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Abstract: Damage identification of composite structures is a major ongoing challenge for a secure op-
erational life-cycle due to the complex, gradual damage behaviour of composite materials. Especially
for composite rotors in aero-engines and wind-turbines, a cost-intensive maintenance service has to
be performed in order to avoid critical failure. A major advantage of composite structures is that they
are able to safely operate after damage initiation and under ongoing damage propagation. Therefore,
a robust, efficient diagnostic damage identification method would allow monitoring the damage
process with intervention occurring only when necessary. This study investigates the structural vibra-
tion response of composite rotors by applying machine learning methods and the ability to identify,
localise and quantify the present damage. To this end, multiple fully connected neural networks and
convolutional neural networks were trained on vibration response spectra from damaged composite
rotors with barely visible damage, mostly matrix cracks and local delaminations using dimensionality
reduction and data augmentation. A databank containing 720 simulated test cases with different
damage states is used as a basis for the generation of multiple data sets. The trained models are
tested using k-fold cross validation and they are evaluated based on the sensitivity, specificity and
accuracy. Convolutional neural networks perform slightly better providing a performance accuracy
of up to 99.3% for the damage localisation and quantification.

Keywords: dense neural networks; convolutional neural networks; composites; fully connected
neural networks; composite rotors; structural health monitoring (SHM); machine learning

1. Introduction

Composite materials become a state-of-the-art material of choice in the structural
design of many critical applications where mass and acceleration play an important role.
An important advantage beyond the specific stiffness and strength of composite materials
is that they are characterized by a gradual damage behaviour and can be safely operated
after damage initiation. It is, therefore, all the more important that health monitoring
systems prevent the case of catastrophic failure and are able to detect, localise and quantify
the damage.

Our goal is to be able to increase the efficiency of composite structures by providing
simple and robust structural health monitoring methods by using structural dynamics and
machine learning algorithms such as artificial neural networks (ANNs), and specifically
fully connected neural networks and convolutional neural networks.

1.1. State-of-the-Art

Structural health monitoring (SHM) is an online damage identification process which
has been implemented for a wide range of practical applications such as high buildings,
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bridges, dams, tunnels, and wind turbines [1–6]. By monitoring and collecting data from
sensors about the current state of the system, anomalies are detected and further structural
or economic damage can be averted. In this context, machine learning (ML) methods
become increasingly important as they process a large amount of data collected by sensors
and identify hidden patterns in the structural complexity of the underlying processes.

In SHM and damage identification systems, sensors collect data from the correspond-
ing component, which are subsequently analyzed to identify the existence of damage,
its location and its size. Recently, the combination of powerful computers and their ap-
plications to large data sets has lead to several approaches using ML in SHM such as
regression [7], k-nearest neighbors [8], decision tree [6], support vector machines [9] and
hidden Markov models [10,11].

The use of ANNs in this work is motivated by the complexity of damage detec-
tion as there are numerous types and locations of the damage within the same structure.
In [12] it has been shown that fully connected neural networks (FC) can classify whether
carbon-fibre composites are damaged or undamaged. Therefore, ultrasonic Lamb wave
data were preprocessed by outlier and wavelet analysis. Other authors reported the use of
feedforward-backpropagation networks as a classification method for damage identifica-
tion (localisation and size) [13–15].

Convolutional neural networks (CNN) are a subclass of ANNs and effectively handle
image based data. CNNs are used successfully to identify delamination in carbon fibre-
reinforced polymer composites with image data from x-ray tomography [16]. Furthermore,
1-dimensional CNNs are applied to vibration data in time and frequency domain to classify
them [17].

Preprocessing of data is an essential step towards a successful training of an ANN. Of-
ten, data consists of correlated and therefore redundant features. Dimensionality reduction
methods are therefore a valuable tool. Several well-known methods are commonly used to
reduce the number of features: linear discriminant analysis (LDA) is well known among
the supervised feature reduction methods [18,19]. Principal component analysis (PCA),
which transforms a set of correlated variables to a smaller one of uncorrelated variables,
has been frequently used in the past. For example ZANG and IMREGUN [20] applied PCA
on frequency response functions (FRF) instead of using the raw FRF data as input for the
ANN. Kernel PCA (KPCA), which is a nonlinear dimensionality reduction method, can be
helpful if it is necessary to handle nonlinear properties of the data [9]. Furthermore, a CNN
is capable of merging the two steps of feature reduction and classification into the processes
of training and inference as it will enhance the overall network performance [17]. Another
aspect concerns the amount of training data: It is largely accepted that large training data
makes a model numerically stable and robust and prevents overfitting. Overfitting can
occur e.g., when working with small data sets. The practice of synthetically expanding the
data set is called data augmentation; several techniques are proposed in [21].

1.2. Aim and Outline of the Paper

In this paper, we report on the performance of artificial neural networks for damage
identification at composite structures based on simulated vibration signals typical for
technical diagnosis of systems. Composite structures can be operated safely even under
ongoing damage propagation. It is important to identify the damage process with a robust
and efficient diagnostic tool and intervene only when necessary. The aim of the paper is
to identify, localise and quantify barely visible damages, mostly matrix cracks and local
deliminations in composite rotors by training FCs and CNNs on vibration response spectra.
To achieve this, a databank from 720 simulated test cases with different damage states is
used as basis for the generation of multiple data sets [22]. The trained models are tested
and evaluated based on their sensitivity, specificity and accuracy.

In Section 2, the data sets are presented and four different classifiers with their labels
are introduced, each handling a specific problem of damage identification: the identifi-
cation of (i) radial position, (ii) angular position, (iii) load magnitude and (iv) extent of
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damaged structures. The damage originates from an initial damage from out-of-plane load
and is increased by a propagating damage from in-plane load similar to [23]. Moreover,
the data preprocessing techniques i.e., data augmentation is described in Section 2.2 and
dimensionality reduction methods are explained in Section 2.4. The introduction of the
models can be found in Section 2.5.

In Section 3, the results are presented for every identification level and the classification
accuracy is calculated. For the evaluation of the presented damage identification method,
a diagnostic performance comparison is conducted for multiple evaluation criteria for both
FCs and CNNs. In Section 3.1 the two different network types are compared. The influence
of the reduced dimensionality is explained in Section 3.2 and the results with an augmented
data set are described in Section 3.3. All results are discussed in Section 4.

2. Materials and Methods

This study is based on a data set from numerically generated damage scenarios by
using finite element (FE) analysis [22]. It provides different sequences of damage states of
composite rotors. Every sequence consists of an initial impact load and then centrifugal
load, inflicting initiation of damage and the resulting propagation, respectively. In total 720
damage configurations were generated. The investigated structure is a rotor disc, which is
frequently used for basic research investigations regarding the gradual damage behaviour
under complex loading cases. It is manufactured from epoxy-reinforced glass fibres, with a
thickness of 4 mm and a radius of 250 mm. The results of each simulation are the calculated
damage state of the rotor and the corresponding power spectral density (PSD). Different
class labels are derived from the damage configurations. The labeled PSDs are used for
network training, testing and evaluation [24].

2.1. Investigated Composite Rotors

In [23], a parametric FE model was developed that enables the generation of multiple
loading scenarios to calculate the resulting structural damage as well as the response.
For this, the composite failure mode concept of CUNTZE [25] was implemented by a user-
defined field subroutine (USDFLD) for the implicit solver of the FE-software ABAQUS. As a
result, the region for damage initiation is identified and subsequently a reduced stiffness is
assigned to mimic damage propagation. In contrast to the typically applied approaches
within explicit solving schemes to incorporate non-linear material behaviour, strain rate
effects and crack propagation, the proposed modus operandi provides a very efficient way
to conduct a large number of simulations with sufficient accuracy [26,27]. The model is
meshed using continuum three-dimensional, 8-node linear brick solid elements of type
C3D8I, with a total number of 15,500 nodes and 7500 elements. As discussed in [23] the
model is representative for the real rotor composite structures. A schematic illustration of
the rotor geometry and the FE-mesh is displayed in Figure 1.

The parameterized model setup enables the generation of different positions and
magnitudes of the impact load with the subsequent damage states. A full factorial design
was applied to derive the relevant FE models, so that the resulting data set contains every
possible combination of the chosen parameters. The selected factors were the position,
defined as angle and radius, and magnitude of the impact load. Moreover, the linear
decrease of the in-plane-load contributes to the simulation. All factors are summarized in
Table 1.

Table 1. All factors that are used for the simulation with unit and levels of the factors.

Factor Unit Levels

impact load kN 8, 12, 16, 20
radius mm 75, 105, 135, 165, 195, 225
angle ◦ 0, 45, 90

centrifugal load % 51, 53, 56, 58, 59, 60, 63, 69, 76, 100
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Based on the design of experiments (DOE), there are 72 damage propagation scenarios
with 10 damage states. In total, this results in 720 damage states for which the power
spectral density is calculated in each case. Each scenario takes approximately 5 min to be
computed in an Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, 3.80 GHz, with an installed
RAM of 16.0 GB at a 64-Bit Windows 10 System. A total of 60 h (2.5 days) is required to
compute all 720 damage cases. Parallelization techniques on multiple CPUs can be applied
to decrease the overall time. Each spectrum covers a frequency range of 0 to 1000 Hz with
a frequency resolution of 0.2 Hz resulting in 5001 samples. The simulation of the power
spectral density for the undamaged case was not calculated.

Clamping area

ø500
Area with
constrained nodes

Mesh of the model

Figure 1. A schematic illustration of the rotor geometry is shown on the left. In the middle, the gen-
erated FE-mesh is presented with one element in the thickness direction and an approximate element
thickness of 5 mm. On the right, the boundary conditions are illustrated.

2.2. Data Set Creation and Data Augmentation

A preprocessing step on the data set has been added to the procedure. The PSD ranges
from 101 as baseline up to 104 as peak height, resulting in high changes in the spectra, shown
in Figure 2. Therefore, data normalisation is appropriate for numerical reasons: all spectra
are logarithmized to base 10, where the first value (zero) was omitted. The normalised
spectra are roughly within the range (−10,30) which leads to a numerically well-behaved
training of the ANN.
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Figure 2. An example spectrum with maximum (factor 0.06) and minimum (factor 0.006) added noise.

In addition to the original data set, a second data set was created by increasing the orig-
inal data bank. A data set of sufficient size and variability is essential when training a neural
network. It enables the model to learn a more diverse distributed feature representation and
it leads to better generalization. Hence, as a starting point we suppose that a simple data
augmentation technique is adequate to match the inaccuracies in real-world experimental
data. To this end, each spectrum is cloned ten times and overlaid with different noise levels
in the direction of the power spectral density. The noise overlay is created by multiplying
a normal distribution with standard deviation corresponding to the maximum height in
the original spectrum by a factor ranging from 0.006 to 0.06 as shown in Figure 2. The
augmented data set has therefore 7920 samples.
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2.3. Labeling of the Damage States

In total, four classifiers were used for the training. These are the same as described in
previous investigations based on the position, type and extent of damage [11]. The discrete
values of the factors (position and magnitude of the out-of-plane load plus the in-plane
load) were assigned as labels. For that, some of the values are summed up into classes as
depicted in Figure 3.

Figure 3. The four physical-based classifiers and their labels. (a) shows the radial position, (b) the angular position and (c) the load
magnitude that describes the out-of-plane load. The out-of-plane load with damage accumulation is shown in (d) [11].

The first classifier referred to as the radial position (RAD) is described by two classes:
the rotor tip and root. The second classifier is the angular position (ANG) which results in
three classes labelled as “0◦”, “45◦”, “90◦”. The third classifier, load magnitude (MAGN),
is quantified by the two classes named “low” and “high”. The fourth classifier describes
the speed-dependent damage growth (DAM) in the three classes “Small”, “Medium”,
“Extended”. The data were imported into and processed within the Python programming
language (version 3.6.9) [28].

2.4. Dimensionality Reduction Methods

To handle the data set of the spectra, each with 5001 spectral density values, a broad
neural network is necessary resulting in long training times. In addition, each data point
is strongly correlated with its neighbouring points and the network can be successfully
trained with fewer data points. Figure 4 shows the Pearson correlation matrix and the
Spearman correlation matrix. There are some areas with highly correlated frequencies.
Moreover, there is a proportion of nonlinear correlation as can be seen in Figure 4b from
the brighter areas compared to Figure 4a.
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(a) Pearson correlation matrix.
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(b) Spearman correlation matrix.
Figure 4. Correlation matrices for 5000 frequencies from the spectrum. Figure (a) shows the Pearson
correlation matrix for linear dependencies and (b) the Spearman correlation matrix for nonlinear
dependencies.
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Figure 4. Correlation matrices for 5000 frequencies from the spectrum. (a) shows the Pearson
correlation matrix for linear dependencies and (b) the Spearman correlation matrix for nonlinear de-
pendencies.

Because of the underlying correlation in the data, we assumed that it is possible to train
the model successfully with fewer spectral density values. Those values are also commonly
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described as dimensions. Therefore, different methods of dimensionality reduction were
tested. A simple approach is reducing the resolution of the frequency spectrum by using
only a fraction of all data points, for example every 30th point, and omitting everything else.
Other commonly used techniques are principal component analysis and linear discriminant
analysis in frequency domain [29]. The goal of PCA is to find components that maximize
the variance found in the data. Here it results in 28 or 29 principal components (depending
on the train-test split) that explain 90% variance of the total variance of the complete data
set. LDA is a supervised method, where the data is projected on one or two axes that best
separate the two or three classes. LDA is calculated by solving the generalized eigenvalue
problem of the matrix S−1

W ∗ SB where SW is the within-class scatter matrix and SB the
between-class scatter matrix. The former shows the variation of samples around the same
class and the latter the variation between the classes. The difficulty in applying LDA occurs
when the data dimension is higher than the number of samples. The rotor data set has
720 samples but 5001 points in frequency domain. This means that the within-class scatter
matrix SW becomes singular and the inverse cannot be computed. Therefore, we applied
two different methods to reduce dimensionality before LDA is used. The first method is
singular value decomposition (SVD). It is implemented to calculate the rank of the data
matrix, as reported in [18]. We started with the lowest two frequencies. If the matrix has full
rank, the frequencies are kept. We repeated the procedure and dropped variables whenever
the rank did not match the number of variables. This leads to a matrix with 96 linear
independent frequencies. Another way of reducing dimensionality is applying PCA on the
whole data set before using LDA. PCA was implemented with 99.99% variance explanation
which leads to 336 principal components. We expected also nonlinear correlation between
variables, so we applied KPCA with 29 components. In general, the decline of the model
performance was used as the principal criterion to choose the smallest possible number of
components (further description in Section 3.2).

2.5. Model Training, Validation and Testing

Two different network types are investigated in this study: a FC and a 1-dimensional
CNN. They were trained using Python (version 3.6.9) with Keras (version 2.3.1) and
TensorFlow backend as shown in Figure 5. First, the most simple approach is chosen, which
is a single-layer neural network. Next, we optimized the training performance by adding
hidden layers and tuning hyperparameters by a combination of grid search and manual
search. The final FC consists of 5 layers, where the input layer corresponds to the number
of neurons. The input layer has 5000 in the case of pure data and a lower number in the
case of dimensionality reduction. For the methods in combination with LDA, the models
are reduced to a simple logistic regression, which means that they have only one dense
layer corresponding to the output layer, as shown in Figure 5a.

The 1-dimensional CNN has been used because the points of the spectra have a
distinct order which can be regarded as ’quasi’-time axis (Hz = 1/s). This is not taken into
account by a FC, which treats each point of the spectrum individually. A CNN, however,
can take into account the order of the data points with ascending frequency. On the other
hand, a CNN fulfills two major tasks simultaneously during a single training block: feature
extraction and classification. This ability provides an improved classification performance
and efficiency. The CNN has three blocks consisting of a convolutional layer followed by a
pooling layer, as shown in Figure 5b. Then the flattened output is transmitted to a dense
layer followed by the output layer with binary neurons leading to multi-class classification.

Before the training of the models, the data was split into three parts: training, valida-
tion, and test sets. We applied a stratified 5-fold cross validation for the test phase. During
five rounds each subset is used once as the test set and the remaining subsets as training
data. Here, the original distribution of classes is transferred to the test set to reflect the
deterministic process of the data generation process. We did not take into account the
structure of all different combinations as depicted in Table 2 assuming that the spectra are
sufficiently similar. The training data is again split into a validation set (20%) and the actual
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training set (80%). The validation set is crucial to give an estimate of the model’s perfor-
mance. These validation results are quality measures for the choice of the hyperparameters
and the final selection of the model.
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Figure 5. Architecture of NNs used for classification. Figure (a) shows the FC. Fully-connected (dense)
layers were used in combination with the rectified linear activation function (ReLU) and the softmax
activation function in the output layer. Dropout layers were inserted to reduce overfitting. Figure (b)
visualizes the structure of the CNN, with 1D-convolutional and pooling layers being fundamental to
this network type.
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Figure 5. Architecture of NNs used for classification. (a) shows the FC. Fully connected (dense)
layers were used in combination with the rectified linear activation function (ReLU) and the softmax
activation function in the output layer. Dropout layers were inserted to reduce overfitting. (b) visual-
izes the structure of the CNN, with 1D-convolutional and pooling layers being fundamental to this
network type.

Table 2. Hyperparameters used for the networks FC and CNN depending on the four classifiers
RAD, ANG, MAGN and DAM.

Parameter FC-RAD FC-MAGN FC-DAM CNN-RAD CNN-DAM
FC-ANG CNN-MAGN

CNN-ANG

optimizer Adam Adam Adam Adam Adam
learning rate 0.0001 0.0001 0.0001 0.001 0.0001

epochs 100 100 100 100 100
batch size 64 64 64 64 16

filter - - - 40, 40, 20 90, 90, 60
kernel size - - - 9 3

pooling size - - - 6 3
dense layer 1000, 100, 100 5010, 1000, 100 6000, 1000, 100 20 20

Hyperparameters in Table 2 were tuned for each classifier separately. After this process,
the test data set provides an independent evaluation of the model. The manual optimization
was performed by calculating the confusion matrix with accuracy and sensitivity as target
functions. The latter was chosen from an engineering point of view in order to most
effectively detect all possible forms of damage of the rotor to prevent further propagation
and catastrophic failure while accepting the possibility of false alarms (false positives).

2.6. Overview of the Generated Machine Learning Models

The different models were trained from a configuration of the following parameters:

1. Algorithm: FC, 1D-CNN,
2. Data set: original (OD) or augmented (AD),
3. Dimensionality reduction method: pure data, each 30th frequency, PCA, PCA+LDA,

SVD+LDA and KPCA,
4. Classifier: radial position (RAD), angular position (ANG), load magnitude (MAGN)

and damage accumulation (DAM).

The parameters used for the model training are displayed in Table 2, resulting in
36 different models. We discarded the combination of CNN and dimensionality reduction
methods because the CNN itself includes a form of feature extraction as described in
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Section 2.5. All models and their names and results can be looked up in Table A1. We
display the mean accuracy, sensitivity, and specificity as well as the standard deviation for
the cross validation results of the final test data set in the table. In the following sections
we refer to the different models by their names.

3. Results
3.1. Classification with Fully Connected Neural Network and Convolutional Neural Network

The test accuracy, sensitivity, and specificity of the FC for the four classifiers are shown
in Figure 6a (models FC-OD-Pure-RAD, FC-OD-Pure-ANG, FC-OD-Pure-MAGN and FC-
OD-Pure-DAM). The simple algorithm of the FC already has high predictive performance
and results are roughly at the same quality for each classifier. An exception is the angular po-
sition with an accuracy of around 30% which performs no better than a random assignment
to the three classes. Radial position has the overall best performance with 99.2% accuracy
and 99.4% sensitivity, followed by the load magnitude with 94.0% (99.0% sensitivity) and
damage accumulation with 87.1% (96.2% sensitivity). The specificity has lower values than
accuracy and sensitivity but is still higher than 80%. Typically we observe this trade-off be-
tween sensitivity and specificity when training neural network models. We have tuned the
model parameters in such a way that higher sensitivity is preferred over higher specificity.
Radial position and angular position in Figure 5 are the limiting cases where the assignment
to the classes is exact or random. As a result, there is no more differences between sensitivity
and specificity.
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was chosen from an engineering point of view in order to most effectively detect all possible forms222

of damage of the rotor to prevent further propagation and catastrophic failure while accepting the223

possibility of false alarms (false positives).224

2.6. Overview of the generated machine learning models225
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1. Algorithm: FC, 1D-CNN,227

2. Data set: original or augmented,228

3. Dimensionality reduction method: pure data, each 30th frequency, PCA, PCA+LDA, SVD+LDA229

and KPCA,230

4. Classifier: radial position (RAD), angular position (ANG), load magnitude (MAGN) and damage231

accumulation (DAM).232

The parameters used for the model training are displayed in table 2, resulting to 36 different233

models. We discarded the combination of CNN and dimensionality reduction methods because the234

CNN itself includes a form of feature extraction as described in subsection 2.5. All models and their235

names and results can be looked up in table A1. We display the accuracy, sensitivity and specificity236

for the final test data set. Moreover, the accuracy for validation data set from cross validation can be237

seen in the table. The cross validation result consists of the mean accuracy and the standard deviation238

calculated from all runs. In the following sections we refer to the different models by their names.239

3. Results240

3.1. Classification with fully-connected neural network and convolutional neural network241

The test accuracy, sensitivity and specificity of the FC for the four classifiers are shown in Figure 6,242

(a) (models FC-OD-Pure-RAD, FC-OD-Pure-ANG, FC-OD-Pure-MAGN and FC-OD-Pure-DAM). The243

simple algorithm of the FC already has high predictive performance and results are roughly at the244

same quality for each classifier. An exception is the angular position with an accuracy of around 30%245

which performs no better than a random assignment to the three classes. Radial position has the246

overall best performance with 99,2% accuracy and 99,4% sensitivity, followed by the load magnitude247
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(a) Fully connected neural network.
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(b) Convolutional neural network.
Figure 6. Classification results of two different network architectures FC (a) and CNN (b). We compare
the models FC-OD-Pure-RAD, FC-OD-Pure-ANG, FC-OD-Pure-MAGN and FC-OD-Pure-DAM (a)
with CNN-OD-Pure-RAD, CNN-OD-Pure-ANG, CNN-OD-Pure-MAGN and CNN-OD-Pure-DAM (b).
The abbreviations can be looked up in Appendix A. OD stands for original data.

Figure 6. Classification results of two different network architectures FC (a) and CNN (b). We
compare the models FC-OD-Pure-RAD, FC-OD-Pure-ANG, FC-OD-Pure-MAGN and FC-OD-Pure-
DAM (a) with CNN-OD-Pure-RAD, CNN-OD-Pure-ANG, CNN-OD-Pure-MAGN and CNN-OD-
Pure-DAM (b). The abbreviations can be looked up in Appendix A. OD stands for original data.

From Figure 6b with models CNN-OD-Pure-RAD, CNN-OD-Pure-ANG, CNN-OD-
Pure-MAGN, and CNN-OD-Pure-DAM it can be seen that the 1D-CNN shows slightly
better predictive performance than the FC. Still, accuracy is comparable with 95.0% (95.5%
sensitivity) for load magnitude and 87.2% (97.0% sensitivity) for damage accumulation.
In comparison to the FC, the accuracy has improved, particularly for damage accumulation.
Again, the best performance can be observed for the radial position with 99.3% accuracy
(99.1% sensitivity). The specificity for CNN model is also higher than 80%. The training for
angular position was not successful.

Machine learning techniques were explored in the field of composite rotors but ANNs
have not been applied to such data structure [11]. In this section, we confirmed that it is
possible to use ANNs to predict the radial position, the damage accumulation and the
load magnitude from spectral response data. There are only very few cases that were not
classified correctly. The FC and the CNN are both appropriate for this task [13–15,17].



Sensors 2021, 21, 2005 9 of 15

3.2. Influence of Reduced Dimensionality

To compare dimensionality reduction methods it is necessary to choose the number of
components, i.e., the number of reduced dimensions.

We selected the lowest possible number of components before accuracy starts to drop
rapidly as depicted in Figure 7 for the classifier radial position. The simplest dimensionality
reduction method is to omit data points (green line). Here, it was chosen to use every 30th
frequency point. However, Figure 7 shows that an algorithm for dimensionality reduction
performs better than manually decreasing the spectra. In PCA an important input parameter
is the percentage of the variance of the original data that is explained by the reduced data.
We have chosen this explained variance to be 90% resulting in 29 components. In KPCA the
same number of components has been chosen because the corresponding curve is nearly
identical to the one for PCA. All three choices lead to an accuracy which is above 98% as
can be seen from the encircled points in Figure 7.
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Figure 7. Accuracy for each of the dimensionality reduction methods PCA, KPCA and using only
every 30th frequency point depends on the number of components. Representative curves are shown
for the classifier detecting the radial position. The encircled points indicate the chosen number
of components.

The accuracies obtained by dimensionality reduction methods with the models FC-OD-
30thFreq-RAD/-MAGN/-DAM, FC-OD-PCA-RAD/-MAGN/-DAM, FC-OD-PCA+LDA-
RAD/-MAGN/-DAM, FC-OD-SVD+LDA-RAD/-MAGN/-DAM and FC-OD-KPCA-RAD/-
MAGN/-DAM are summarized in Figure 8. In some cases the number of components used
as input could be reduced dramatically without loosing much performance. It can be seen
that PCA, Kernel PCA, using every 30th data point and LDA in combination with PCA
have nearly the same height. They clearly outperform LDA with SVD. In relation to the
number of components PCA and KPCA are the most effective reduction methods since
they use only 29 components as input to the network. In our case, KPCA has no advantage
over PCA. It should be noted that accuracy does not decrease compared to the training
with original spectra except for data reduced by SVD+LDA. Specificity and sensitivity can
be extracted from Table A1. There is no major discrepancy between these performance
measures and overall accuracy.

Dimensionality reduction methods are studied extensively [30]. Nevertheless, it de-
pends on the data itself if a technique is applicable and leads to good results. There are
several advantages of reducing the input data dimension as for example a decreased
training time [20]. In this section, the application of dimensionality reduction methods is
investigated and we show that it is not necessary to use the full spectrum.
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Figure 8. Comparison of dimensionality reduction methods for the models FC-OD-30thFreq-RAD/-
MAGN/-DAM, FC-OD-PCA-RAD/-MAGN/-DAM, FC-OD-PCA+LDA-RAD/-MAGN/-DAM, FC-
OD-SVD+LDA-RAD/-MAGN/-DAM and FC-OD-KPCA-RAD/-MAGN/-DAM. Accuracy calcu-
lated with FC is shown. The dimensionality reduction methods are PCA, PCA+LDA, SVD+LDA,
KPCA and using only every 30th data point. Angular position was omitted because there was no
training effect at all.

3.3. Influence of Synthetically Augmented Data Set

An augmented data set with a higher number of samples but without dimensionality
reduction leads to an increase of accuracy compared to the original data set as reported in
Figure 9. Here, the models FC-AD-Pure-RAD/-ANG/-MAGN/-DAM and CNN-AD-Pure-
RAD/-ANG/-MAGN/-DAM are applied to the data. Radial position, load magnitude and
damage accumulation achieve an accuracy as well as a sensitivity and specificity above 96%.
Angular position accuracy improves from roughly 30% to 70%. The increased accuracy
indicates that a large data set makes the model numerically more stable and robust.
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(a) Fully-connected neural network.
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(b) Convolutional neural network.
Figure 9. Classification results with an augmented data set for the two network architectures:
FC (a) with models FC-AD-Pure-RAD/-ANG/-MAGN/-DAM and CNN (b) with models
CNN-AD-Pure-RAD/-ANG/-MAGN/-DAM. The data set contains in total 7920 spectra. Three bars
corresponding to accuracy, sensitivity and specificity are shown.
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In this paper, we showed that it is possible to detect, localize and quantify barely-visible damages312

of composite structures with ANNs. It addresses a topic that has not been fully exploited, i.e. the313

consideration of frequency response spectra as input for ANNs for the prediction of damages. The314

ANNs are able to classify size and location of an initial damage in composite rotors from vibration315

response spectra by neural networks correctly. Two different network types were analyzed. We report316

a test accuracy ranging from 87% to 99% for a simple FC network and a 1-dimensional CNN, where317

the best performance is observed for the radial position of the damage. While in a FC, each point318

of the spectra is treated as an individual feature, a CNN takes into account the ordered sequence319

of the points in the vibration response spectra and the correlations within. This may explain why320

the CNN yields slightly better results, especially for damage accumulation and load magnitude.321

Furthermore, the structure of a CNN includes already a feature extraction mechanism so that there is322

no additional dimensionality reduction technique necessary before the training. As criteria for model323

and hyperparameter selection, we used the validation accuracy combined with 5-fold cross-validation324

(see A1). The validation and test results have roughly the same magnitude. The test results lie within325

the range of the standard deviation of cross validation results.326

We observe that the ANN approach yields results comparable to the hidden Markov model327

(HMM) used in [22]. An exception is the angular position, where it was not possible to train the328

network successfully no matter which model or model parameters were used. We could not clearly329

determine if this is a problem of the data itself or if the model is not appropriate to classify the330

angular position. Further investigations with more data, other machine learning models as well as331

considerations of the underlying physics and descriptive data analysis might lead to a more detailed332

insight. Furthermore, dependencies between the classifiers can be investigated to gain insights into the333

role of the angular position.334

We implemented several dimensionality reduction algorithms in order to use networks with335

lower input dimensions. The test accuracy did not decrease when using only every 30th frequency336

Figure 9. Classification results with an augmented data set for the two network architectures: FC (a)
with models FC-AD-Pure-RAD/-ANG/-MAGN/-DAM and CNN (b) with models CNN-AD-Pure-
RAD/-ANG/-MAGN/-DAM. The data set contains in total 7920 spectra. Three bars corresponding
to accuracy, sensitivity and specificity are shown.

Typically, neural networks are trained with thousands of samples [31] but we have
only around seven hundred samples available. In the case of experimental data, there are
often several recordings of the same composite that are influenced by measurement noise.
We intended to simulate this situation also in our synthetic data set with data augmentation
techniques. Those data augmentation techniques are commonly used in image classification
tasks [32] but are not investigated for vibrational data from composite rotors. We showed
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that the increase of sample size improves the results of the neural network classification in
comparison to the original data set because there are more training examples available for
each simulation scenario.

4. Discussion and Conclusions

In this paper, we showed that it is possible to detect, localize, and quantify barely
visible damages of composite structures with ANNs. It addresses a topic that has not been
fully exploited, i.e., the consideration of frequency response spectra as input for ANNs for
the prediction of damages. The ANNs are able to classify size and location of an initial
damage in composite rotors from vibration response spectra by neural networks correctly.
Two different network types were analyzed. We report a test accuracy ranging from 87%
to 99% for a simple FC network and a 1-dimensional CNN, where the best performance is
observed for the radial position of the damage. While in a FC, each point of the spectra is
treated as an individual feature, a CNN takes into account the ordered sequence of the points
in the vibration response spectra and the correlations within. This may explain why the
CNN yields slightly better results, especially for damage accumulation and load magnitude.
Furthermore, the structure of a CNN includes already a feature extraction mechanism so
that there is no additional dimensionality reduction technique necessary before the training.
As criteria for model and hyperparameter selection, we used the validation accuracy. The
test results lie within the range of the standard deviation of cross validation results (see
Table A1).

We observe that the ANN approach yields results comparable to the hidden Markov
model (HMM) used in [22]. An exception is the angular position, where it was not possible
to train the network successfully no matter which model or model parameters were used.
We could not clearly determine if this is a problem of the data itself or if the model is not
appropriate to classify the angular position. Further investigations with more data, other
machine learning models as well as considerations of the underlying physics and descriptive
data analysis might lead to a more detailed insight. Furthermore, dependencies between
the classifiers can be investigated to gain insights into the role of the angular position.

We implemented several dimensionality reduction algorithms in order to use networks
with lower input dimensions. The test accuracy did not decrease when using only every
30th frequency value, which indicates that the spectra contain redundant information for
the purpose of damage classification. The most successful dimensionality reduction algo-
rithms were PCA and KPCA with approximately thirty components. The results obtained
by using LDA in combination with rank determination via singular value decomposition
had lower accuracy compared to using raw data. The combination of LDA with other
dimensionality reduction techniques is mandatory since the number of samples is smaller
than the number of frequencies. In conclusion we achieve good results with and without
dimensionality reduction. Depending on the amount of data of future research and the
computational resources both options are reasonable.

As the data set contains only several hundreds of samples and is therefore small for
the training of a neural network, we applied a simple data augmentation technique by
adding random noise to the samples. This data augmentation increased accuracy and
sensitivity to nearly 100% and the corresponding values for angular position increased to
70%. It confirms that the selected models are appropriate methods for classifying damage
states of composite rotors based on simulated vibrational data. Moreover, it means that the
augmentation technique and therefore the higher sample size is a key factor in evaluating
synthetic data of composite rotors. Nevertheless, instead of applying only a random noise
term to the original data, it can be more precisely analysed which types of noise occur
during the experimental measurement process in order to simulate it more accurately in
the artificial data base.

Future research might address the topic of generalizing the model to experimental data.
For example, mixture of synthetic and experimental data can be used for the training of the
ANN models. It is important to think about the balance of synthetic and experimental data,
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maybe by providing weights or biases. Further development of physical-based modelling
has to be undertaken. In the state-of-the art simulations, typical 2–3% deviations between
models and reality are to be expected by composite structures [23]. It is a challenge that the
ANN still performs adequately and can still generalise even with this range of deviations
in the mixed experimental-numerical data set.

In ML applications, it is common practice to use tens of thousands of samples in a
training run. However, one has to keep in mind that the creation of data in engineering
science from experimental setups is often time consuming and expensive. This increases the
need to handle also small data sets in a way that makes reliable predictions possible. Despite
the use of a relatively small amount of data, we have shown that a successful classification
of simulated damaged rotors using ANNs is possible with excellent performance. This is a
valid starting point for creating experimental data sets and developing ML applications
which are also able to perform the damage classification task on real world data.
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Appendix A

Table A1. All trained models and combinations of network, data type and dimensionality. Test accuracy, sensitivity, specificity and validation accuracy with cross-validation error
is displayed.

Network Type Data Type Dimensionality Reduction Classifier Name Acc. [%] Sens. [%] Spec. [%]

FC Original logarithmized data Pure data RAD FC-OD-Pure-RAD 99.2 ± 0.5 99.4 ± 0.6 98.9 ± 0.6
FC Original logarithmized data Pure data ANG FC-OD-Pure-ANG 32.7 ± 4.9 32.9 ± 7.5 34.6 ± 6.0
FC Original logarithmized data Pure data MAGN FC-OD-Pure-MAGN 94.0 ± 4.3 99.0 ± 1.5 91.1 ± 7.0
FC Original logarithmized data Pure data DAM FC-OD-Pure-DAM 87.1 ± 1.4 96.2 ± 2.6 83.4 ± 2.5

FC Original logarithmized data Every 30th frequency RAD FC-OD-30thFreq-RAD 97.6 ± 1.4 99.2 ± 1.1 96.1 ± 2.5
FC Original logarithmized data Every 30th frequency ANG FC-OD-30thFreq-ANG − − −
FC Original logarithmized data Every 30th frequency MAGN FC-OD-30thFreq-MAGN 97.1 ± 1.8 98.4 ± 2.2 96.0 ± 2.1
FC Original logarithmized data Every 30th frequency DAM FC-OD-30thFreq-DAM 87.6 ± 1.6 92.3 ± 6.3 85.9 ± 2.8

FC Original logarithmized data PCA RAD FC-OD-PCA-RDA 99.0 ± 0.7 100.0 ± 0 98.1 ± 1.3
FC Original logarithmized data PCA ANG FC-OD-PCA-ANG − − −
FC Original logarithmized data PCA MAGN FC-OD-PCA-MAGN 95.8 ± 1.6 95.9 ± 2.7 95.8 ± 2.7
FC Original logarithmized data PCA DAM FC-OD-PCA-DAM 87.6 ± 2.5 94.2 ± 3.1 84.5 ± 3.9

FC Original logarithmized data PCA + LDA RAD FC-OD-PCA+LDA-RAD 98.6 ± 0.6 99.4 ± 0.7 97.7 ± 1.3
FC Original logarithmized data PCA + LDA ANG FC-OD-PCA+LDA-ANG − − −
FC Original logarithmized data PCA + LDA MAGN FC-OD-PCA+LDA-MAGN 94.6 ± 2.0 97.3 ± 2.0 92.2 ± 2.1
FC Original logarithmized data PCA + LDA DAM FC-OD-PCA+LDA-DAM 84.2 ± 1.4 93.5 ± 3.8 80.3 ± 2.7

FC Original logarithmized data SVD + LDA RAD FC-OD-SVD+LDA-RAD 92.2 ± 2.5 91.3 ± 2.7 93.0 ± 3.8
FC Original logarithmized data SVD + LDA ANG FC-OD-SVD+LDA-ANG − − −
FC Original logarithmized data SVD + LDA MAGN FC-OD-SVD+LDA-MAGN 77.1 ± 4.5 79.9 ± 3.4 74.9 ± 6.9
FC Original logarithmized data SVD + LDA DAM FC-OD-SVD+LDA-DAM 73.6 ± 2.7 89.3 ± 5.2 67.6 ± 2.9

FC Original logarithmized data KPCA RAD FC-OD-KPCA-RAD 99.3 ± 6.2 99.5 ± 1.0 99.2 ± 1.0
FC Original logarithmized data KPCA ANG FC-OD-KPCA-ANG − − −
FC Original logarithmized data KPCA MAGN FC-OD-KPCA-MAGN 96.4 ± 1.5 96.8 ± 1.5 95.9 ± 2.5
FC Original logarithmized data KPCA DAM FC-OD-KPCA-DAM 89.2 ± 3.4 94.3 ± 2.0 86.9 ± 4.5

FC Augmented logarithmized data Pure data RAD FC-AD-Pure-RAD 99.5 ± 0.4 99.7 ± 0.4 99.3 ± 0.5
FC Augmented logarithmized data Pure data ANG FC-AD-Pure-ANG 73.9 ± 2.3 81.4 ± 2.5 71.1 ± 3.0
FC Augmented logarithmized data Pure data MAGN FC-AD-Pure-MAGN 97.3 ± 0.5 96.7 ± 1.2 98.0 ± 0.5
FC Augmented logarithmized data Pure data DAM FC-AD-Pure-DAM 96.8 ± 0.5 98.5 ± 0.3 96.1 ± 0.7

1D-CNN Original logarithmized data Pure data RAD CNN-OD-Pure-RAD 99.3 ± 0.6 99.1 ± 0.9 99.4 ± 0.6
1D-CNN Original logarithmized data Pure data ANG CNN-OD-Pure-ANG 32.6 ± 1.4 32.4 ± 1.4 32.9 ± 1.6
1D-CNN Original logarithmized data Pure data MAGN CNN-OD-Pure-MAGN 95.0 ± 2.0 95.5 ± 4.2 94.4 ± 3.9
1D-CNN Original logarithmized data Pure data DAM CNN-OD-Pure-DAM 87.2 ± 3.4 97.0 ± 2.9 83.3 ± 5.3

1D-CNN Augmented logarithmized data Pure data RAD CNN-AD-Pure-RAD 99.5 ± 0.2 99.5 ± 0.3 99.1 ± 0.2
1D-CNN Augmented logarithmized data Pure data ANG CNN-AD-Pure-ANG 70.7 ± 4.5 68.8 ± 4.6 71.7 ± 4.6
1D-CNN Augmented logarithmized data Pure data MAGN CNN-AD-Pure-MAGN 95.3 ± 0.6 95.7 ± 1.2 94.9 ± 1.6
1D-CNN Augmented logarithmized data Pure data DAM CNN-AD-Pure-DAM 94.9 ± 0.8 97.3 ± 0.3 93.8 ± 1.2
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