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Meiotic drive in chronic 
lymphocytic leukemia compared 
with other malignant blood 
disorders
Viggo Jønsson1*, Haneef Awan2, Neil Deaton Jones3, Tom Børge Johannesen4, 
Klaus Thøgersen5, Bjarni á Steig6,7, Gudrid Andorsdottir7 & Geir Erland Tjønnfjord8

The heredity of the malignant blood disorders, leukemias, lymphomas and myeloma, has so far 
been largely unknown. The present study comprises genealogical investigations of one hundred 
and twelve Scandinavian families with unrelated parents and two or more cases of malignant blood 
disease. For comparison, one large family with related family members and three hundred and forty-
one cases of malignant blood disease from the Faroese population was included. The inheritance is 
non-Mendelian, a combination of genomic parental imprinting and feto-maternal microchimerism. 
There is significantly more segregation in maternal than in paternal lines, predominance of mother-
daughter combinations in maternal lines, and father-son combinations in paternal lines. Chronic 
lymphocytic leukemia is the most frequent diagnosis in the family material, and chronic lymphocytic 
leukemia has a transgenerational segregation that is unique in that inheritance of susceptibility to 
chronic lymphocytic leukemia is predominant in males of paternal lines. Male offspring with chronic 
lymphocytic leukemia in paternal lines have a birth-order effect, which is manifest by the fact that 
there are significantly more male patients late in the sibling line. In addition, there is contravariation 
in chronic lymphocytic leukemia, i.e. lower occurrence than expected in relation to other diagnoses, 
interpreted in such a way that chronic lymphocytic leukemia remains isolated in the pedigree in 
relation to other diagnoses of malignant blood disease. Another non-Mendelian function appears 
in the form of anticipation, i.e. increased intensity of malignancy down through the generations 
and a lower age at onset of disease than otherwise seen in cases from the Cancer Registers, in acute 
lymphoblastic leukemia, for example. It is discussed that this non-Mendelian segregation seems to 
spread the susceptibility genes depending on the gender of the parents and not equally to all children 
in the sibling line, with some remaining unaffected by susceptibility i.e. "healthy and unaffected", 
due to a birth order effect. In addition, anticipation is regarded as a non-Mendelian mechanism that 
can amplify, «preserve» these vital susceptibility genes in the family. Perhaps this segregation also 
results in a sorting of the susceptibility, as the percentage of follicular lymphoma and diffuse large 
B-cell lymphoma is lower in the family material than in an unselected material. Although leukemias, 
lymphomas and myelomas are potentially fatal diseases, this non-Mendelian distribution and 
amplification hardly play any quantitative role in the survival of Homo sapiens, because these diseases 
mostly occur after fertile age.
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Non-Mendelian inheritance (meiotic drive) of susceptibility to mutation in the hematopoietic stem cells is the 
etiology of malignant blood disorders (MBD)1. Chronic lymphocytic leukemia (CLL), the most common leu-
kemia in the Western World, is a subset of MBD1,2. Together with other types of malignant lymphoproliferative 
disorders (LPD) such as acute lymphoblastic leukemia, other subsets of lymphoid leukemia, malignant lympho-
mas including Hodgkin lymphoma, myeloma and the myeloproliferative disorders (MPD), these all depend on 
a monoclonal expansion of blood cells derived from a mutated hematopoietic stem cell1–3. Each disorder has its 
own cytogenetic profile4–10, forming an inherited polygenetic model of disease susceptibility11–13 with an evident 
familial occurrence14–21.

It has been difficult to get a comprehensive overview of the inheritance process in spite of an intensive search 
for decades. We have proposed a segregation pattern of MBD based on the interaction of parental genomic 
imprinting22–25 and fetomaternal microchimerism26–28 (Fig. 1). That model29 gathers and explains the details 
known about the inheritance pathway in general, but CLL stands out. Genealogical studies of pedigrees from 
affected families show that CLL seems to have a meiotic drive of its own paths with a unique distribution of 
affected ancestors to a CLL proband29. Only CLL has a demonstrable birth order effect (Table 1) and clinically, 
CLL-males and females have a different course of disease30,31. Female patients usually have a better crude survival 
than males, a higher age at onset of disease, and a better dose–response to chemotherapy30,31. These clinical dif-
ferences between male and female patients sometimes occur in non-Hodgkin lymphomas (NHL)32,33, but not 
as clear as in CLL. Furthermore, we have recently assessed the distribution in the pedigree of MBD-affected 
ancestors to a proband with MBD29.

Supplementary studies of this previously used family material (Table 1) shows differences in paternal and 
maternal affiliation by inheritance of MBD (Table 2) and a pattern of segregation with co- and contravariation 
(Tables 3 and 4) and here CLL stands out.

The purpose of the present paper is to describe the characteristics of the transgenerational segregation of 
susceptibility to MBD and to outline the modifications of the general segregation model (Fig. 1) that CLL causes.

Material and methods
The material consists of two types of MBD-families: 1) Families with unrelated parents (112 families and 301 
cases of MBD) from Norway and Denmark. 2) One big family with related parents (315 cases of MBD from the 
endemic, consanguineous Faroese population). Percentages of MBD (i.e., rates, prevalence or frequencies) are 
in use because no data from the Faroe Islands is available for calculations of incidences. Official data from the 
Cancer Registries or other public health institutions regarding familial MBD do not exist either. Parts of this 
joint database were in use for genealogical investigations elsewhere29,34,35.

Birth order effect.  Birth order effect (BOE), which is a rank order by age of the affected sibs in a sib ship 
was systematically assessed in the families by means of the Haldane & Smith’s method36. This method is based 
on a comparison of the sum of rank numbers in the test sample with a theoretical rank sum as if no BOE exists, 
expressed as the 95% confidence interval (CI 95%). For control, the Wilcoxon signed rank test was used, com-
paring the sum of older (positive scores) and younger (negative scores) of healthy sibs to the affected sib in 
the sib ship (significance P < 0.05). Statistical analysis was programmed using language R version 3.3 (https://​
www.r-​proje​ct.​org/).

Anticipation.  That is increased malignancy down through the generations and a lower age of onset of dis-
ease. The number of patients within each diagnosis in the Norwegian and Danish families has been compared 
with the number of patients with the same diagnosis in the Cancer Registries of Norway and Denmark (chi-
squared test, significance P < 0.05). Age at onset of disease was also included in this comparison.

The Norwegian and Danish MBD‑families.  One hundred and twelve families have been found in our 
hematologic out-patient clinics by asking new patients about other family members with possible MBD. Families 
with two or more cases of MBD were included. There were 276 cases of LPD (lymphoproliferative disorders), 
and 24 cases of MPD (myeloproliferative disorders), and one case of Leukemia NOS (Not Otherwise Specified), 
giving 2.7 patients per family.

The included persons were all of Scandinavian origin, there were no twins, and none have had unrelated 
parents. The observation period was largely the same as for the Faroese material. The oldest patient is a female 
with CLL, born in 1864.

All patients were cross-checked with the National Cancer Registries, and all members of the family, the 
healthy persons as well, were checked with the Civil Person Registry. In case of doubt, we checked with church 
books, midwives protocols, and transcripts from alimony judgements. All medical files were examined, and all 
diagnoses were cross-checked with the SNOMED registration of the pathologists37. The ICD-10 nomenclature 
was used for a standardization of the diagnoses from different periods with different taxonomic systems38.

Parental affiliation.  Each case of MBD in the family tree (designated proband crude, Pc) was associated 
with its affected relatives (ARs) and used for a systematic registration of familial MBD. Strictly vertical pairs of 
affected Pc – affected AR (viz. affected parent – offspring pairs) were selected for an estimation of the paren-
tal affiliation to ensure that only patients with a position in the pedigree that allow direct, transgenerational 
transfer of susceptibility from parent to child were involved (Table 2). Horizontal pairs such as concordance of 
two affected siblings are not included in the table. So-called oblique combinations of pairs, such as uncle, aunt–
nephew, cousin were not included, neither are so-called oblique pairs (affected uncle or aunt–affected nephew 
or cousin).

https://www.r-project.org/
https://www.r-project.org/
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Figure 1.   Parental genomic imprinting denotes a transgenerational segregation that depends on the gender of 
the parents. One allele is transcriptionally inactivated (imprinted, silenced) while the other allele remains active. 
At each transgenerational passage, the imprint erases and then it regenerates making imprinting a lifelong 
mechanism. Transgenerational pathways specific to men and women in paternal- and maternal lines are shown 
in bold. Signature: Square, male. Circle, female. Black, affected. White, unaffected. Black and white, carrier. Black 
bold line, main pathway of segregation.
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Co‑ and contravariation.  Covariation indicates a greater number of observed ARs (OBS) to a Pc than 
expected (EXP), while contravariation indicates a smaller number of OBS than EXP (chi-squared test).

Pairs of affected Pc –affected parent were sorted by the diagnoses CLL or nonCLL (all other diagnoses of 
MBD than CLL). This makes it possible to compare groups of pairs with AR CLL and AR nonCLL (Table 2).

Legal permissions to do the study: cf. Acknowledgements.

The Faroese MBD‑family.  As of December 2011, 341 cases of MBD have been recorded in the Faroese 
Diagnostic Registry in Torshavn, the capital of the Faroese Islands. During the years after 2011, all patients were 
cross-checked and patients with a delayed diagnosis were included. Three patients were excluded because the 
medical records have been lost, and 23 failed inclusions because their position in the family tree was uncertain 
(e.g. extra matrimonial relationship). Thus, 315 MBD patients, designated proband crude (Pc), were included 
since the first person (a female with CLL, born in 1884).

Table 1.   Proband crude (PC) of familial malignant blood disorders. NOS, not otherwise specified.

Lymphoproliferative 
disorders—LPD
ICD-10 Code

Norwegian and Danish families The Faroese family

Total (males, females) % Male, Female Ratio Total (males, females) % Male, Female Ratio

Chronic lymphocytic 
leukemia
CLL C91.1

181 (98, 83) 65.6 1.2 50 (29, 21) 22.8 1.4

Acute lymphoblastic 
leukemia
ALL C91.0

4 (2, 2) 1.4 1.0 16 (10, 6) 7.3 1.7

Other Leukemias 14 (7, 7) 5.1 1.0 5 (3, 2) 2.3 1.5

Multiple myeloma
MM C90 10 (6, 4) 3.6 1.5 50 (31, 19) 22.8 1.6

Monoclonal gam-
mopathy
MGUS D47.2

2 (1, 1) 0.7 1.0 0

Hodgkin lymphoma
HL C81.1 11 (8, 3) 4.0 2.7 19 (12, 7) 8.7 1.7

Diffuse large B-cell 
lymphoma
DLBCL C83.3

16 (9, 7) 5.8 1.3 34 (21, 13) 15.6 1.6

Follicular lymphoma 
FL C82 19 (13, 6) 6.9 2.2 14 (9, 5) 6.4 1.8

Other lymphomas 19 (11, 8) 6.8 1.4 31 (16, 15) 14.1 1.1

Lymphoproliferative 
disease
LPD total

276 (155, 121) 100 1.3 219 (131, 88) 100 1.5

Age at onset of disease 
years (median) 67 (65, 69) 61 (58, 64)

Birth order effect CLL males, paternally No

Parent offspring pairs 126 pairs 2 pairs

Siblings 42 pairs 1 pair

Myeloproliferative disorders—MPD

Acute myeloid 
leukemia
AML C92.0 and 
C92.2-9

9 (6, 3) 37.6 2 44 (28, 16) 50.6 1.8

Chronic myeloid 
leukemia
CML C92.1

3 (1, 2) 12.5 0.5 14 (9, 5) 16.1 1.8

Other MPD 12 (6, 6) 50.0 1.0 29 (15, 14) 33.3 1.1

Total MPD 24 (13, 11) 100 1.2 87 (52, 35) 100 1.5

Age at onset of disease

Years (median) 63 (59, 68) 54 (49, 60)

Birth order effect No No

Parent offspring pairs 12 pairs 0 pairs

Siblings 1 pair 0 pairs

Other malignant blood disorders

Leukemia, uncertain
L NOS C95.9 1 (1, 0) 7 (2, 5)

Malignant histio-
cytosis
MH C96.1

0 2 (0, 2)
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The Faroese people are descended from the Vikings39. Today, there are nearly 53.000 people from a few 
thousand founders who survived the plague during the Black Death about 20 generations ago around 135040.The 
population was under the influence of isolation and consanguinity right up to a period after WW II40. Foreign 
settlers (on an average of one or two per year one hundred years ago) were mainly Scandinavian sailors and 
priests. The Coefficient of Inbreeding has never been calculated41. The Faroese parity is one of the highest in 
Europa (7.4 in 1900 and 2.7 today)40. Until 1870–80, childbed fever was a common cause of maternal death, and 
many men were married several times. Then, after the introduction of high-sea fishing from small boats, many 
men drowned and many women married again.

The course of disease, symptoms, the medical record and the pathologist’s SNOMED diagnoses37 were cross-
checked. All included diagnoses were grouped according to the ICD-10 diagnostic system38, and reassessed 
according to the diagnostic criteria valid at the time of diagnosis. In 45 cases, NOS (not otherwise specified)-
diagnoses were used: (25 cases of uncertain subtype of NHL,15 cases with uncertain distinction between myelo-
dysplasia (MDS) and other subsets of MPD, and in five cases of lymphoid leukemia in elderly desolate patients 
who were not further investigated. There were no twins among the patients. BOE and anticipation were included 
in the screening.

Pedigree and parental affiliation.  One united pedigree showing all affected and unaffected family mem-
bers was provided by the Faroese National Civil Registry. Each patient was appointed to be proband crude (Pc), 
and a systematic registration of the affected relatives (ARs) in up to 5 generations before each Pc allowed an 
estimation of the parental affiliation of each AR related to Pc. Up to five healthy family members between Pc and 
AR in the Faroese pedigree defined the association between Pc and AR.

Since a given patient in the generations before Pc may act as AR to several Pcs at the same time, the total 
number of ARs is higher than the actual number of patients with MBD.

Table 2.   Paternal (PA) and Maternal (MA) affiliation of affected parent – offspring in pairs from families in 
Norway and Denmark with unrelated parents.

CLL pairs

PA MA

Total Males Females Total Males Females

CLL parents 16 16 0 26 0 26

CLL children 16 11 5 26 11 15

CLL grandparents 1 1 0 13 7 6

CLL grandchildren 1 1 0 13 8 5

Total CLL parents and grandparents 17 17 0 39 7 32

Total CLL children and grandchildren 17 12 5 39 19 20

Per cent children and grandchildren 100 71 29 100 49 51

Mixed pairs CLL and nonCLL

CLL parents 7 7 0 11 0 11

NonCLL children 7 2 5 11 5 6

CLL grandparents 0 6 2 4

NonCLL grandchildren 0 6 2 4

NonCLL parents 9 9 0 9 0 9

CLL children 9 3 6 9 5 4

NonCLL grandparents 8 8 0 7 4 3

CLL grandchildren 8 4 4 7 5 2

Total CLL parents and grandparents 7 7 0 17 2 15

Total CLL children and grandchildren 17 7 10 16 10 6

Per cent children and grandchildren 100 41 59 100 63 38

Total nonCLL parents and grandparents 17 17 0 16 4 12

Total nonCLL children and grandchildren 7 2 5 17 7 10

Per cent children and grandchildren 100 29 71 100 41 59

NonCLL pairs (nonCLL–nonCLL)

NonCLL parents 6 6 0 5 0 5

NonCLL children 6 4 2 5 3 2

NonCLL grandparents 3 3 0 11 5 6

NonCLL grandchildren 3 3 0 11 2 9

Total nonCLL parents and grandparents 9 9 0 16 5 11

Total nonCLL children and grandchildren 9 7 2 16 5 11

Per cent children and grandchildren 100 78 22 100 31 69
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Co‑ and contravariation.  The calculation of EXP for this comparison rests on the prevalence given in 
Table 1. In HL for example: HL represents 8.7% of all Faroese LPD (Table 1). According to our joint database, 
121 AR LPD (68 males and 53 females) are related to HL so that the expected number of AR HL is 8.7% of 
121 = 10.53 ∼ 11 HL patients (males 10.53 × 12/19 = 6.65 ∼ 7 patients; females 10.53 × 7/19 = 3.88 ∼ 4 patients). 
Table 3 shows all detected significant discrepancies between OBS and EXP.

Legal permissions to do the study: cf. Acknowledgements.

Anonymity.  To ensure anonymity at publication, the patients have numbers without names or initials, and 
without data on gender, age, or place of birth so that no person can be recognized from the outside.

Informed consent.  All patients older than 18 years got oral and written information about the purpose of 
the study, that participation was voluntary and could be interrupted at any time. It was stated that all data was 
confidential and made anonymous, and that the investigation was approved by the Scientific Ethical Commit-
tees, and the National Data Registry Agencies. Included patients accepted their participation by completing a 
signed questionnaire. Each patient provided informed consent to participate in the study, thus informed consent 
was taken from all patients. Patients under the age of 18 years were included with informed consent from a par-
ent or a legal guardian.

This study was approved by ethics committee.  Of the Ministry of Health and Social Service, Gov-
ernment of the Faroe Islands, and (for Norway) the Norwegian Research Ethical Committees, that includes 
the Data Inspectorate, the Social and Health Directorate and the Regional Committee for Medical and Health 
Research Ethics, South-East Norway. For Denmark the Royal Danish National Archives, comprising the Provin-
cial Archives of Zealand, the Danish Data Protection Office, the Danish Scientific-Ethical Committees and the 
Danish Board of Health.

Results
The diagnoses of the two groups (continental families from Norway and Denmark with unrelated parents; and 
the endemic, Faroese family with related parents) comprise both LPD and MPD. Continental families: LPD 92%, 
MPD 8%; Faroese family: LPD 70%, MPD 28% (Table 1).

Table 3.   Co- and contravariation of affected relatives to probands crude with familial malignant blood 
disorders (the Faroe Islands). Diagnosis abbreviations: Cf. TABLE 1. OBS: Number of patients observed. EXP: 
Calculated number of patients using prevalence given in Table 1. Covariation: OBS > EXP. Contravariation: 
OBS < EXP.

Probands crude (PC) Affected relatives (AR)

ICD-10 codes

Observed (OBS) versus expected (EXP), total number (males, females)

Increase, covariation
MA Increase, covariation

Decrease, 
contravariation

HL
C81

OBS
EXP

HL: 17 (10, 7)
HL: 11 (7, 4)
P < 0.05

FL
C82

OBS
EXP

MM: 22 (14,8)
MM: 15 (9, 6)
P < 0.05

DLBCL
C88.3

OBS
EXP

DLBCL: 37 (14, 23)
DLBCL: 28 (17, 11)
P < 0.001

OBS
EXP

CLL: 33 (11, 22)
CLL: 41 (24, 17)
P < 0.01

NHL NOS
C85.9

OBS
EXP

HL: 19 (12, 7)
HL: 12 (8, 4)
P < 0.01

MM
C90

OBS
EXP

FL: 27 (15, 12)
FL: 20 (13, 7)
P < 0.05

OBS
EXP

MM: 88 (50, 38)
MM: 71 (44, 27)
P < 0.01

OBS
EXP

CLL: 58 (40, 18)
CLL: 71 (41, 30)
P < .05

OBS
EXP

ALL: 27 (11, 16)
ALL: 23 (14, 9)
P < 0.05

OBS
EXP

CML: 33 (18, 15)
CML: 22 (14, 8)
P < 0.01

OBS
EXP

MF: 29 (16, 13)
MF: 12 (6, 6)
P < 0.001

AML
C92.0

OBS
EXP

AML: 78 (45, 33)
AML: 60 (38, 22)
P < 0.01

OBS
EXP

DLBCL: 47 (25, 22)
DLBCL: 33 (20, 13)
P < 0.01

OBS
EXP

CLL: 28 (17, 11)
CLL: 48 (28, 20)
P < 0.001

OBS
EXP

MM: 73 (41, 32)
MM: 48 (30, 18)
P < 0.05

CML
C92.1

OBS
EXP

AML: 37 (22, 15)
AML: 27 (17, 10)
P < 0.05
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CLL is the most common diagnosis in the continental families (65.6%) compared with a prevalence of 22.8% 
in the Faroese family. Two of the most common types of malignant lymphoma (FL, follicular lymphoma and 
DLBCL, diffuse large B-cell lymphoma) have a low prevalence both in the Faroese family (FL 6.4% of all lym-
phoproliferative disorders, LPD, and DLBCL 15.6% of all LPD) and in the families from Norway and Denmark 
(FL 6.9% of all LPD, and DLBCL 5.8% of all LPD). Compared with the findings in the national cancer registries 
in Norway and Denmark (FL 12% and DLBCL 25% of all LPD)42,43, it turns out that the prevalence of both types 
of malignant lymphoma is significantly lower in the family materials (P < 0.05 for both lymphomas).

Anticipation, viz. an increased malignancy down through the generations with a lower age of onset of disease, 
is pronounced in the Faroese family with a high prevalence of ALL (7.3%) compared with 4% in the Cancer 
Registries. The mean age at onset of disease is lower than in the continental families (P < 0.01). We are uncertain 
whether the high incidences of HL and MPD in the Faroese family are signs of anticipation.

Birth order effect (BOE) which is a rank order by age of the affected sibs in a sib ship, was s only seen in the 
Continental families, when male CLL patients in paternal lines appear late in the sib ship (P < 0.001).

Segregation of susceptibility to MBD, Continental families. Affected parent – affected offspring pairs (P-O 
pairs) make up the predominant transgenerational components (Table 1). In 138 P-O pairs (LPD 126 and 12 
MPD pairs) extracted from the pedigrees, the diagnoses were either CLL or any other diagnosis within MBD, 
denoted nonCLL (Table 2). The intention of this set up is to expose CLL versus nonCLL in four P-O groups: 
CLL – CLL, nonCLL – CLL, CLL – nonCLL and nonCLL – nonCLL .

Table 4.   Paternal (PA) and Maternal (MA) affiliation of Affected relatives (AR) in co- and contravariation 
(shown in Table 3), the Faroe Island.

Covariation

AR in Pc-AR pairs, lymphoproliferative disorders (LPD) shown in Table 3 with covariation

AR PA AR MA AR Total

1. Total (males , females) 86 (43, 43) 151 (83, 68) 237 (126,111)

% 36 (34, 39) 64 (66, 61) 100

2.For comparison: AR in all PcLPD-AR pairs  of the material 

AR PA AR MA AR Total

2. Total (males, females) 593 (349, 244) 563 (329, 234) 1156 (678, 478)

% 51 (51, 51) 49 (49, 49) 100

3. Difference between 1. and 2. (%):

AR PA AR MA

minus 15 ( minus 17, minus 12) 15(17, 12)

Covariation

AR in Pc-AR pairs, myeloproliferative disorders (MPD) and mixed LPD and MPD shown in Table 3 with covari-
ation: 

AR PA AR MA AR Total

4. Total (males , females) 110 (68 ,42) 187 (99, 88) 297 (167,130)

% 37 (41, 32) 63 (59, 68) 100

5. For comparison: AR in all PcMPD-AR pairs  of the material 

AR PA AR MA AR Total

5. Total (males, females) 398 (240, 158) 366 (213, 153) 764 (453, 311)

% 52 (53, 51) 48 (47, 49) 100

6. Difference between 4. and 5. (%):

AR PA AR MA

minus 15 ( minus 12, minus 19) 15(12, 19)

Contravariation

AR in PcLPD-ARCLL pairs and from PcMPD-ARCLLpairs, myeloproliferative disorders (MPD) and mixed LPD 
and MPD shown in Table 3 with contravariation: 

AR PA AR MA AR Total

7. Total (males , females) 65 (42 ,23) 54 (26, 28) 119 (68,51)

% 55 (62, 45) 45 (38, 55) 100

8. For comparison: AR in all PcMPD-AR pairs  of the material 

AR PA AR MA AR Total

8. Total (males, females) 116 (72, 44) 159 (88, 71) 275 (160, 115)

% 42 (45, 38) 58 (55, 62) 100

9. Difference between 7. and 8. (%):

AR PA AR MA

13 (17, 7) minus 13( minus 17, minus 7)
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Male AR are predominant in PA, female AR are predominant in MA (P < 0.01). For all four groups compris-
ing all 138 pairs there is a bi-parental affiliation to paternal lines (PA), totally 50 pairs (36%), and to maternal 
lines, totally 88 pairs (64%) (Table 2). Thus, in CLL- CLL pairs, there is a surplus of affected male offspring in 
PA, males 12, (71%) and females 5 (29%). In MA, the number of affected CLL female offspring is a little higher 
than the number of affected males (51%, females versus 49% males).

In pairs with nonCLL offspring (Table 2, sum of total nonCLL children and grandchildren in mixed pairs 
and in nonCLL—non-CLL pairs the segregation in MA is predominant, where the numer of affected females 
(21 offspring) is significantly higher than expected (P < 0.05).

All 24 patients with MPD in the familial material (Table 1), mixed with 169 CLL patients of the total 181 
familial cases of CLL (Table 1) are included in these pair formations, the rest of the familial patients occur in 
non-included uncle or aunt – nephew or cousin pairs.

Segregation of susceptibility to MBD, the Faroese family. In contrast to the continental families, there are 
nearly no parent – offspring pairs in the Faroese family and therefore neither sib concordance nor birth order 
effect (Table 1).

All Faroese ARs to a Pc within 5 generations before Pc were recorded in order to evaluate the parental affili-
ation of AR related to Pc (Table 3). Hereby, co- and contravariation are visible thanks to the high number of 
patients of one single family with the reservation that when comparing with the Continental families, the parents 
are kindred in the Faroese material. Table 3 shows the findings of a systematic study of co- and contravariation 
of all diagnoses in the Faroese material. Diagnoses not mentioned in Table 3 do not show detectable co- or con-
travariation. The observed number of patients (OBS) is compared with the calculated, expected number (EXP), 
cf. Material and Methods, co- and contravariation.

Since a given patient in the generations before Pc may act as AR to several Pcs at the same time, the total 
number of ARs given in Table 3 is higher than the observed total number of Faroese patients (315 patients) as 
mentioned in Table 1.

The occurrence of a few affected parent–affected offspring pairs (Table 1) is presumably interference (overlap 
of multiple pairs of affected non-parent–affected offspring).

Covariation concerns AR nonCLL both LPD and MPD (Table 3). Covariation denotes a greater number of 
observed ARs than expected. The ARs from pairs involved in covariation have a significant correlation to MA 
(Table 4, P < 0.01, chi-square test, 2 degrees of freedom).

Contravariation concerns only AR CLL (Tables 3 and 4). Contravariation means a lower number of observed 
ARs than expected. The ARs from pairs involved in contravariation have a significant correlation to PA (Table 4, 
P < 0.05, chi-square test, 2 degrees of freedom).

Discussion
The findings from the present study on the segregation of susceptibility to MBD (Tables 1, 2, 3, 4), are fused with 
a model of parental genomic imprinting22 (Fig. 1). Parental genomic imprinting denotes a transgenerational 
segregation that depends on the gender of the parents. One allele is transcriptionally inactivated (imprinted, 
silenced) while the other allele remains active. At each transgenerational passage, the imprint erases and then 
it regenerates making imprinting a lifelong mechanism. A distinction between maternal and paternal imprint-
ing points out a stereotypic distribution of affected- and healthy persons, and carriers in the pedigree (Fig. 1).

As shown here, a proband crude (Pc) can have affected relatives (ARs) in paternal lines (PA) with maternal 
imprinting, and ARs in maternal lines (MA) with paternal imprinting. In this way, there is implicit in parental 
genomic imprinting basis for specific pathways in the segregation from mother or father to female or male off-
spring (Fig. 1). We assume that such specific transgenerational pathways are included in the explanation of the 
differences we have seen for male and female offspring (Table 2).

We have previously argued that the genetic component of MBD may be reappearance of parts of the fetal 
residual-genome, which long after birth can produce mutated hematopoietic monoclones, as seen in MBD29. 
The regulating factor is a so-called polymorphic equilibrium with segregation distortion related to parental 
imprinting23,24 and mainly to the segregation of genes of early embryonic growth factors23–25,44.

In such cases, fitness (in a biological sense) is generally higher than in sheer Mendelian segregation24, and the 
mean fitness is maximized by complete but opposite drive in the two fractions, PA and MA23,24. In mammals, 
fitness usually means maternal drive and maternal predominance, protection of the oocyte, and tight regulation 
of genes affecting the feto-maternal interface in placenta45,46. In CLL31 and sometimes in NHL32,33, fitness means 
specifically that the overall 10 years survival and the response to treatments are better in females than in males. 
From a biological point of view, there is much to suggest that Homo sapiens takes good care of these gene sets for 
susceptibility to MBD, which master the critically important monoclones of the fetal hematopoiesis. The genes 
are maintained and "amplified" transgenerationally by anticipation on their way down through the generations, 
where genes for different diagnoses under MBD are mixed-up by covariation. We have had the opportunity to 
demonstrate this in a large family, the related Faroese population, with many hundreds of affected people. CLL 
is an exception that contravariates and thereby "keeps to itself in clusters in the pedigree”, unknown for what 
reason, perhaps a balance between paternal and maternal inheritance (viz. opposite drive in PA and MA, Table 4). 
There is also no certain explanation as to why the two lymphomas DLBCL and FL occur with lower frequencies 
in the families (Table 1) than in the cancer registers42,43, we can just state that in the case of inheritance (familial 
occurrence), a certain sorting of the susceptibility genes seems to takes place. LPD and MPD are found mixed 
in our family materials (Table 1), which is consistent with the fact that for LPD and MPD, common germ cell 
mutations have been detected in families with MBD, for example the so-called DDX41 mutation47.

Like other (onco-) fetal antigens, the susceptibility genes for monoclonal haematological disease represent 
a risk of disease later in life after birth. There is an increased risk of leukemias, lymphomas and myeloma and 
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other monoclonal malignant haematological disorders, and also of autoimmune diseases. The mechanisms of 
inheritance and distribution of the susceptibility genes minimize the consequences of disease. In men with CLL, 
for example, by birth order effect, where the disease is often seen in sons late in the sibling group, when there are 
already unaffected healthy older siblings. Another example is the conditions where susceptibility maternally is 
given to daughters, where with several diagnoses there is a documented better prognosis and a better treatment 
response to chemotherapy than in men. The vast majority of the clonal malignant blood diseases occur espe-
cially after childbearing age, so the presence of the susceptibility genes has little effect on the survival of Homo 
sapiens. It must be assumed that the benefit of carrying these genes, with their great importance in fetal life, is 
outweighed by the risk of disease. Evolutionarily, it is undoubtedly an advantage that the MBD susceptibility 
during inheritance can be managed and distributed with these epigenetic mechanisms, so that this potentially 
dangerous congenital baggage will not just be given to all descendants according to Mendel’s laws.

In general, genomic imprinting of a pluripotent stem cell with subsequent differentiation brings about the 
same number of affected males and females, carriers and healthy people in PA and MA. The allocation of the 
stem-cell descendants to either PA or MA is permanent, sometimes denoted «the specific fate”25.

If, on the other hand, it is about somatic cell differentiation after the initial pluripotent stage, where newly 
developed descendants of the stem cell become mother cells for new maturation cell lines, the fate may change48. 
The genes involved can change under the influence of even more polymorphic equilibria, e.g. restricted gene-
expression, epigenetic modifies (DNA methylation modifications) and epigenetic reprogramming moderators 
(clonal development and loss of genomic integrity25,48. In following generations, specific monogenes in the seg-
regation of susceptibility to MBD undergo further segregation distortion to fractions of male and female ARs 
in PA and MA. Our present findings on the strong dominance of male ARs in PA and the modest accumulation 
of male ARs in MA, can hardly be explained without a polymorphic equilibrium with segregation distortion.

Co- and contravariation of AR are such opposite drives of “the two fractions”, PA and MA. In MA, there is 
an observed predominance of groups with covariation where PA, however, is not zero. In PA, where groups with 
contravariation predominate, MA is not zero (Table 4). It might look like a discrepancy that so many female AR 
CLL from MA contravariate. We believe that AR CLL’s association with PA is correctly reported (Table 4) and 
that we see an opposite drive between PA and CLL, and between MA and nonCLL.

The physiological HLA-related microchimerism between mother and fetus (transplacental passage of fetal 
cells to the mother) completes the model of segregation of susceptibility to MBD49–52. In that perspective, micro-
chimerism belongs to the group of physiological segregation modifiers. Without the notion of drive of suscep-
tibility by HLA mismatch and chimerism, the model would have no reasonable explanation for birth order 
effect (per-generational enhancement) or anticipation (trans-generational enhancement) (Fig. 1). Apparently, 
chimerism between mother and fetus exerts a drive for the susceptibility. We do see affected pairs of mother-son 
where the HLA mismatch is greatest in families with unrelated parents, but not, or nearly not in families with 
related parents and thus a higher degree of HLA compatibility (Table 1). Here, MBDs appear more widely dis-
tributed in the family tree, presumably at such positions where the susceptibility of the proband can be expressed 
distant from the father and mother at places with a slightly higher mismatch, for example in the Faroe Islands, 
where many isolated islands are scattered in the ocean. This is also in accordance with observations from Saudi-
Arabia, where consanguineous parents have children with a lower frequency of MBD than seen in families with 
unrelated parents53.

Familial cases of two of the most common subtypes of malignant lymphoma, the diffuse large B-cell lym-
phoma (DLBCL) and the follicular lymphoma (FL) have been found to have a lower frequency than in solo cases 
as reported by the Cancer Registries42,43.This trend is also seen in the present investigation, but not statistically 
significant. Hodgkin lymphoma, on the other hand, is well known in familial clustering54,56 as also seen in the 
Faroese family (Table 3) The findings must be taken with the reservation that the patients are alive and without 
symptoms at the time of registration but they may later in life develop MBD which ought to be included.

Informed consent.  The patients were informed about the purpose of the study, that it was free to decline 
at any time, and that the investigation was approved by the Scientific Ethical Committees and done according to 
the Declaration of Helsinki. It was clearly stated that data would remain confidential and unrecognizable outside 
the study. Each patient confirmed participation by completing a questionnaire, approved by the National Ethical 
Committees.

Data availability
Data are stored at the National Norwegian Cancer Registry, Ullernchausseen 64. NO 0379, Oslo, Norway, att. 
Dr.Tom Børge Johannesen.
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