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A B S T R A C T

Nanofluids possess higher thermal properties than the other conventional base fluids. Many investigators sug-
gested that the nanofluids have the potential to apply in various engineering fields. In real time situation it is
challenging to determine the thermal conductivity of nanofluids with accuracy as they have many depending
factors. Moreover, numerous experimental tests are required to acquire the thermal conductivity of nanofluids
accurately. In this research paper, thermal conductivity ratio and dynamic viscosity ratio of Al2O3/H2O nanofluid
are predicted accurately by using Gaussian Process Regression (GPR) methods. The input predictor variables used
in this model are temperature, volume fraction and size of the nanoparticles. 222 experimental data sets are taken
to predict the thermal conductivity ratio (TCR), dynamic viscosity ratio (DVR) and also the effectiveness of the
predictor variables in predicting the response variables are extensively studied and found that the temperature is
the crucial factor to enhance the thermal conductivity ratio. The proposed modeling is performed by using
MATLAB software. The predictions were evaluated by various evaluation criterions. It is observed that an opti-
mized Gaussian process regression (GPR) method with matern kernel function shows an accurate agreement with
experimental data with Root Mean Square Error (RMSE) value of 0.000126 for TCR and squared exponential
kernel function show good agreement with experimental data with Root Mean Square Error (RMSE) value of
0.000045 for DVR. Regression coefficient value (R2) is 0.99; nearer to one hence the predicted results are reliable.
1. Introduction

Diffusion of nano-sized particles, dimensions vary from 1 nm to 100
nm into base fluids like water, ethylene glycol, engine oil and transformer
oil leads to the formation of nanofluids. Nanofluids possess high thermal
and transport properties, due to its uniqueness in enhancing the thermal
conductivity, it succeeded in various applications. The necessary
dependent factors which help to enhance the thermal conductivity are
temperature, volume fraction, size of the nanoparticle, shape of the
nanoparticle, base fluid, and method of fabrication of nanoparticles [1].
Many researchers have experimentally studied to the factors which in-
fluence the thermal conductivity of nanofluids. Das et al. [2], Hojjat et al.
[3], Vajjha et al. [4] and Tajik et al. [5] have clearly stated that increase
in temperature raises the thermal conductivity of nanofluids. Importance
of volume fraction in terms of increasing the thermal conductivity of
nanofluids studied by Battira et al. [6], Tajik et al. [5] and Aminreza et al.
[7] suggested that the temperature and volume fraction are the most vital
factors to increase the thermal conductivity of nanofluids. M. Beck et al.
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17 May 2019; Accepted 3 Septe
is an open access article under t
[8], Murshed et al. [9], Uddin et al. [10] and Reza et al. [11] tested and
revealed that increase in size of nano particle increases the thermal
conductivity of nanofluids.

Various researchers investigated the significance of dynamic viscosity
for heat transfer coefficient, Masuda et al. [12], Putra et al [13] and Pak
and Cho [14] experimentally studied that increase in particle concen-
tration leads to increase the viscosity of nanofluids. Alawi et al. [15]
through investigation found that increase in temperature and increase in
size of the nano particle decreases the dynamic viscosity of nano fluid.
Hemmat Esfe et al. [16] stated that decrease in the nano particle size will
increase the viscosity. Alawi et al. [15] and Srivastava [17] discussed
about the shape of the nano particle and its importance in the determi-
nation of dynamic viscosity of nanofluid. There are so many theoretical
correlations and experiments were found and conducted to find the
thermal conductivity and dynamic viscosity of nanofluid but there is very
little accordance between them and it is tiresome. Data mining is an
important process in knowledge discovery. Data mining techniques are
used to extract the hidden pattern knowledge from large dataset. Data
mber 2019
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mining techniques can be performed using soft computational tool it is an
effective one with machine learning algorithms for prediction with ease
and accurate.

Machine learning system is the basic to artificial neural networks,
fuzzy systems, simulated annealing, rough sets, and genetic algorithms to
learn and predict the hidden patterns from the unstructured large data
sets. Algorithms like linear regression (LR), multivariate linear and non
linear regression (MLR and MNR), back propagation neural network (BP-
NN), support vector regression (SVR) and the Gaussian process regres-
sion (GPR) methods are available in the machine learning techniques.
Many researchers were used Multi layer perceptron Artificial Neural
Network (MLP-ANN) with back propagation algorithm for prediction.
Tahani et al. [18] proposed an ANN modeling to predict the thermal
conductivity of nanofluids and the result is promising with the experi-
mental values. Dalkilic et al [19] performed the prediction of dynamic
viscosity by using ANN method. The enhancement in the heat transfer of
a nanofluid depends mainly on different values of volume fraction stated
by Arman Safdari et al. [20]. The effect of size of the nanoparticle and
values of volume fraction in TiO2 nanofluid studied by Hosseini et al.
[21] and stated that, increase in volume fraction lead to increase in
viscosity of nanofluid. Giovanni et al. [22], Ariana et al. [23] and
Khosrojerdi et al. [24] used ANN methodology to predict the thermal
conductivity of various nanofluids. Hemmat Esfe et al. [16] and Heidari
et al. [25] predicted the viscosity of various nanofluids using ANN
techniques.

Very few researchers used Support Vector Machine and Regression
methods for prediction of thermal conductivity and viscosity of nano-
fluids. Zanty et al. [26] used support vector machine for classification,
Support Vector Regression (SVR) is an non linear generalization algo-
rithm using VC theory stated by Vapnik [27], Ibrahim et al. [28] pre-
dicted the thermal conductivity of nanofluid by using ANN and SVR
method and concluded that SVR method has more accuracy than ANN
method for prediction of thermal conductivity of nanofluids. Khairul
et al. [29] studied experimentally the prediction of heat transfer coeffi-
cient and friction factor of CuO/H2O nanofluid using fuzzy logic expert
system. The temperature and volume fraction data were used to predict
the thermal conductivity of nanofluids in most of the research works.
From the literature review, it seems that a very little research work was
done by using Gaussian process to predict the thermal conductivity and
dynamic viscosity of nanofluids. Hence in this investigation, Gaussian
Process Regression model (GPR) has been used to predict the thermal
conductivity ratio and dynamic viscosity ratio of Al2O3/H2O nanofluids.
As an input data, predictor variables such as temperature, volume frac-
tion and size of the nanoparticles are used. It is observed in this paper, the
behavior of different kernel functions and the accuracy in prediction. In
addition the effectiveness and interaction between the predictor vari-
ables were also studied. The proposed model is optimized with hyper
parameters and compares the predicted data with the experimental data.
There is a good accordance between the experimental values and pre-
dicted values by the GPR model.

2. Description of GPR model

A Gaussian process is a collection of random variables, any finite
number of which has a joint Gaussian distribution. A Gaussian process is
specified by its mean function and covariance function otherwise called
as kernel function. It is represented mean function m(x) and the kernel
function k (x, x’) of a real process f(x) in Eqs. (1), (2), and (3).
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Where m(x) represents mean function, k (x, x’) denotes covariance
function and (x, x’) are random variables [30].

Rasmussen [30] reported GPR as given best performance in predic-
tion when compared with Linear Regression (LR), Rigid Body Dynamics
(RBD) and Locally Weighted Projection Regression (LWPR). Few authors
[5, 23] discussed about the prediction of thermal conductivity of alumina
water based nano fluids by using Multilayer Perceptron model
(MLP-ANN) whereas in this research article, the prediction of thermal
conductivity of Al2O3/H2O modeled by Gaussian process regression
methods because with limited data set, MLP-ANN suffers local optima
and slow convergence. This limitation is overruled by GPR method.
Hence in this paper GPR method is used for prediction. The objective of
using Gaussian process Regression (GPR) is to predict the output data
with minimum error value.

Kernel function is the important component in a Gaussian process.
Kernel functions in Gaussian process regression are Exponential function,
γ-Exponential function, Squared Exponential function, Rational
Quadratic, Matern class of covariance function and Neural network
function, the mathematical formulation are given in Eqs. (4), (5), (6), (7),
(8), (9), (10), and (11) respectively. In this paper we used Squared
Exponential function, Rational Quadratic, Matern v ¼ 5/2 class of kernel
function.
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Where, ~x¼ ð1; x1; ::::::::::xdÞT ~x is augumented input vector r denotes |x-
x’|, v is positive integer.

The proposed model further optimized by using hyper parameters,
Hyper parameters plays a vital role by directly controlling the behavior of
the training algorithm and maximize the performance of the trained
model.

3. Evaluation criteria

In this research paper, a various evaluation criterion are used to
evaluate the GPR model. The criterions are Mean Square Error (MSE),
Root Mean Square Error (RMSE), Normalized Mean Square Error
(NMSE), Mean Absolute Error (MAE), Regression coefficient value (R2)
and Absolute Average Relative Deviation percentage (AARD%). The
mathematical formulations of criterions are shown in Eqs. (12), (13),
(14), (15), (16), and (17) respectively.
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Where kp, ka denote thermal conductivity ratio of predicted data and
experimental data respectively, ka is the mean value of thermal con-
ductivity of experimental data for ‘n’ data values, ‘n’ denotes the total
number of data samples. kp, ka are replaced by μp, μa to determine the
dynamic viscosity ratio. μa is mean value of dynamic viscosity ratio of
experimental data. An adjusted response function is used to explore the
effect of the predictor variables temperature, volume fraction and size of
the nanoparticles on thermal conductivity ratio (TCR) and also in dy-
namic viscosity ratio (DVR) of Al2O3/H2O nanofluids. These criteria
values are used to compare the accordance between experimental values
and predicted values.

4. Results and discussions

The experimental values used for training the GPR model and the
predictor variable values have been taken from [15] and [31]. Size of the
nanoparticles, volume fraction and experimental thermal conductivity
ratio values of Al2O3/H2O nanofluids have been taken to train the GPR
model with different kernel function which consists of 70 sample dataset.
45 sample dataset based on the size of the nanoparticles, volume fraction
and experimental dynamic viscosity ratio have been taken to predict the
dynamic viscosity ratio of Al2O3/H2O nanofluid. 107 sample dataset
were used to predict the effectiveness of the predictor variables like
temperature, volume fraction and size of the nanoparticles to find the
thermal conductivity ratio. It is studied that the crucial factor to enhance
thermal conductivity of nanofluids is temperature than the volume
fraction and size of the particle.
4.1. Prediction of TCR and DVR

The GPR model is trained with different kernel functions namely
Squared Exponential, Rational Quadratic and Matern class of covariance
with ‘v’ take the value as 5/2. GPR model with cross validation, it
partition the dataset into number of fold to perform cross validation
thereby to protect the data from over fitting problem and possess
generalization ability. In this proposed model, the dataset where
Table 1. Comparison of RMSE value with different number of fold for predicted TCR

Kernel Functions TCR

Values of Root Mean Square Error

5 fold 10 fold 1

Rational Quadratic 0.0049437 0.0049875 0

Squared Exponential 0.0048204 0.0048729 0

Matern (v ¼ 5/2) 0.004779 0.004826 0
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partitioned into 5 fold, 10 fold and 15 fold and the results were compared
using RMSE evaluation criterion.

In the prediction of TCR, the Matern kernel function produces less
RMSE value when compared with other two kernel functions, whereas in
the prediction of DVR, the Squared exponential kernel function gives less
RMSE value than the Matern and Rational Quadratic, the same is shown
in the Table 1. Table 2 consist of all the evaluation criteria of Matern
kernel function with v ¼ 5/2 for TCR and Squared exponential kernel
function for DVR.

Observed that there is a good accordance between the experimental
values and predicted values by Gaussian process regression model. It is
shown that predictions of TCR by matern 5/2 kernel function are more
accurate than the prediction by other two kernel functions. Figure 1
depicts the Prediction of TCR using GPR- Matern Kernel Method with v¼
5/2 value. The GPR model with matern 5/2 further optimized by using
the hyper parameters, Figure 2 represents the comparison between
without hyper parameter and with hyper parameter optimization of
Gaussian process regression model.

Figure 3 represents the Prediction of DVR using GPR Squared Expo-
nential kernel function. The GPR model with Squared Exponential
further optimized by using the hyper parameters, Figure 4 represents the
comparison between without hyper parameter and with hyper parameter
optimization of Gaussian process regression model. In Table 3, the
optimization is noticeably shown in terms of RMSE value of Matern
kernel function for TCR prediction and squared exponential kernel
functions for DVR prediction with hyper parameters.

4.2. Effects of predictor variables in prediction of TCR

4.2.1. Effect of volume fraction and size of the nano particle
Effect refers the effect of two selected predictors on response. The

Figure 5 represents an effects of both size of the nanoparticles and vol-
ume fraction on TCR by changing one of the predictor values with other
predictor values held fixed. Increase in the size of the nano particle from
11nm to 108nm decreases the TCR values by 0.05 and increasing the
volume fraction from 0.01 to 0.05 increases the TCR by 0.125 values. The
optimum values of size of the nanoparticles and volume fraction are
59.5nm and 0.03 respectively.

An adjusted response function describes the relationship between the
fitted response and a single predictor, with the other predictors averaged
out by averaging the fitted values over the data used in the fit. A
regression model for the predictor variables (x1, x2, …, xp) and the
response variable y has represented in the Eq. (18).

yi ¼ f(x1i, x2i, …, xpi) þ ri. (18)

Where ‘f’ is a fitted regression function and ‘r’ is a residual. The subscript
‘i’ represents the observation number. The adjusted response function for
the first predictor variable x1, it is depicted in the Eq. (19).

g(x1) ¼ 1/n
Pn

i¼1 f (x1i,x2i,…….xpi) (19)

Where ‘n’ is the number of observations. The adjusted response data
value is the sum of the adjusted fitted value and the residual for each
observation. Thus the adjusted TCR values are calculated by varying the
values of one of the predictor values with other predictor values held
fixed. Keeping fixed number of various volume fractions for different
and DVR.

DVR

5 fold 5 fold 10 fold 15 fold

.0050531 0.024712 0.022956 0.020176

.0049447 0.024475 0.021711 0.019119

.0049337 0.025269 0.023832 0.021021



Table 2. Evaluation of Covariance Functions for predicted TCR and DVR.

Evaluation MSE RMSE R2 MAE NMSE AARD%

Matern (v ¼ 5/2) for TCR 0.000024 0.004779 0.99 0.0035878 0.000021 0.004195

Squared Exponential for DVR 0.000482 0.021711 0.99 0.015508 0.000327 0.019064

Figure 1. Prediction of TCR using GPR- Matern Kernel Method with v ¼ 5/
2 value.

Figure 2. Comparison in Prediction of TCR using GPR - Matern Kernel Method
with v ¼ 5/2 value without and with hyper parameters.

Figure 3. Prediction of DVR using GPR- Squared Exponential Method.

Figure 4. Comparison in Prediction of DVR using GPR – Squared Exponential

P.C. Mukesh Kumar, R. Kavitha Heliyon 6 (2020) e03966
values of size of nanoparticles the highest volume fraction shows the
enhancement in the TCR. For various fixed number of size of particles
and different values of volume fraction, smallest size of the nanoparticles
shows enhancement in TCR it as shown in Figure 6 and in Figure 7
respectively.

4.2.2. Effect of size of the nano particle and temperature
The effect of temperature and size of the nanoparticles were shown in

the Figure 8. Increasing the temperature from 293K to 323K increases the
TCR values by 0.175 and decreasing the diameter from 80 nm to 11 nm
increases the TCR by 0.04 values. The optimum values of size of the
nanoparticle and temperature are 36nm and 308K respectively. In
Figure 9 for fixed number of various size of the nanoparticles and
different temperature values, the diameter of 36nm shows a precise
enhancement in TCR, for various fixed number of temperature values and
4

different diameter of the nanoparticles, the maximum temperature shows
an enhancement in TCR it is represented in the Figure 10.

4.2.3. Effect of volume fraction and temperature
The effects of temperature and volume fraction were shown in the

Figure 11. Increasing the temperature from 293K to 325K increases the
TCR values by 0.15 and increases the volume fraction from 0.0011 to
0.05 increases the TCR by 0.25 values. The optimum values of volume
fraction and temperature are 0.03 and 310K respectively. Very low vol-
ume fraction values decreases the TCR values also shown in the
Figure 11. In Figure 12 and in Figure 13, the highest values of volume
fraction and highest temperature values shows the enhancement in the
TCR values respectively.
without and with hyper parameters.



Table 3. Comparison of RMSE values without and with hyper parameters for
predicted TCR and DVR.

Evaluation TCR DVR

Matern (5/2) Squared Exponential

RMSE without hyper parameter 0.004328 0.00874

RMSE with hyper parameter 0.000126 0.000045

Figure 5. Effect of volume fraction and size (nm) of the nanoparticles.

Figure 7. Effect of various fixed size (nm) and different values of volume
fraction in the Prediction of TCR.

Figure 8. Effect of temperature (K) and size (nm) of the nanoparticles.
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4.3. Effects of predictor variables in prediction of DVR

4.3.1. Effect of volume fraction and temperature
The effects of temperature and volume fraction on response DVR are

shown in the Figure 14. Increasing the temperature from 293K to 324K
decreases the DVR values by 0.6 and increases the volume fraction from
0.01 to 0.05 increases the DVR by 0.6 values. The optimum values of
volume fraction and temperature are 0.03 and 310K respectively. In
Figure 15 for fixed number of various volume fraction and different
temperature values, the volume fraction of 0.05 shows a precise
enhancement in DVR. DVR value is higher for temperature having lower
value it is represented in the Figure 16.
Figure 6. Effect of various fixed volume fraction and different size (nm) in the
Prediction of TCR.

Figure 9. Effect of various fixed diameter (nm) and different temperature (K)
values in the Prediction of TCR.
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Figure 10. Effect of various fixed temperature (K) values and different diameter
(nm) values in the Prediction of TCR.

Figure 11. Effect of temperature and volume fraction.

Figure 13. Effect of various fixed temperature (K) values and different values of
volume fraction in the Prediction of TCR.

Figure 14. Effect of temperature and volume fraction.
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5. Conclusions

In this research paper, 222 sample datasets have been used for the
predictions of the thermal conductivity ratio and dynamic viscosity ratio
of Al2O3/H2O nanofluids by using Gaussian process regression (GPR)
method. Temperature, volume fraction and size of the nanoparticles
parameters were used as predictor variables. The thermal conductivity
Figure 12. Effect of various fixed volume fraction and different temperature (K)
values in the Prediction of TCR.

6

ratio and dynamic viscosity ratio are taken as response variable in the
proposed modeling. The effectiveness of the predictor variables in pre-
dicting the response variables are extensively studied. It is studied that
the temperature of nanofluids plays a major role than the volume fraction
and size of the nanoparticles to enhance thermal conductivity of nano-
fluids. The proposed GPR methods were modeled with different kernel
functions and different number of fold to cross validate the dataset to
Figure 15. Effect of various fixed volume fraction and different temperature (K)
values in the Prediction of DVR.



Figure 16. Effect of various fixed temperature (K) values and different values of
volume fraction in the Prediction of DVR.
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evade over fitting problem. Found that the Matern kernel function and
squared exponential kernel function exhibit accurate prediction of ther-
mal conductivity ratio and dynamic viscosity ratio respectively. The
proposed model were optimized by using hyper parameters and the Root
Mean Square Error (RMSE) values of thermal conductivity ratio by
matern kernel function and dynamic viscosity ratio by squared expo-
nential kernel function are 0.000126 and 0.000045 respectively. Found
that the Regression coefficient value (R2) for overall data is 0.99.
Therefore, Gaussian process regression (GPR)method accurately predicts
the thermal conductivity ratio and dynamic viscosity ratio of Al2O3/H2O
nanofluids.
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