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             Management and treatment of 
inherited retinal dystrophies

Inherited retinal dystrophies (IRDs) are a 
rare group of hereditary diseases that lead 

to progressive degeneration of retinal cells.[1] 
While there are currently several ongoing 
clinical trials utilizing pharmacological 
agents and adeno‑associated virus (AAV) 
vector‑mediated gene augmentation 
therapeutics, only one Food and Drug 
Administration approved therapy currently 
exists that is merely capable of treating 
a small fraction of the population: those 
afflicted by mutations in the RPE65 gene.[2‑7] 
At this point in time, countless physicians 
and scientists are poised to address this 
unmet need for a treatment or cure for IRDs, 
however, given that most therapies are 
mutation specific, this task is both highly 
cost‑ and time‑inefficient.[8] Moreover, we 
must overcome several crucial obstacles, 
including on‑ and off‑targeting in genome 
editing techniques,[9] delivery of genes with 
a payload too large for that of an AAV 
vector delivery system,[10] the complexity 
of removing the gain‑of‑function allele to 
repair autosomal dominant genes, and a 
system of ensuring long‑term efficacy of 
gene augmentation.[11]

Treatment options that circumvent the 
production of each therapy specified to the 
individual’s genetic variant are promising 
solutions to this scientific and medical 
challenge.[12] Ryu et al. describe alternative 
pathways common to several IRDs that may 
hold the key to slowing retinal degeneration. 
Specifically, the authors’ work highlights the 
damaging role that reactive oxygen species 
play in IRDs, leading to oxidative stress and 
subsequent cellular death. One pathway, 

the nuclear factor erythroid‑2‑related 
factor‑Kelch‑like ECH‑associated protein 
1 pathway presents a system whereby 
oxidative stress is neutralized. Similar work 
was reviewed by Nolan et al. in this series, 
addressing the role of metabolic coupling in 
healthy and atrophic retinal cells. Ultimately, 
investigations such as these have the 
potential to not only uncover the underlying 
pathology of each dystrophy but also 
identify points for therapeutic intervention 
capable of slowing progression, common 
to countless retinal degenerative processes. 
At present, metabolic reprogramming is 
making great strides in the field, buying 
time for genome surgery and stem cell 
transplantation techniques to excel and pave 
the way toward a long‑term cure for IRDs.

Macula lesions often result in vision loss. 
Spooner et al. investigate the use of aflibercept, 
an antivascular endothelial growth factor 
agent, for patients with persistent macular 
edema due to retinal vein occlusion despite 
regular treatment with bevacizumab or 
ranibizumab. Here, the investigators identify 
that aflibercept significantly improved 
patient’s visual functions, and as a result, 
quality of life. Abouhussein et al. also 
present data supporting the successful 
application of aflibercept in patients with 
bevacizumab‑resistant diabetic macular 
edema. In addition, Chiu et al.’s study 
demonstrates the use of ranibizumab 
monotherapy versus concurrent ranibizumab 
with posterior subtenon triamcinolone 
acetonide. Their work revealed that patients 
with diabetic macular edema responded 
significantly better to the combined therapy 
option. Additional research has been 
directed toward surgical intervention 
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for structural abnormalities. Macular holes are most 
commonly idiopathic, however, in rare cases, they 
are linked to genetic causes, schisis in highly myopic 
eyes, or age‑related macular degeneration (AMD).[13] In 
this edition, Marlow et al. outline the various surgical 
strategies in autologous retinal transplants to address 
macular holes of various sizes. Taken together, these 
projects highlight how metabolome reprogramming and 
antioxidant therapies can be used in combination with 
conventional therapies for dry AMD and monogenic 
disorders (voretigene neparvovec).

It is imperative to treat secondary diagnoses – such as 
cystoid macular edema – as well as further investigate 
the underlying pathophysiology and metabolic processes 
leading to retinal degeneration. This special issue includes 
investigations that are critical to managing and ultimately 
treating these devastating and blinding dystrophies.

We wish to thank all our authors for their excellent work 
and contributions to this edition of the Taiwan Journal of 
Ophthalmology.
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