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Epithelial-mesenchymal plasticity plays a critical role in many solid tumor types as a mediator of meta-
static dissemination and treatment resistance. In addition, there is also a growing appreciation that the
epithelial/mesenchymal status of a tumor plays a role in immune evasion and immune suppression. A
deeper understanding of the immunological features of different tumor types has been facilitated by
the availability of large gene expression datasets and the development of methods to deconvolute bulk
RNA-Seq data. These resources have generated powerful new ways of characterizing tumors, including
classification of immune subtypes based on differential expression of immunological genes. In the pre-
sent work, we combine scoring algorithms to quantify epithelial-mesenchymal plasticity with immune
subtype analysis to understand the relationship between epithelial plasticity and immune subtype across
cancers. We find heterogeneity of epithelial-mesenchymal transition (EMT) status both within and
between cancer types, with greater heterogeneity in the expression of EMT-related factors than of
MET-related factors. We also find that specific immune subtypes have associated EMT scores and differ-
ential expression of immune checkpoint markers.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction post-translational regulation [14]. In addition to these cell-
Epithelial-to-mesenchymal transition (EMT) is a cellular
process in which epithelial cells lose epithelial characteristics, such
as apical-basal polarity and tight cell–cell adhesions, and gain
mesenchymal features, such as anterior-posterior polarization,
focal cell contacts, and enhanced motility and invasiveness [1–3].
Initially characterized in the field of embryology as a feature of
normal development, EMT is now also known to play fundamental
roles in multiple cellular processes, such as wound healing, fibro-
sis, and cancer [4]. The regulation of EMT is complex and controlled
by the combined action of core EMT transcription factors (EMT-TFs,
such as SNAI1/SNAI2, Twist1, and ZEB1/2) [2,3], epithelial
factors such as GRHL2 [5]; Jason A. [6] and OVOL1/2 [7],
post-transcriptional regulation, including microRNAs [8,9] and
alternative splicing [10–12], epigenetic modifications [13], and
intrinsic mechanisms, features of the tumor microenvironment,
such as hypoxia [15–18] and interactions between cancer cells
and stromal [19–22] and immune cells [23–25] also promote EMT.

Early work on EMT in cancer focused on EMT as a driver of
metastatic dissemination. The reversion of cancer cells from a
post-EMT-like state back to an epithelial-like phenotype by
mesenchymal-to-epithelial transition (MET) was shown to be
important for metastatic colonization subsequent to dissemination
and seeding [6,26–29]. In addition to metastatic potential, how-
ever, EMT has also been shown to function in several other key
cancer processes, including tumor-propagating/stemness-like phe-
notypes [30–34] and treatment resistance [35,36]. Consistent with
the role of EMT in metastatic dissemination and therapy resistance
the number and EMT phenotype of circulating tumor cells (CTCs)
varies depending on a patient’s treatment response status, with
treatment-refractory patients having more overall CTCs with a
higher proportion of mesenchymal-type CTCs, and treatment
responders having fewer overall CTCs with a higher proportion of
epithelial-type CTCs [37].
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Although early studies on EMT and MET viewed these pheno-
typic transitions as binary states, as this field of study has matured
the simplified view of EMT/MET dynamics and roles in cancer pro-
gression has been shown to be more complex than originally
described [38,2]. EMT, in some contexts, has now been shown to
be dispensable for metastatic dissemination [35,2,36]. Similarly,
MET has also been demonstrated to be dispensable for metastatic
colonization, with two distinct paths to metastatic colonization
[1,6] and predicted by [39]. Likewise, while the importance of
these processes is more complex, the dynamics of this gene regu-
latory program are also more nuanced than originally appreciated.
Rather than a binary switch between states, EMT/MET is now
viewed as a spectrum along which cells can have various hybrid
E/M phenotypes [38,1,2]. In fact, hybrid E/M phenotypes may be
marks of increased cancer aggressiveness and metastatic ability
[40]. This has been observed not only in cancer cell lines, but also
in clinical CTC samples [41,40,37].

Just as EMT promotes chemoresistance in multiple cancer types,
the EMT/MET status of cancers has also been linked to resistance to
novel immunotherapies. Immune checkpoint inhibitors have revo-
lutionized the treatment landscape and vastly improved patient
outcomes of several cancer subtypes, including non-small cell lung
cancer (NSCLC) [42], melanoma [43], and renal cell carcinoma
(RCC) [44,43]. However, resistance to these agents is common,
and there are several cancer subtypes that do not respond well
to immune checkpoint blockade.

One possible explanation for poor immunotherapy response
may be the relationship between the EMT status of a tumor and
the expression of immune checkpoint molecules [45]. For example,
mesenchymal-like cancer cells have been shown to be capable of
immunosuppression via interactions with stromal immune cells
in the tumor microenvironment. In particular, SNAI1, a core
EMT-TF, upregulates expression of CXCL2, a major mediator of
myeloid-derived suppressor cell (MDSC) infiltration [46]. MDSCs
are major drivers of immunosuppression in the tumor microenvi-
ronment. MDSC infiltration renders cancer cells less susceptible
to attack by CD8 + T cells and NK cells and leads to an increased
ratio of immunosuppressive CD4 + Foxp3 + Treg-like cells, which
facilitates tumor growth [47]. SNAI1 and vimentin, a mesenchymal
cytoskeletal marker, are positively correlated with programmed
death-ligand 1 (PD-L1) scores [48]. Furthermore, PD-L1 transcrip-
tion is regulated by SNAI1 and the miR200/ZEB1 axis [49]. In con-
trast, E-cadherin (an epithelial marker) is negatively correlated
with PD-L1 scores and epithelial-like cancer cells have higher num-
bers of infiltrating M1 macrophages and CD8 + T cells in the tumor
microenvironment, which allows for greater susceptibility to
immune checkpoint inhibitors [50]. It has also been proposed that
the regulation between EMT and PD-L1 is actually bidirectional
[50,51]. This is supported by the observation that PD-L1 upregu-
lates the EMT-TF and Twist [52]. In addition to this bidirectional
regulation, there may be common inducers of EMT and immune
evasion, including chronic inflammation, hypoxia, and metabolic
reprogramming. There may also be non-cell-autonomous factors
contributing to immune responses; for instance, EMT factors, such
as ZEB1, driving an M2 macrophage-enriched environment by
inducing both PD-L1 and CD47, the latter of which drives M2 polar-
ization [53]. OVOL1, on the other hand, can enable M1 macrophage
enrichment by controlling the transcription of IL-10 [54].

Our understanding of EMT, immune evasion, and other facets of
cancer biology has been greatly aided by large, publicly-available
gene expression datasets [55,56]. Analyses of these datasets have
allowed researchers to characterize cancer types to an unprece-
dented level of detail. The coupling of these large genomics data
sets with innovative algorithms that can uncouple bulk RNA-Seq
data has also enabled inference of immune subtypes based on dif-
ferential expression of immune-related genes within tumors [57–
3843
59]. These immune subtypes have prognostic value and can be
used for survival stratification. Differences in outcome exist within
and between cancers when stratified by immune subtypes.

In this study, we combined three novel EMT scoring metrics
[60] with immune subtype analysis from the iATLAS algorithm
[59–61] to understand the relationships between EMT and
immune signature within and between cancer types. Our analyses
demonstrate heterogeneity in both E/M phenotype and immune
signature within a single cancer type. By comparing known drivers
of epithelial and mesenchymal lineages across cancers, we reveal
consistency in gene expression of epithelial factors across epithe-
lial tumors, but cancer type-specific expression of a subset of mes-
enchymal drivers, suggesting that epithelial-derived cancers have
convergence of key epithelial driver genes while mesenchymal-
derived cancers may be driven by heterogeneous expression of
one or more EMT-TFs. These drivers of E/M phenotype are also
associated with distinct immune subtypes, with enrichment for
specific immune subtypes across the EMT spectrum, illustrating
the relationships between E/M status, immune subtype, with
potential implications for patient response to immunotherapy.
2. Results

2.1. The EMT status of cancers is heterogeneous within and between
cancer types

The EMT status of specific tumor types has been quantified
using a variety of previously-established signatures, most of which
use a limited set of molecules or functional traits and/or individual
algorithms to measure the extent of EMT on a continuum [62–68].
Here, to provide a robust comparison of EMT-like status across
cancer types, we calculated the EMT scores with available RNA-
Seq data from the Cancer Cell Encyclopedia (CCLE) using three dis-
tinct EMT scoring algorithms [69,40,70]. Each of these three met-
rics – KS, MLR and GS76 - score the extent of EMT on a
continuum, based on the expression of EMT-specific genes identi-
fied by various groups. These three methods use different gene lists
and scoring methods: the GS76 method uses a weighted sum of
expression levels of 76 genes, the KS method compares the cumu-
lative distribution functions of epithelial and mesenchymal signa-
tures, and the MLR method uses a multinomial logistic regression
to calculate the probability of a sample to belong to varying EMT
categories. KS and MLR score samples on a scale of [-1, 1] and
[0,2], respectively, while the GS76 metric has no pre-defined scale.
Higher MLR or KS scores represent more mesenchymal samples
while this is the inverse for GS76 scores (lower = more mesenchy-
mal). Thus, KS and MLR scores of samples in a given dataset corre-
late positively with one another, and both KS and MLR correlate
negatively with GS76 scores, as observed across multiple datasets
[60].

Consistent with their lineages of origin, carcinoma cell lines,
such as colorectal, breast, stomach and prostate lines have lower
median KS and MLR scores and higher GS76 scores as compared
to mesenchymally-derived cancer cell lines, such as sarcoma, mel-
anomas and glioma (Fig. 1A, S1A, S2A). It is also noteworthy that
the variance in EMT scores is higher in cell lines of epithelial lin-
eages as compared to mesenchymally-derived cell lines (Fig. 1A,
S1A, S2A).

We next investigated the distribution of EMT scores across
tumor types from TCGA. Similar to the CCLE data, epithelial tumors
(adenocarcinomas of the colon, rectum, stomach, prostate, etc.)
have lower mean value of KS and MLR scores and a higher mean
value GS76 score as compared to tumors derived from mesenchy-
mal lineages (glioblastoma, glioma, sarcoma) (Fig. 1B, S1B, S2B).
Also consistent with CCLE data, mesenchymally-derived tumors



Fig. 1. Carcinomas have more epithelial EMT scores. The KS algorithm scores samples on a scale of [-1, 1], with more positive scores representing more mesenchymal
samples. (A) KS algorithm applied to RNA-Seq data from the Cancer Cell Encyclopedia (CCLE). (B) KS algorithm applied to RNA-Seq data from the Cancer Genome Atlas
(TCGA); COAD = Colon adenocarcinoma, READ = Rectum adenocarcinoma, CESC = Cervical squamous cell carcinoma and endocervical adenocarcinoma, BLCA = Bladder
urothelial carcinoma, STAD = stomach adenocarcinoma, ESCA = esophageal carcinoma, UCEC = uterine corpus endometrial carcinoma, LUAD = lung adenocarcinoma,
HNSC = head and neck squamous cell carcinoma, PRAD = prostate adenocarcinoma, CHOL = cholangiocarcinoma, PAAD = pancreatic adenocarcinoma, KICH = kidney
chromophobe, OV = ovarian serous cystadenocarcinoma, LUSC = lung squamous cell carcinoma, THCA = thyroid carcinoma, BRCA = breast invasive carcinoma, KIRP = kidney
renal papillary cell carcinoma, LIHC = liver hepatocellular carcinoma, THYM = thymoma, LAML = acute myeloid leukemia, KIRC = kidney renal clear cell carcinoma,
TGCT = testicular germ cell tumors, MESO = mesothelioma, UCS = uterine carcinosarcoma, DLBC = lymphoid neoplasm diffuse large B-cell lymphoma, UVM = uveal melanoma,
SKCM = skin cutaneous melanoma, PCPG = pheochromocytoma and paraganglioma, LGG = brain lower grade glioma, SARC = sarcoma, GBM = glioblastoma multiforme. Violin
plots show the median and interquartile range.
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have a lower variance in scores whereas carcinomas display higher
variability in EMT score (Fig. 1B, S1B, S2B), suggesting less hetero-
geneity in the EMT status of mesenchymally-derived cancers. To
account for any potential bias in EMT score calculation that may
be due to excess stromal contamination we applied a previously-
reported combination of five tumor purity prediction methods
[71]. EMT score was weakly correlated with tumor purity (Figure
S3A). The ESTIMATE algorithm was the most highly correlated to
EMT score across cancers, with correlations of � 0.47, �0.23, and
0.17 to KS, MLR, and GS76, respectively (Figure S3A). Other metrics
of tumor purity, such as immunohistochemistry and the LUMP,
ABSOLUTE, and CPE algorithms, had a maximum correlation
of � 0.23 (CPE vs. KS; Figure S3A). We also re-analyzed TCGA sam-
ples in the 50th and 75th percentiles of tumor purity. While sam-
ples with higher tumor purity tended to have lower variance,
samples with higher purity were not markedly different in EMT
score compared to all samples in a given cancer type (Figure S3B).
Together, these analyses suggest that, while single samples may be
influenced to a moderate extent by tumor purity, EMT score for a
given cancer type is driven predominantly by tumor cell lineage
and not a consequence of high stromal contamination.

2.2. EMT-TFs display heterogeneous patterns across cancers while MET
factors are more highly correlated

Given the heterogeneity in EMT scores within and between car-
cinomas, we asked if this heterogeneity was correlated with differ-
ences in EMT-TFs and MET-associated factors. To address this
3844
question we assessed the levels of a panel of five well-studied
EMT-inducing or EMT-associated factors – SNAI1, SNAI2, ZEB1,
ZEB2, and TWIST1 [72–75] – and five MET-inducing or MET-
associated factors – GRHL2, OVOL1, OVOL2, ESRP1, and ESRP2
[11,76–79] – across tumor types. These factors are well-studied
regulators of EMT and MET in vitro and in vivo, and many of them
are involved through double negative feedback loops enablingmul-
tiple phenotypes; for instance ZEB1 forms such loops with
OVOL1/2, GRHL2 and ESRP1 [11,7,80]. Such feedback loops drive
decision-making during embryonic development and cancer pro-
gression [81]. The breakdown of these feedback loops can restrict
cellular plasticity, with consequent impact on metastatic potential
[82,83]. While GRHL2 and OVOL1/2 are transcription factors, ESRP1
and ESRP2 are splicing regulatory players associated with epithelial
splicing programs in development and in cancer [10,84,85].

From this analysis of EMT and MET factors, we noted the
emergence of two large clusters: one set of tumors comprised
predominantly of carcinomas, with higher levels of MET factors
and low levels of EMT factors (top cluster, Fig. 2A), and another
set of tumors with the opposite trend, comprised mostly of
mesenchymally-derived cancers (glioblastoma, glioma, and sar-
coma). We also noted a distinct difference in the relationship
between MET factors and EMT factors in these groups: In the
carcinoma subset MET factors are all highly expressed, while this
consistency across EMT factors is not observed in the
predominantly-mesenchymal cancers. Instead, mesenchymal
tumors are characterized by upregulation of one or two predomi-
nant EMT-factors, such as SNAI2 for uveal melanoma and TWIST1



Fig. 2. EMT factors are more heterogeneous across cancers than MET factors. EMT and MET marker expression across TCGA tumor types; COAD = Colon adenocarcinoma,
READ = Rectum adenocarcinoma, CESC = Cervical squamous cell carcinoma and endocervical adenocarcinoma, BLCA = Bladder urothelial carcinoma, STAD = stomach
adenocarcinoma, ESCA = esophageal carcinoma, UCEC = uterine corpus endometrial carcinoma, LUAD = lung adenocarcinoma, HNSC = head and neck squamous cell
carcinoma, PRAD = prostate adenocarcinoma, CHOL = cholangiocarcinoma, PAAD = pancreatic adenocarcinoma, KICH = kidney chromophobe, OV = ovarian serous cystade-
nocarcinoma, LUSC = lung squamous cell carcinoma, THCA = thyroid carcinoma, BRCA = breast invasive carcinoma, KIRP = kidney renal papillary cell carcinoma, LIHC = liver
hepatocellular carcinoma, THYM = thymoma, LAML = acute myeloid leukemia, KIRC = kidney renal clear cell carcinoma, TGCT = testicular germ cell tumors, MESO = me-
sothelioma, UCS = uterine carcinosarcoma, DLBC = lymphoid neoplasm diffuse large B-cell lymphoma, UVM = uveal melanoma, SKCM = skin cutaneous melanoma,
PCPG = pheochromocytoma and paraganglioma, LGG = brain lower grade glioma, SARC = sarcoma, GBM = glioblastoma multiforme (A) Normalized EMT and MET marker
expression across all TCGA tumor types. (B) Pairwise correlations between expression values of all EMT-EMT, MET-MET, and EMT-MET factor pairs across a subset of TCGA
tumor types. (C) Plot of mean pairwise correlation coefficients for all EMT-EMT factor pairs (x-axis) versus mean pairwise correlation coefficients for all MET-MET factor pairs
(y-axis) across all TCGA tumor types.
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and SNAI2 for sarcoma (Fig. 2A). Conversely, while the
mesenchymal-like cluster displays consistently low levels of MET
factors, the epithelial-like cluster displays high expression of
EMT factors in several cases. Principal component analysis indi-
cated that expression of MET factors is the predominant contribu-
tor to the formation of the epithelial-like and mesenchymal-like
clusters, while the EMT factors alone are unable to segregate clus-
ters by epithelial/mesenchymal lineage (Figure S4).

To further analyse this trend quantitatively, we calculated the
pairwise correlations between expression values of all 10 EMT
and MET factors across a subset of tumor types. Consistent with
our qualitative observations above, the five MET factors are signif-
icantly positively correlated with each other, while the EMT and
MET factors are significantly negatively correlated. However,
unlike the MET factors, the correlation among different EMT factors
is less consistent and often not statistically significant (Fig. 2B). We
also quantified the mean of the correlation coefficients for all pair-
wise correlations between any two EMT factors or for any two MET
factors. These values are shown as x- and y-axes on a scatter plot,
where each dot represents a tumor type. The majority of the
tumors are above the � = y line, signifying that the average corre-
lation between any two MET factors is greater than that between
two EMT factors (Fig. 2C). Such correlation is reminiscent of recent
observations of groups of factors engaged in various feedback
loops, driving phenotypic plasticity and heterogeneity in many
cancers [86,87]. Similarly, visualization of the variance of the pair-
wise correlation coefficients for EMT and MET factors revealed a
lower variability in MET factors as compared to EMT factors
3845
(Figure S5). These trends are also observed in CCLE cancer types
(Figures S6, S7). Together, these analyses suggest that more
heterogeneity in gene expression exists for EMT factors as com-
pared to MET factors.

2.3. EMT score is associated with specific immune subtypes in cancer

Activation of a partial or complete EMT has been associated
with immune evasion across multiple cancers [88,89]. A recent
approach characterized immune tumor microenvironment across
33 cancer types in TCGA and defined six major immune subtypes
spanning cancer types and molecular subtypes – C1 (wound heal-
ing), C2 (IFN-c dominant), C3 (inflammatory), C4 (lymphocyte
depleted), C5 (immunologically quiet), and C6 (TGF-b dominant)
[61]. Given the relationship between EMT and immune checkpoint
molecules [49,48,88] as well as immunomodulatory cytokines, we
sought to understand the relationship between EMT status and
immune subtype within and across cancers. To do this, we calcu-
lated EMT scores for all TCGA samples for which immune subtypes
have been assigned. Overall, cancers with the C1 wound healing
subtype and C2 IFN-c dominant subtype tended to have more
epithelial-like scores, while all other subtypes were more mes-
enchymal (Fig. 3A, S8A, C). In particular, the C5 quiescence subtype
is the most mesenchymal subtype (Fig. 3A-B, S8). This observation
is consistent with its sample composition, as C5 contained almost
exclusively low-grade glioma samples [61]. A leave-one-out analy-
sis further demonstrated these trends, with the wound healing
(C1) and IFN-c (C2) signatures more epithelial than all other cancer
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samples, and the other immune signatures more mesenchymal
than other signatures/samples (Fig. 3B, S8B, D). We applied Sing-
score, a recently-developed rank-based single sample method to
quantify the epithelial and mesenchymal scores separately [90]
(Fig. 3C). Singscore is a non-parametric method that calculates
scores for ensembles of gene sets corresponding to epithelial and
mesenchymal phenotypes. Using this method, the C5 samples
showed high mesenchymal scores and very low epithelial scores.
Interestingly, the mesenchymal scores for all six immune subtypes
do not vary much in terms of fold-change (despite being statisti-
cally significantly different) while the epithelial score is the lowest
for C5 (Fig. 3D). The C6 TGF-b dominant immune subtype shows a
high score for both the axes, which may suggest that cancers with
this immune signature would have a more hybrid epithelial/mes-
enchymal (E/M) phenotype (Fig. 3D).

Given the marked heterogeneity in EMT scores and immune
subtypes, we sought to understand whether particular cancer
types are enriched in specific EMT scores and immune subtypes.
Analysis of the upper and lower quartiles of EMT score across
immune subtypes revealed distinct cancer types within each of
the immune subtypes. For example, tumors in the lower quartile
of the C1 wound healing subtype are enriched in colorectal cancer
specimens as compared to the lower quartile of C1 (Figure S9A).
Conversely, the composition of cancer types between upper quar-
tile of EMT scores within the IFNc-dominant C2 subtype are spread
across multiple cancer types of diverse lineages, including, but not
limited to, breast cancer, head and neck cancer, sarcomas, melano-
mas, and testicular germ cell tumors (Figure S9A, B). Likewise, the
cancer types in upper and lower quartiles of EMT scores within the
inflammatory (C3) subtype also differ substantially. More
mesenchymal-like tumors within the C3 subtype (inflammatory)
are enriched in renal clear cell carcinomas as compared to the
Fig. 3. Immune subtypes are associated with EMT scores. EMT scores across TCGA
C4 = lymphocyte depleted, C5 = immunologically quiet, C6 = TGF-b dominant. (A) Plot of c
comparison of each cancer immune subtype’s KS score to the KS scores of all other immu
epithelial and mesenchymal scores separately. (D) Singscore epithelial and mesenchym
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lower quartile of C3 tumors, which is comprised of lung, prostate,
breast, and thyroid cancers (Figure S9A, B). Analysis of tumor
microenvironment cell populations within each immune subtype
using the microenvironment cell populations (MCP)-counter
method revealed enrichment of gene expression signatures consis-
tent with fibroblasts, endothelial cells, and cells of a monocyte lin-
eage (Figure S10). The lymphocyte-depleted (C4) and
immunologically quiescent (C5) subtypes are the most depleted
of immune subtypes, while the IFN-c dominant subtype (C2) has
the highest enrichment in T cell signatures and the TGF-b-
dominant subtype (C6) has the greatest enrichment in signatures
of myeloid-derived cells (Figure S10).

To further understand how EMT and MET factors may be asso-
ciated with specific immune signatures we performed separate
analyses of EMT factors for each immune subtype. EMT factors
SNAI1, SNAI2, and Twist are most highly expressed in the C6
TGF-b dominant immune signature, with ZEB1 and ZEB2 most
upregulated in the C5 immunologically quiescent signature (Fig. 4-
A-E). Other immune subtypes have low to moderate levels of EMT
factors, with wide distributions in expression across these sub-
types. MET factors are predominantly expressed in C1-C3 signa-
tures, with a bimodal distribution of expression in C4, low
expression in C5, and relatively high expression in C6 (Fig. 4F-J).
Such co-expression of EMT and MET factors in C6 samples suggests
that samples in the TGF-b dominant C6 immune subtype corre-
spond to a more hybrid epithelial/ mesenchymal phenotype(s).

We also calculated the pairwise correlations between the EMT
scores from the different scoring metrics (GS76, KS, MLR) and
expression of EMT and MET factors from samples in each immune
subtype. Across all immune signatures, these pairwise correlations
showed consistent trends: GS76 scores correlated positively with
levels of MET-factors and negatively with those of EMT-factors;
immune subtypes; C1 = wound healing, C2 = IFN-c dominant, C3 = inflammatory,
alculated KS score across all immune subtypes. (B) Leave-one-out-analysis: pairwise
ne subtypes. (C) Application of Singscore to C5 immune subtype samples to quantify
al scores across immune subtypes.



Fig. 4. EMT and MET factor gene expression varies across immune subtypes. (A-E) Expression of EMT factors across immune subtypes; (F-J) Expression of MET factors
across immune subtypes; (A) SNAI1, (B) SNAI2, (C) TWIST1, (D) ZEB1, (E) ZEB2, (F) GRHL2, (G) OVOL1, (H) OVOL2, (I) ESRP1, and (J) ESRP2 expression. Unless specified by n.s.
(not significant), all comparisons are statistically reliable (p < 0.05; Wilcoxon rank means test with Benjamini-Hochberg adjustment for multiple comparisons).
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KS and MLR scores followed the inverse trend (Figure S11). Among
the EMT factors, ZEB1 and ZEB2 had the highest correlations with
all EMT scoring metrics (Fig S11). The upregulation of ZEB1 and
ZEB2 in C5, and the strong correlations of ZEB1 and ZEB2 with
EMT scoring metrics further supports observations about the key
roles of these two EMT-TFs in maintenance of a mesenchymal phe-
notype [91].

2.4. Immune checkpoint markers across immune subtypes

We next investigated the levels of different immune checkpoint
markers across the immune subtypes: CTLA-4 (cytotoxic T lym-
phocyte antigen-4), CD274 (PD-L1; programmed death-ligand 1)
[92], LAG3 (lymphocyte activation gene 3) [93], CD276 (B7-H3)
([94], CD47 (cluster of differentiation 47) [95], and HAVCR2
(TIM-3) and its ligand LGASL9 (galectin 9) [96] (Fig. 5A-G). While
expression of most immune checkpoint molecules varies across
3847
all immune subtypes, the immunologically quiescent C5 immune
subtype has the lowest levels of CTLA-4, CD274, CD276, and
LAG3, but with HAVCR2 and CD47 expression similar to other
immune subtypes (Fig. 5). The TGF-b-dominant subtype (C6) dis-
plays elevated HAVCR2, LGALS9, and CD276 (Fig. 5). The expres-
sion levels of these immune checkpoint markers are positively
correlated with one another as well as with the single-sample
GSEA scores for EMT and partial EMT [65] signatures (Fig. 5H).
These results suggest that common signalling pathways implicated
in EMT may be associated with changes in levels of various
immune checkpoint markers.

3. Discussion

Applying three distinct RNA-based EMT scoring algorithms –
KS, MLR, and GS76 – we characterized the diversity and hetero-
geneity of EMT status both within and across cancer types. These



Fig. 5. Immune checkpoint expression varies across immune subtypes. (A) CTLA4, (B) CD274, (C) LAG3, (D) HAVCR2, (E) CD47, (F) LGALS9, and (G) CD276 expression across
immune subtypes. (H) Correlation matrix of EMT and pseudo-EMT scores with immune checkpoint markers.
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analyses revealed a higher variance in EMT score among cancers of
an epithelial lineage as compared to mesenchymally-derived
tumors. Similarly, analysis of EMT- and MET-associated factors
revealed more heterogeneity in gene expression for EMT factors
as compared to MET factors. While these data suggest that the
EMT program is more heterogeneous than the MET program across
cancers, the reasons for this are not clear. One possible explanation
for this may be that the selected MET factors, such as GRHL2,
OVOL1, and OVOL2 are indicative of epithelial lineages
[97,98,99], while the selected EMT factors may be more unique
to a specific cellular lineage. It is possible that greater heterogene-
ity in the MET program would perhaps be more accurately
reflected by analysing tissue-specific cadherins and keratins that
mark specific lineages [100]. It is also possible that consideration
of other aspects of the cellular response (post-transcriptional,
translational/ post-translational, epigenetic [6], metabolic
[101,102], etc. could reveal additional layers of regulation and per-
haps more conserved circuitry across the MET program.

Another possible explanation may be that the MET program
represents a more fixed, derived phenotype while the EMT pro-
gram is more plastic in nature. This notion is supported by the
observations that the EMT program is coupled to cancer
stemness-like pathways [103,104,34]. Although it is possible that
EMT scores may be skewed by differences in tumor:stromal ratios
across samples and cancer types [21,71], our analyses revealed low
correlations between EMT score and tumor purity scores [71], sug-
gesting that the EMT scores were not substantially skewed by high
stromal content. In addition, the scoring metrics were also consis-
tent when applied to both TCGA and CCLE data, suggesting that
these scoring metrics can be applied to both potentially-
heterogeneous cancer samples and more homogeneous cancer cell
lines. The remarkable heterogeneity in EMT and MET scores and
EMT/MET factors across cancers underscores that EMT/MET
dynamics are context-specific and more of a spectrum of states
instead of a binary classification [2,3].

The present work sheds further light on our collective under-
standing of the potential cross-talk between cancer cells and
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immune subsets across the EMT spectrum. Both EMT scores and
known EMT/MET factors were associated with certain immune
subtypes. For example, cancers with C1 (wound healing) and C2
(IFN-c dominant) subtypes tended to have more epithelial scores
with high expression of MET factors, C5 (quiescent) was dominated
by a high mesenchymal score with upregulation of ZEB1 and ZEB2,
and C6 (TGF-b dominant) was enriched for a more hybrid epithe-
lial/mesenchymal score. Consistent with this, the TGF-b dominant
subtype shows upregulation of ZEB1 and ZEB2 as well as GRHL2,
ESRP1, and ESRP2 (Fig. 4). The hybrid E/M state plays an important
role in therapeutic resistance and formation of highly tumorigenic
CTC clusters [105,98]. TGF-b has been shown to activate ZEB1
through DNA methylation of the ZEB1 repressive microRNA, miR-
200 [106]. Our prior work indicated that both GRHL2 and miR200s
are necessary to induce MET in sarcomas [6], and it is possible that
the TGF-b-mediated subtype additional signals to drive the pheno-
type toward a more complete EMT. One limitation of this study is
that the analysis of TCGA data was from almost exclusively pri-
mary tumor sites rather than metastases. Metastatic samples com-

prise just 3.4% of all TCGA solid tumor samples (https://portal.

gdc.cancer.gov/). Given the considerable differences in EMT biol-
ogy between primary tumors and metastases [27,29,107,108], it
is likely that the biology of the immune subsets within metastatic
microenvironments also differs.

Analysis of seven immune checkpoint molecules – CTLA-4,
CD274/PD-L1, LAG3, CD276/B7-H3, CD47, HAVCR2/TIM-3, and
LGAL29/galectin-9 – across the immune subtypes revealed the
highest levels among C2 (IFN-c dominant) and C6 (TGF-b domi-
nant) subtypes and lowest in the C5 (quiescent) subtype. IFN-c is
a potent inducer of PD-L1 expression [109], which may explain
the high levels of immune checkpoint molecules in the C2 subtype
despite its more epithelial-like score. In addition, epithelial-like
cancer cells are known to have higher numbers of infiltrating M1
macrophages and CD8 + T cells in the tumor microenvironment
[50], which is consistent with the observation that the C2 (IFN-c
dominant) subtype had the highest M1/M2 macrophage

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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polarization and strong CD8 signal among all six subtypes [61]. The
TGF-b dominant subtype (C6) displayed increased levels of
HAVCR2 (also known as Tim-3), and LGALS2 (galectin-9). Interest-
ingly, HAVCR2 expression is upregulated by TGF-b [110,111], and
galectin-9 promotes TGF-b-induced signalling and subsequent
conversion of CD4 + CD25- T cells into regulatory T-cells
[112,113]. These observations suggest that patients enriched for
the C6 subtype may benefit from TGF-b inhibitors in combination
with HAVCR2 or galectin-9 suppression.
4. Methods

All analyses were performed in R (version 3.4.4), and data was
plotted using the ggplot2 package. Heatmaps were plotted using
the gplots R package.

TCGA datasets: TCGA gene expression datasets were obtained

from https://xenabrowser.net/datapages/.

RNA Seq data pre-processing: Normalized gene expression

counts of all the tumor datasets from TCGA website were further

pre-processed to ensure a robust approximation of EMT scores.

To do this, a regression analysis was used to convert all RNA-Seq

count data to a standard EMT metric score based on previous

microarray data. The regression parameters to transform RNASeq

to microarray data were estimated as described previously [114].
CCLE dataset: CCLE gene expression data was downloaded from

https://portals.broadinstitute.org/ccle/data
EMT scoring: Three different EMT scoring methods – KS, MLR,

GS76 – were used to score samples separately in all the datasets
as previously described [60]. Unless noted otherwise, the KS score
was used for analyses of immune subtypes and EMT/MET factors.

ssGSEA analysis: ssGSEA analysis for various different gene sets
were performed using GSVA R Bioconductor package with ‘‘ssgsea”
option for method argument [115].

Statistical analysis: All the pairwise comparison significance
was tested using student’s t-test and the multiple group compar-
isons significance was tested using ANOVA. A Wilcoxon rank
means test with Benjamini-Hochberg adjustment for multiple
comparisons was used for the analysis of immune subtypes in
Fig. 4.

Min-max standardization: The gene expression values and
EMT scores were standardized in the range of 0 to 1 as following:

Where, Xscaled is the min–max standardized value of a gene X.
Principal component analysis: Principal component analysis

was used to visualize the gene expression data of multiple vari-
ables (5 EMT and/or 5 MET factors). multidimensional gene expres-
sion and simulation data. To determine the correlation between
variables and the representation of variables by the principal com-
ponents, a correlation circle with squared cosines was plotted.
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