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Abstract
Purpose We propose a deep learning-based image interpretation system for skeleton segmentation and extraction of hot 
spots of bone metastatic lesion from a whole-body bone scintigram followed by automated measurement of a bone scan 
index (BSI), which will be clinically useful.
Methods The proposed system employs butterfly-type networks (BtrflyNets) for skeleton segmentation and extraction of hot 
spots of bone metastatic lesions, in which a pair of anterior and posterior images are processed simultaneously. BSI is then 
measured using the segmented bones and extracted hot spots. To further improve the networks, deep supervision (DSV) and 
residual learning technologies were introduced.
Results We evaluated the performance of the proposed system using 246 bone scintigrams of prostate cancer in terms of 
accuracy of skeleton segmentation, hot spot extraction, and BSI measurement, as well as computational cost. In a threefold 
cross-validation experiment, the best performance was achieved by BtrflyNet with DSV for skeleton segmentation and 
BtrflyNet with residual blocks. The cross-correlation between the measured and true BSI was 0.9337, and the computational 
time for a case was 112.0 s.
Conclusion We proposed a deep learning-based BSI measurement system for a whole-body bone scintigram and proved its 
effectiveness by threefold cross-validation study using 246 whole-body bone scintigrams. The automatically measured BSI 
and computational time for a case are deemed clinically acceptable and reliable.

Keywords Computer-aided interpretation · Deep learning · Bone scintigram · Bone metastatic lesion · Bone scan index

Introduction

Radionuclide imaging is a useful means of examining 
patients who may have metastasis of the prostate, breast or 
lung cancers, which are common cancers globally [1, 2]. 
A typical screening method is bone scintigraphy, which 
uses Tc-99  m-methylene diphosphonate (MDP) [3] or 
Tc-99 m-hydroxymethylene diphosphonate (HMDP) [4] 
agents. Because visual interpretation of the bone scintigram 
lacks quantitative and reproducible diagnosis, quantitative 
indices have been proposed. Soloway et al. [5] proposed 
the extent of disease (EOD), which categorises bone scan 
examinations into five grades based on the number of bone 
metastases. It is simple but not suitable for detailed diagno-
sis. Erdi et al. [6] proposed the bone scan index (BSI), which 
standardises the assessment of bone scans [7], and they pre-
sented a region growing-based semiautomated bone meta-
static lesion extraction method to measure the BSI. However, 
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the method is time-consuming and less reproducible because 
seed regions must be manually inputted.

Yin et al. [8] proposed a lesion extraction algorithm using 
the characteristic point-based fuzzy inference system. Huang 
et al. [9] presented a bone scintigram segmentation algorithm 
followed by lesion extraction using adaptive thresholding with 
different cut-offs in different segmented regions. An alterna-
tive approach for lesion extraction was proposed by Shiraishi 
et al. [10], who presented a temporal subtraction-based inter-
val change detection algorithm. Sajn et al. [11] proposed a 
classification method to classify a bone scan examination into 
no pathology or pathology using support vector machine with 
features derived from segmented bones. Sadik et al. [12–14] 
presented several algorithms which addressed skeleton seg-
mentation, hot spot detection and classification of bone scan 
examinations. The algorithms in [12] were improved, where 
an active shape model (ASM) was employed for skeleton seg-
mentation and an ensemble of three-layer perceptrons was 
introduced for hot spot detection [13], whose performance 
was evaluated with 35 physicians in [14].

It should be noted that the aforementioned studies 
[8–14] conducted hot spot detection and bone scan classi-
fication but did not assess BSI. One of the possible reasons 
for this might be low accuracy in the automated skeleton 
segmentation. For example, previous studies [8, 9] out-
putted polygonal regions, which roughly approximated 
bone regions. Although the skeleton segmentation per-
formance in the previous study [12] was improved [13] by 
the use of ASM, it was found to be sensitive to the initial 
position of the model and image noise. In addition, the 
whole skeleton could be divided into only four parts, each 
of which included several different bones. This type of 
approximation will degrade the accuracy of the measured 
BSI because coefficients as given in the ICRP publication 
[15] used in the measurement differ in bones.

Some of the aforementioned problems have been solved 
using the atlas-based approach [16], in which a manually seg-
mented atlas consisting of more than ten bones was nonlinearly 
registered to an input image, and labels in the deformed atlas 
were transferred to the image. The atlas-based approach was 
also employed in other studies [17–23], as were the commer-
cialised computer-aided interpretation systems EXINIbone 
(EXINI Diagnostics AB, Lund, Sweden) and BONENAVI 
(FUJIFILM Toyama Chemical Co., Ltd., Tokyo, Japan). 
Accurate skeleton segmentation allows precise measurement 
of BSI [18] and accurate classification of bone scintigrams 
[17, 19–21]. Ulmet et al. [18] reported that the correlation 
between manual and automated BSI was 0.80 using EXINI-
bone. Horikoshi et al. [17] and Koizumi et al. [21] evaluated 
the performance of BONENAVI and Pertersen et al. [20] 
explored the performance of EXINIbone to demonstrate their 
effectiveness. Nakajima et al. [19] compared EXINIbone and 
BONENAVI using a Japanese multi-centre database. Brown 

et al. [22, 23] employed an atlas-based anatomical segmenta-
tion and proposed a new biomarker used in the commercially 
available system (MedQIA, Los Angeles, USA). The atlas-
based segmentation is a promising approach but suffers from 
the problems of initial positioning of the atlas and differences 
in shape, direction and size between the atlas and skeleton of 
an input image. These problems might be solved by a multi-
atlas-based approach [24]. However, it is a time-consuming 
process, which is not acceptable for clinical use.

Deep learning-based approaches have recently emerged 
in the field of medical image analysis [25]. This was initi-
ated by the great success of an image recognition competi-
tion [26]. Numerous novel technologies [27–32] have been 
reported. For example, U-Net-type fully convolutional net-
works [28, 29] are some of the most successful networks 
for medical image segmentation, which might be useful for 
skeleton segmentation and extraction of hot spots of bone 
metastatic lesion.

This study presents a system consisting of skeleton seg-
mentation and extraction of hot spots of bone metastatic 
lesion followed by BSI measurement. We employed a deep 
learning-based approach to achieve high accuracy in skel-
eton segmentation and hot spot extraction. One of the rea-
sons for the low accuracy of skeleton segmentation and hot 
spot extraction in existing studies [6, 8, 14, 16–21] may be 
that anterior and posterior images have been independently 
processed, thus resulting in the inconsistent results. We used 
a butterfly-type network (BtrflyNet) [30] which fuses two 
U-Nets into a single network which can process anterior 
and posterior images simultaneously. Because a deep and 
complicated network might be problematic for the training 
process, we introduced deep supervision (DSV) [31] and 
residual learning [32], both of which are effective at avoid-
ing gradients vanishing or exploding during the training of 
a deep network. We conducted the experiment using 246 
cases of prostate cancer and demonstrated the effectiveness 
of the proposed system by comparing it with conventional 
approaches, namely multi-atlas-based skeleton segmentation 
and U-Net-based hot spot extraction.

Methods

Bone scintigraphy

Inputs of the proposed system were anterior and pos-
terior bone scintigrams as shown in Fig. 1, the sizes of 
which were 512 × 1024 pixels. The imaging systems 
were ‘VERTEX PLUS, ADAC’, ‘FORTE, ADAC’ and 
‘BRIGHTVIEW X, Philips’ equipped with collimators 
named ‘VXGP’, ‘LEHR’ and ‘LEHR’, respectively. The 
energy peak was centred at 140 keV with a 10% win-
dow. The whole body was scanned for approximately 
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ten minutes about 3 h after the intravenous injection of 
Tc-99 m-HMDP (555–740 MBq, Nihon Medi-Physics Co., 
Ltd, Tokyo, Japan), and the scan speed was 20 cm/min.

Outline of skeleton segmentation

First, the posterior image was flipped horizontally and 
aligned to the anterior image for simultaneous segmenta-
tion. Second, spatial standardisation consisting of rotation, 
scaling and translation was applied to both the anterior and 
posterior images to ensure the body axis was parallel to a 
vertical axis of the image. The length from the top of head to 
the tip of the toe was 2000 mm. Third, grey-scale normalisa-
tion was performed for both images independently using the 
following equation.

where Iin is an input grey value, Ix% is the upper x th percen-
tile and � is the golden ratio. Central regions of the images 
(Fig. 2) were then forwarded to the trained BtrflyNet. Inverse 
transformation of the spatial standardisation and the align-
ment of the posterior image were performed to transfer the 
segmentation labels to the input images.

(1)Inormalized =

{
loge

(
𝜙 ⋅

Iin−I98%

I10%−I98%
+ 1

)
; Iin > I98%

0; elsewhere

Outline of hot spot extraction

First, a mask of a human was generated by applying a 3 × 
3 pixel median filter and thresholding (1: I ≥ 4, 0: else) fol-
lowed by opening and closing operations. (The structural 
element was a circle with radius of 2 pixel.) Second, grey-
scale normalisation and registration between posterior and 
anterior images were conducted, both of which were the 
same as those in the skeleton segmentation. The image was 
then evenly divided into patch images of 64 × 64 pixel at 
every 32-pixel interval (Fig. 3).

Patch images that contained one or more pixels in the 
human mask were forwarded to the trained BtrflyNet for hot 
spot extraction. Finally, patch images with the extracted hot 
spots were integrated into an output image whose size was 
equal to that of the input image.

BtrflyNets

BtrflyNets for skeleton segmentation and hot spot extrac-
tion are different networks but are nonetheless similar. 
Major differences exist in terms of the sizes of input and 
output images as well as the number of output layers. 
Skeleton segmentation input was a pair of anterior and 
posterior images of a whole body, and hot spot extraction 
input was a pair of anterior and posterior patch images. 
Output of anterior skeleton consisted of 13 layers cor-
responding to 12 bones (skull, cervical vertebrae, tho-
racic vertebrae, lumbar vertebrae, sacrum, pelvis, ribs, 

Fig. 1  Pair of input a anterior 
and b posterior images

(a) (b)



392 International Journal of Computer Assisted Radiology and Surgery (2020) 15:389–400

1 3

scapula, humerus, femur, sternum and clavicle) and back-
ground. Outputs of posterior skeleton were 12 layers for 
ten bones (skull, cervical vertebrae, thoracic vertebrae, 
lumbar vertebrae, sacrum, pelvis, rib, scapula, humerus 
and femur) and background. Note that one output layer 
in the posterior was for overlapped regions of the rib and 
scapula. Output for hot spot extraction was consisted of 
three layers each of which corresponded to a hot spot of 
bone metastatic lesion, hot spot of non-malignant lesion 
(e.g., fracture, infection) and others (e.g., physiological 
renal uptake, radioactive isotope distribution of bladder 
and background). In addition, sizes of feature maps of the 
BtrflyNets were different because of the size differences 
of input images. In Fig. 4, numbers of output layers and 
the sizes of feature maps are shown in blue for skeleton 
segmentation and in red for hot spot extraction. Further-
more, the BtrflyNet for hot spot extraction had an addi-
tional layer following the input layer enclosed by dotted 
red squares. This additional layer derives from improve-
ment by residual blocks [32] which is described later.

Loss functions

The loss functions to be minimised in the training of skel-
eton segmentation and hot spot extraction are given as 
follows.

Skeleton segmentation

where n and c are indices of pixel and class (= bone meta-
static lesion, non-malignant lesion and others) and N and 
C are total numbers of pixels and classes, respectively. In 
addition, pcn is the softmax of output ycn of the network 
and tcn denotes the true label in which the pixel value of the 
organ of interest is 1 and other is 0. Finally, � is a tiny value 
to prevent zero division.

Hot spot extraction

where wc is a weight of class c to reduce the influence by the 
difference in the number of pixels.

(2)

[Generalised Dice loss] LGDL = 1 −
2

C

C�
c

� ∑N

n
pcntcn + �

∑N

n
pcn +

∑N

n
tcn + �

�

(3)pcn = softmax
�
ycn

�
=

eycn∑C

c
eycn

(4)

[
Class weighted softmax cross entropy

]

LWSCE = −
1

N

N∑
n

C∑
c

wctcnlog
(
pcn

)

Fig. 2  Spatially standardised 
a anterior and b posterior 
images with normalised grey 
values from Fig. 1 for skeleton 
segmentation
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Improvements of networks

DSV [31] is introduced for skeleton segmentation, in which 
loss functions are computed at not only output layers but also 
at four layers neighbouring to output layers and as indicated 
by black dots in Fig. 4. Loss is a summation of the general-
ised Dice losses at the six layers.

Residual blocks [32] are used instead of convolutions and 
deconvolutions in the BtrflyNet for hot spot extraction. The 
improved BtrflyNet is called ResBtrflyNet in this study.

(5)wc =
N −

∑N

n
tcn

N

Outputs of the system

The proposed system outputs segmented bones and detected 
hot spots, all of which are determined by using probability 
pcn in output layers of the trained BtrflyNets. The skeleton 
segmentation selects labels with a maximum pcn at each 
pixel. The hot spot extraction employs the threshold value 
of the following equation so that the sensitivity per hot spot 
of bone metastatic lesion is 0.9.

(6)

⎧⎪⎨⎪⎩

pmeta.,n ≥ th → Hot spot by bone metastatic lesion

else ifpnon-mal.,n ≥ pothers,n → Hot spot by non-malignant lesion

else → others

(a) (b)

Fig. 3  Pair of a anterior and b posterior patches with normalised grey values. Dotted red arrows indicate the correspondence between the two 
patches
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where pcn at the overlapped area of neighbouring patch 
images is computed by averaging ycn of the two patches.

The BSI is measured using segmented bones and 
extracted hot spots of bone metastatic lesions [18]. First, 
the correspondence between the bones and hot spots is deter-
mined. Second, a ratio between the area of the extracted hot 
spots and that of the corresponding bone is measured, and 
the weight fraction constant as given in the ICRP publication 
[15] is multiplied with the ratio. Finally, a summation of all 
values is outputted as BSI.

Experimental set‑up

The experiment was approved by the Ethics Committee 
at Osaka City University (Approval No. 3831) and Tokyo 
University of Agriculture and Technology (Approval No.30-
30, 30-43). The total number of bone scintigrams was 246, 
derived from Japanese males with prostate cancer whose 
ages were from 52 to 95 (average: 72.8, standard deviation: 
6.96). The dataset was divided into three groups to conduct 
threefold cross-validation. We also prepared a validation 
dataset to determine an optimal training iteration to avoid 
overtraining. In summary, 164 scans were for training, 41 
for validation and 41 for testing. Because the validation and 
testing datasets were switched in onefold, we obtained test 
results from 246 total scans. The number of anterior and 

Fig. 4  BtrflyNet for skeleton segmentation and hot spot extraction. 
Parameters of the network are listed, where blue numbers denote 
skeleton segmentation, red numbers indicate hot spot extraction and 

black numbers are common parameters for both networks. Note that 
the sizes of feature maps for the decoder part of the BtrflyNet are the 
same as those of the encoder part
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posterior patch pairs for onefold in training the hot spot 
extraction network was approximately 0.7 million.

Initialisation and optimisation of the networks

In the training process, He’s initialisation [33] was used 
to initialise all weights of the networks. The loss func-
tions were minimised using adaptive moment estima-
tion (Adam) [34]. The detailed parameters are given as 
follows.

Skeleton segmentation

The parameters of Adam were set to α = 0.001, β = 0.9, 
γ = 0.999 and ε = 10−8. Note that α was decreased by one-
tenth at the 1350th iteration in which the batch size was 6. 
The maximum number of iterations was set to 1620, and 
the optimal number of iterations was determined when the 
average Dice score from (7) of the validation dataset reached 
the maximum. The tiny value of ε from (2) was set to 0.001.

Hot spot extraction

The parameters of Adam were set to α = 0.001, β = 0.9, 
γ = 0.999 and ε = 10−8, where the batch size was 256. Aug-
mentation was conducted by flipping an input image hori-
zontally with a probability of 0.5. The maximum number 
of iterations was set to 50,000, and the optimal number 
of iterations was determined when the total number of 
misclassified pixels of the validation dataset was at the 
minimum.

Performance evaluation

The Dice score between the segmented bone region and true 
region was computed to evaluate the performance of skel-
eton segmentation.

where #(region) denotes the number of pixels in the region. 
The sensitivity of hot spot detection, the numbers of false 
positive pixels and regions (8-connectivity) were used 
to evaluate hot spot extraction. Note that true regions of 
bones and hot spots were manually delineated by medical 

(7)

Dice score =
2 × #(“segmented bone region” ∩ “true bone region”)

#(“segmented bone region” + #“true bone region”)

Multi-atlas

0.9220 0.8910

0.7560 0.8438

0.7125 0.8074

0.9219 0.9117

0.8219 0.6833

0.8613 0.7414

0.8228

0.9501 0.9175

0.8991 0.8801
0.8154 0.8949

0.8962 0.9382

0.8209 0.8142
0.9293 0.7518

0.8756

BtrflyNet with D

0.9495 0.9254
0.9231 0.8769

0.8482 0.9025
0.9415 0.9383
0.8446 0.8057

0.9270 0.7874
0.8892

Input

Skull Ribs

Cervical Vert. Scapula
Thoracic Vert. Humerus

Lumbar Vert. Femur

Sacrum Sternum

Pelvis Clavicle

AVERAGE

BtrflyNet

Fig. 5  Typical results of skeleton segmentation. White lines and coloured regions are boundaries of true and segmented bone regions, respec-
tively. Numbers denote Dice scores of bones in which the highest Dice scores among the three methods are bolded
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engineers and approved by medical doctors at the Depart-
ment of Nuclear Medicine at the university hospital.

Results

Skeleton segmentation

Figure 5 presents the typical results of skeleton segmenta-
tion, and Fig. 6 shows Dice scores for all test cases. Note 
that the multi-atlas-based approach [24] employed B-spline-
based non-rigid registration of 164 atlases from the training 
dataset and only anterior images were segmented because 
of high computational cost.

Hot spot extraction

Figure 7 shows the typical extraction results of hot spots of 
bone metastatic lesions when the sensitivity per hot spot of 
bone metastatic lesion was 0.9. Table 1 presents the number 
of false positive pixels, false positive regions and misclassi-
fied pixels by U-Net, BtrflyNet and ResBtrflyNet.

Measurement of BSI

Figure 8 compares automatically measured BSI with true 
BSI, which was computed using true regions of bones and 
hot spots of bone metastatic lesions.

Computational cost

Average computation time for each test case was measured 
using a computer with 24 threads based on 41 cases for 
skeleton segmentation and five cases for hot spot extrac-
tion. The computer specifications were: OS: Ubuntu 16.04, 
CPU: Xeon Silver 4116. 12 Cores, 24 Threads, 2.10 GHz × 
2, Memory: 196 GB.

Skeleton segmentation (without pre‑ and post‑processes)

• Multi-atlas (anterior image only) = 5287 s.
• BtrflyNet (or BtrflyNet with DSV) = 16 s.

(**:p<0.01, *:p<0.05)

Fig. 6  Dice scores of skeleton segmentation. Numbers indicate the median of scores. Statistical test was conducted by a Wilcoxon signed-rank 
test with the null hypothesis of ‘there is no difference in performance between the two methods’
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Hot spot extraction

• U-Nets = 70 s.
• BtrflyNet = 63 s.
• ResBtrflyNet = 94 s.

Discussion

Skeleton segmentation

The red circles in Fig. 5 show typical errors in segmentation 
by the multi-atlas-based method because of atypical shapes 

or directions of the skull, right humerus and sternum. Fig-
ure 6 suggests that the multi-atlas-based method was inferior 
to BtrflyNet-based approaches for all organs, and the differ-
ences were statistically significant.

An example of the improvement gained by DSV is indi-
cated by the yellow circle in Fig. 5. Figure 6 indicates that 
BtrflyNet with DSV was superior to the naïve BtrflyNet for 
nine out of 12 bones in an anterior image and three out of 
ten bones in a posterior image. Statistical differences were 

U-Net ResBtrflyNetInput with true 
labels

BtrflyNet U-Net ResBtrflyNetInput with True 
labels

BtrflyNet

(a) (b)

Bone metasta�c lesion

Non-malignant lesion

Fig. 7  Typical extraction results of hot spots of bone metastatic lesions in a anterior and b flipped posterior images. False positives close to true 
bone metastatic lesions are circled by red dots, and a false negative is circled by yellow dots

Table 1  Average number of false positive pixels, false positive 
regions (8-connectivity) and misclassified pixels ({“false posi-
tives”} ∪ {“false negatives”}) when sensitivity per hot spot of bone 
metastatic lesion was 0.9
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Fig. 8  Relationship between automatically measured BSI and true 
BSI
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observed for three bones each in anterior and posterior 
images. By contrast, the rib in a posterior image was the 
only bone for which the naïve BtrflyNet was statistically 
superior. Therefore, we concluded that BtrflyNet with DSV 
was the best in our experiment. The main reason may have 
been lower loss during training. Figure 9 shows transitions 
of training losses at the output layers, where the red line of 
the BtrflyNet with DSV was lower than the blue line of the 
naïve BtrflyNet, which suggests that the DSV was effective 
at reducing loss in the training data.

Hot spot extraction

In the anterior image of Fig. 7, U-Net failed to detect one 
hot spot by a bone metastatic lesion, and 17 false posi-
tive regions existed, whereas BtrflyNet and ResBtrflyNet 
detected all hot spots of bone metastatic lesions, where 
the numbers of false positive regions were seven and 
five, respectively. In addition, BtrflyNet and ResBtrflyNet 
showed high consistency between the results of anterior 
and posterior images. The difference in the number of false 
positive regions by BtrflyNets and ResBtrflyNet was one, 
whereas that by U-Nets was 13. This fact suggests that 

simultaneous process of both images by BtrflyNet and 
ResBtrflyNet realised a high consistency, thus leading to 
high performance.

Table 1 suggests that ResBtrflyNet was the best in terms 
of the numbers of false positive and misclassified pixels as 
well as number of false positive regions in an anterior image. 
The differences among the networks could be because of 
the difference in losses of the training dataset (Fig. 10), in 
which the loss of ResBtrflyNet was the minimum. In fact, 
the loss of ResBtrflyNet at the optimal number of iterations 
was 29.9% lower than that of BtrflyNet.

BSI measurement

Figure 8 shows good correlation between the automatically 
measured BSI and true BSI when using the best combina-
tion of networks with the highest performance, namely the 
BtrflyNet with DSV for skeleton segmentation and ResB-
trflyNet for hot spot extraction. The cross-correlation was 
0.9337, which was higher than 0.80 as reported by Ulmert 
et al. [18] and seems reliable for clinical use. Note that com-
paring the two values directly is difficult because the dataset 
used was different. However, the higher cross-correlation 
suggests a promising performance with the proposed system.

The limitations of the proposed system must be men-
tioned. Figure 11 shows the case with the maximum error 
with the BSI measurement (red arrow in Fig. 8). Although 
the skeleton was recognised correctly, hot spots by osteoar-
thritis in thoracic and lumbar vertebrae were misclassified as 
hot spots of bone metastatic lesions. One possible reason for 
this failure is the limited amount of training data for osteo-
arthritis. Training using a large dataset with osteoarthritis 
cases remains an important future study.

Computational cost

The proposed BtrflyNet-based skeleton segmentation took 
16 s. for the case using 24 threads. By contrast, the cost of 
the multi-atlas-based method for an anterior image was over 
300 times greater than that of BtrflyNet. The most time-
consuming step was non-rigid registration, which took 
3420 s. on average, even when ten registration processes 
ran in parallel.

In the hot spot extraction experiments with multi-
ple threads, the naïve BtrflyNet was the fastest because it 
shared the deepest layers for anterior and posterior images 
as compared with U-Net. ResBtrflyNet was 1.5 times longer 
than the naïve BtrflyNet because of the high computational 
cost of residual blocks. However, the difference was not 
considerable.

The cost of the best combination of networks including 
pre- and post-processes (e.g., spatial standardisation) was 
112.0 s. per case, which seems acceptable for clinical use.

Fig. 9  Transitions of generalised Dice loss in the training

Fig. 10  Transitions of class weighted softmax cross-entropy during 
the training
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Conclusion

This study proposed a deep learning-based image inter-
pretation system for automated BSI measurements from a 
whole-body bone scintigram, in which BtrflyNets were used 
to segment the skeleton and extract hot spots of bone meta-
static lesions. We conducted threefold cross-validation using 
246 bone scintigrams of prostate cancer to evaluate the per-
formance of the system. The experimental results revealed 
that the best performance was achieved by a combination of 
BtrflyNet with DSV for skeleton segmentation and BtrflyNet 
with residual blocks, and the number of misclassified pixels 
for which was minimum. The computational time of both 
processes for a case was 112.0 s., and automatically measured 
BSI showed high correlation (0.9337) with the true BSI, both 
of which is deemed clinically acceptable and reliable.

An important future work will involve increasing the size 
of the training dataset to improve the misclassification of 
the osteoarthritis case. The effect of dataset size on perfor-
mance would be an interesting topic. Optimising the hyper-
parameters of deep networks, e.g., number of layers, number 
of channels (feature maps) and weights in loss functions, is 
also essential to boost the performance in terms of segmenta-
tion and extraction accuracy as well as computational cost. It 
would be interesting to perform a leave-one-out examination 
for further performance analysis. Developing an anatomically 
constrained network is also necessary to avoid anatomically 
the wrong results and to enhance the reliability of the system.
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