.

org/10.1096/fj.201700323R PMID: 28821636.

111. Picard A, Soyer J, Berney X, Tarussio D, Quenneville S, Jan M, et al. A Genetic Screen Identifies

Hypothalamic Fgf15 as a Regulator of Glucagon Secretion. Cell reports. 2016; 17(7):1795–806.

https://doi.org/10.1016/j.celrep.2016.10.041 PMID: 27829151

112. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics. 2013; 29(1):15–21. Epub 2012/10/30. https://doi.org/10.1093/

bioinformatics/bts635 PMID: 23104886; PubMed Central PMCID: PMCPMC3530905.

113. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing

data. Bioinformatics. 2015; 31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638 PMID:

25260700; PubMed Central PMCID: PMCPMC4287950.

114. Robinson M, Oshlack A. A scaling normalization method for differential expression analysis of RNA-

seq data. 2010.

115. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47. https://doi.org/

10.1093/nar/gkv007 PMID: 25605792; PubMed Central PMCID: PMCPMC4402510.

116. Law CW, Chen JC, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for

RNA-seq read counts. 2014.

Systems genetics of sleep loss

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005750 August 9, 2018 38 / 39

https://doi.org/10.1152/japplphysiol.00660.2005
http://www.ncbi.nlm.nih.gov/pubmed/16227462
https://doi.org/10.2337/db09-0699
https://doi.org/10.2337/db09-0699
http://www.ncbi.nlm.nih.gov/pubmed/20585000
https://doi.org/10.1038/ncomms10464
http://www.ncbi.nlm.nih.gov/pubmed/26833085
https://doi.org/10.1080/14017431.2016.1230679
http://www.ncbi.nlm.nih.gov/pubmed/27572422
https://doi.org/10.1111/joim.12320
https://doi.org/10.1111/joim.12320
http://www.ncbi.nlm.nih.gov/pubmed/25339628
https://doi.org/10.1038/35042049
http://www.ncbi.nlm.nih.gov/pubmed/11252747
https://doi.org/10.1142/9789813207813_0040
http://www.ncbi.nlm.nih.gov/pubmed/27896995
https://doi.org/10.1093/bioinformatics/btv263
http://www.ncbi.nlm.nih.gov/pubmed/26072488
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1002/9780470942390.mo110126
http://www.ncbi.nlm.nih.gov/pubmed/26069005
http://CRANR-projectorg/package=e1071
http://CRANR-projectorg/package=caret
http://www.ncbi.nlm.nih.gov/pubmed/6441615
https://doi.org/10.1096/fj.201700323R
https://doi.org/10.1096/fj.201700323R
http://www.ncbi.nlm.nih.gov/pubmed/28821636
https://doi.org/10.1016/j.celrep.2016.10.041
http://www.ncbi.nlm.nih.gov/pubmed/27829151
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1371/journal.pbio.2005750


117. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.

2010; 20(9):1297–303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199; PubMed Central

PMCID: PMCPMC2928508.

118. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation

discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–

8. https://doi.org/10.1038/ng.806 PMID: 21478889; PubMed Central PMCID: PMCPMC3083463.

119. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From

FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr

Protoc Bioinformatics. 2013; 43:11 0 1–33. https://doi.org/10.1002/0471250953.bi1110s43 PMID:

25431634; PubMed Central PMCID: PMCPMC4243306.

120. Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics.

2003; 19(7):889–90. https://doi.org/10.1093/bioinformatics/btg112 PMID: 12724300

121. Broman KW, Sen S. A Guide to QTL Mapping with R/qtl: New York: Springer; 2009.

122. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thou-

sands of molecular phenotypes. Bioinformatics. 2016; 32(10):1479–85. Epub 2015/12/29. https://doi.

org/10.1093/bioinformatics/btv722 PMID: 26708335; PubMed Central PMCID: PMCPMC4866519.

123. Storey JD, Bass AJ, Dabney A, Robinson D. qvalue: Q-value estimation for false discovery rate con-

trol. R package version 2.8.0, 2015.

124. Schupbach T, Xenarios I, Bergmann S, Kapur K. FastEpistasis: a high performance computing solu-

tion for quantitative trait epistasis. Bioinformatics. 2010; 26(11):1468–9. https://doi.org/10.1093/

bioinformatics/btq147 PMID: 20375113

125. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-through-

put sequencing data. Nucleic Acids Res. 2010; 38(16):e164. https://doi.org/10.1093/nar/gkq603

PMID: 20601685; PubMed Central PMCID: PMCPMC2938201.

126. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server

for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248–9. https://doi.org/10.1038/

nmeth0410-248 PMID: 20354512; PubMed Central PMCID: PMCPMC2855889.

Systems genetics of sleep loss

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005750 August 9, 2018 39 / 39

https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1002/0471250953.bi1110s43
http://www.ncbi.nlm.nih.gov/pubmed/25431634
https://doi.org/10.1093/bioinformatics/btg112
http://www.ncbi.nlm.nih.gov/pubmed/12724300
https://doi.org/10.1093/bioinformatics/btv722
https://doi.org/10.1093/bioinformatics/btv722
http://www.ncbi.nlm.nih.gov/pubmed/26708335
https://doi.org/10.1093/bioinformatics/btq147
https://doi.org/10.1093/bioinformatics/btq147
http://www.ncbi.nlm.nih.gov/pubmed/20375113
https://doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1371/journal.pbio.2005750

