
sensors

Article

Multi-Agent Systems in Fog–Cloud Computing for Critical
Healthcare Task Management Model (CHTM) Used for
ECG Monitoring

Ammar Awad Mutlag 1,2 , Mohd Khanapi Abd Ghani 1, Mazin Abed Mohammed 3,* , Abdullah Lakhan 4 ,
Othman Mohd 1, Karrar Hameed Abdulkareem 5 and Begonya Garcia-Zapirain 6,*

����������
�������

Citation: Mutlag, A.A.; Abd Ghani,

M.K.; Mohammed, M.A.; Lakhan, A.;

Mohd, O.; Abdulkareem, K.H.;

Garcia-Zapirain, B. Multi-Agent

Systems in Fog–Cloud Computing for

Critical Healthcare Task Management

Model (CHTM) Used for ECG

Monitoring. Sensors 2021, 21, 6923.

https://doi.org/10.3390/s21206923

Academic Editor: Juan Pablo

Martínez

Received: 19 August 2021

Accepted: 9 October 2021

Published: 19 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of
Information and Communication Technology, Universiti Teknikal Malaysia Melaka,
Durian Tunggal 76100, Malaysia; ammar.awad14@gmail.com (A.A.M.);
khanapi@utem.edu.my (M.K.A.G.); mothman@utem.edu.my (O.M.)

2 Ministry of Education/General Directorate of Curricula, Pure Science Department, Baghdad 10065, Iraq
3 College of Computer Science and Information Technology, University of Anbar, 11, Ramadi 31001, Iraq
4 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China;

Abdullahrazalakhan@gmail.com
5 College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq; khak9784@mu.edu.iq
6 eVIDA Laboratory, University of Deusto, Avda/Universidades 24, 48007 Bilbao, Spain
* Correspondence: mazinalshujeary@uoanbar.edu.iq (M.A.M.); mbgarciazapi@deusto.es (B.G.-Z.)

Abstract: In the last decade, the developments in healthcare technologies have been increasing
progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and
blood pressure control connect with external servers in a manner called cloud computing. The
emerging cloud paradigm offers different models, such as fog computing and edge computing,
to enhance the performances of healthcare applications with minimum end-to-end delay in the
network. However, many research challenges exist in the fog-cloud enabled network for healthcare
applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is
proposed and implemented using an ECG dataset. We design a resource scheduling model among
fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of
the network from the edge to the cloud. The proposed model overcomes the limitations of providing
interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks
significantly. The simulation results show that our model, in comparison with the cloud, significantly
reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy
consumption by 81%, and the instance cost by 80%.

Keywords: cloud computing; fog computing; scheduling; multi-agent system; balancing; prioritization;
cardiology

1. Introduction

Cloud and fog computing models have arisen in the context of the current economy
and use the Internet to provide services on request for consumers [1].Both of these sec-
tors have gained significant interest from academia and industries [2]. However, cloud
computing is not an appropriate choice for applications that need a real-time response,
such as healthcare [3], due to the high time delay. Fog computing, a cloud extension at
the network edge, may perform applications near the sources of information. Therefore,
fog computing may enhance the delivery time of application services and decrease the
congestion of the network [4]. Hence, on one hand, a distributed architecture in the network
is not implemented in current fog computing architecture, which may lead to a node fault,
and therefore the node load is displayed [5]. On the other hand, the nodes of the fog are
extremely heterogeneous and distributed, and most of them are reserved in terms of spatial

Sensors 2021, 21, 6923. https://doi.org/10.3390/s21206923 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4966-0232
https://orcid.org/0000-0001-9030-8102
https://orcid.org/0000-0002-1833-1364
https://orcid.org/0000-0001-7302-2049
https://orcid.org/0000-0002-9356-1186
https://doi.org/10.3390/s21206923
https://doi.org/10.3390/s21206923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206923
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206923?type=check_update&version=1

Sensors 2021, 21, 6923 2 of 17

sharing and resources. Therefore, effective application management is essential to use the
fog nodes’ capabilities completely [6,7]. At the same time, the integration of blockchain and
network infrastructure can achieve endogenous operation [8]. A smart collaborative bal-
ancing (SCB) scheme can be employed to dynamically adjust the orchestration of network
functions and efficiently optimize the workflow patterns [9].

The common computing system employed in many applications may be used effi-
ciently with the agents distributed through the system and functioning separately for the
users. Multi-agent systems (MASs) have been commonly utilized to solve actual challenges
as they are reactive and adaptive for environmentally active variations. MASs have been
previously employed in organization-centric, staff-centric, and patient-centric applications.
MAS behaves like a network that is self-correcting and self-analyzing [10]. The concept
of a light-weight and flexible scheduling model in an MAS is a crucial matter because
an inappropriate scheduling policy can cause ineffective communication [11]. Intelligent
distributed systems can model how multiple portions of the network work collectively
and independently [12]. For pursuing general and individual (local) system-level goals,
these intelligent network nodes can operate individually and cooperate with others. Com-
plex network links, joining their nodes, may reflect the essential communication between
individuals. In an MAS model, it is common to consider particular nodes as intelligent
agents. Every agent obeys basic rules independently yet works with other agents together
to approache challenging problems. The integration of MASs and complex networks gives
a combined framework for system control and optimization [13]. Part of the problems and
directions of research in complex networks are based on the further research of their design
at numerous dimensions or layers of the network, as well as the diversity of resolution
levels (mesoscale networks) in which a network may be analyzed [14,15]. Therefore, load
scheduling is performed in crises, mainly because of the restricted accessibility of the local
resources and the renewable, irregular nature. Load scheduling may be described as a
coordinated group of controls to reduce load requests in the micro-grids. The main aim of
the performed load scheduling is to maintain the system frequency to avoid task processing
failure [16].

The ECG tool is crucial in the diagnosis and treatment of a variety of cardiac diseases.
By studying the ECG signals produced by the heart, doctors can provide valuable informa-
tion about the state of disease and the condition of the patient. The size and duration of
the ECG signal components, such as the segments, intervals, and waves, are analyzed and
assessed. These components are used to determine the type of cardiac rhythm. When the
aforementioned components differ from the expected norm, an abnormal heart rhythm,
called arrhythmia (or dysrhythmia), is indicated [17]. In this paper, the Critical Healthcare
Task Management (CHTM) model provides a performance contribution in two aspects:

1. Task control: A novel flow of tasks is employed for the network by mapping the
tasks to sufficient resources in the novel flow, as well as in current flows, allowing us to
guarantee their performance.

2. Load regulation: The flow of traffic is controlled by multi-agent systems to ensure
that it does not exhaust the network. The major contributions of the suggested model are
as follows:

1. Proper management of critical tasks by the CHTM model;
2. Effective prioritization of irregular tasks;
3. Effective task scheduling for the critical patient situation;
4. Balanced network workload at global and local levels by calculating the global and

local workload cost. Moreover, the cooperation of nodes and sharing of resources
with adjacent nodes is enabled by utilizing a multi-agent system, in which four types
of agents are used;

5. Our model provides three levels of processing: PAs, FNAs, and cloud. Besides, our
model provides two levels of control: master personal agents and master fog bodes.

The structure of this article is as follows: Section 2 discusses the recent studies on
scheduling in fog computing. Section 3 represents the motivation for scheduling in fog

Sensors 2021, 21, 6923 3 of 17

computing. Section 4 shows the methodology of the CHTM model along with the proposed
algorithm. Section 5 displays the experiment’s evaluation findings. Section 6 shows the
comparison with state of the art methods. Section 7 concludes the research and presents
possible future research directions.

2. Related Work

In this section, comprehensive benchmarking is presented and discussed. As shown
in Table 1 most of the related articles that focus on scheduling in fog computing have been
reviewed to highlight the contribution and compare the results with the proposed model.
A deadline and security-aware scheduling algorithm named RT-SANE (Real-Time Security
Aware scheduling on the Network Edge) is proposed in [18]. Applications with strict
privacy criteria are arranged in a micro-data center (MDC) near the user, while others may
be arranged in a cloud data center (CDC) or a remote micro-data center (MDC). There is
also an orchestration agent for every device used for computing in the network. For every
task, the orchestration agent generates task-specific agent instances, at separate nodes,
and they work collectively to achieve the target (such as finishing the user’s task within a
specified deadline at the lowest cost, without breaking a specific requirement of security).
However, the resource sharing method in this paper is not employed; if the task cannot be
performed on the local MDC, it is then sent to cloud CDC by the orchestration agent (OA),
created for such cases. This scenario is not acceptable as it delays the process while sending
data to the cloud and retrieving the results. Instead, the tasks can be sent to the nearest
neighboring fog to process them quickly. Moreover, there is no dynamic allocation of tasks.
A strategy of resource allocation for fog computing depending on Priced Timed Petri Nets
(PTPN) is proposed in [19], where the user may select the sufficient resources separately
from a set of pre-allocated resources. The dynamic allocation in PTPN, as proposed for the
resources at the fog level, inspired by the sales mode of the fog user, may choose sufficient
resources from a collection of pre-allocated resources. However, there is no cooperation
between the fog and cloud in terms of the scheduling and allocation of the tasks, and the
strategy of sharing the resources among fog nodes is to divide the task into sub-tasks, and
a similar job executed by two resources may be shown as two dissimilar jobs. This may
exhaust the network by showing the fog node to be busy, resulting in a large number of
tasks and a large time for sub-task aggregations. Moreover, the allocation of the tasks is
not dynamic as it is focused on resources and not on tasks. However, this method is not
appropriate for tasks that are critical to healthcare. The priority is highly credibility based;
for users’ jobs, sufficient machines are chosen depending on the order of credibility and
not criticality. An energy-aware load balancing and scheduling (ELBS) approach that is
dependent on fog computing was proposed in an earlier study [20]. Firstly, a model of
energy utilization connected to the workload is developed on the node of the fog; then, a
function of optimization aimed at the load balancing of the developed cluster is expressed.
Next, to obtain the best solution, an enhanced particle swarm optimization (PSO) algorithm
is utilized, and the priority of the relevant job is constructed for the manufacturing cluster.
However, in the fog computing platform, the enhanced PSO algorithm is utilized to solve
the load; the corresponding mathematical model depends on the perception of energy
utilization and not on the importance or criticality of the task, without considering the
load on the resources. In this paper, sharing the resources between the fog nodes is not
tackled, and no dynamic allocation for the tasks is mentioned. The priority procedure
is based completely on energy, which makes the proposed method inappropriate for
healthcare application.

An algorithm for task scheduling in the fog layer, depending on levels of priority, is
proposed in [21]. The fog layer contains micro data-centers. For effective load balancing
and resource distribution, the nodes of fog in the fog layer may connect together. The fog
layer is in the center. It has a variety of fog servers (FS) or fog nodes that contain micro
data-centers and VMs. There is a Fog Server Manager (FSM) for every FS that achieves
the resource through the FS and counts VMs and processors. However, if the demand

Sensors 2021, 21, 6923 4 of 17

is not met by its deadline, it is rejected, making the model unsuitable for applications
with very small latency tolerances, such as healthcare applications. Moreover, dynamic
task allocation is not considered. The priority depends on the original priority level of
the request. However, the priority level of a task should consider more than one factor to
decide the level of priority, such as the task criticality, balancing, and resource availability.

Table 1. Related works table.

Article Approach Fog–Cloud In-
teroperability

Priority
Scheduling MAS Resource

Sharing Dynamic Tasks Al

[18]
RT-SANE (Re

al-Time Security
Aware scheduling

on the Network
Edge)

5 3 3 5 5

[19]
A strategy of re

source allocation
of computing fog

depending on
Priced Timed Petri

nets (PTPN)

5 3 5 3 5

[20]
Energy-aware

Load Balancing
and Scheduling
(ELBS) method

5 3 3 5 5

[20]
Task scheduling
algorithm in the
layer of fog de

pending on levels
of priority

3 3 5 3 5

[21]
Critical Healthcare

Task Manage
ment Model

(CHTM)

3 3 3 3 3

In summary, all chosen studies have focused on priority scheduling in different
methods such as deadline-aware scheduling, Priced Timed Petri Nets, and energy-aware
approaches, while serving the most important task first. In these methods, common param-
eters, such as priority scheduling, with the proposed model exist. However, to provide a
convenient solution for critical healthcare tasks, priority scheduling without entire network
management will not solve the problem. The proposed model is designed to overcome the
limitations in terms of providing interoperability, resource sharing, scheduling, and dy-
namic task allocation and to provide a significant result when managing critical tasks.

3. Motivation Scenario

This section presents the main factors that have motivated the authors to propose
dynamic scheduling. Priority task scheduling (PTS) for fog and cloud environments is
also presented. This consists of dynamic task allocation (DTA) and resource balancing and
availability (RBA), as shown in Figure 1. Applications of fog computing for healthcare
are latency-sensitive, whereas others are delay-tolerant. The workloads created through
those applications are of variable length and dynamic and need priority implementation
in the cloud and edge. In the healthcare environment, applications fight for restricted
resource devices. At different nodes of the fog, these workloads are executed and allocated.
Using the basic Round Robin (RR) algorithm, which utilizes the First Come First Served
(FCFS) method for job scheduling in fog computing, equivalent priority is provided for
all tasks, in-creasing the time of response for tasks with limited burst times. However, the
fog computing paradigm aims to minimize the waiting time, response time, and traffic of

Sensors 2021, 21, 6923 5 of 17

the network [22]. Thus, a task scheduling algorithm for the fog needs to be designed and
implemented with the following goals:

1. Lessening the delay in the application loop (latency);
2. Using the fog devices resources efficiently (processor, RAM, energy, etc.);
3. Reducing the use of the network.

Figure 1. Scheduling strategy.

3.1. Priority Task Scheduling (PTS)

The PTS approach depends on two main factors: dynamic task allocation (DTA) and
resource balancing and availability (RBA). According to the condition of these two factors
(as shown in the next sections), PTS will schedule the high-priority tasks. The fundamental
principle of the suggested approach is that the task is assigned a priority depending on
the patient’s criticality. Firstly, the scheduler immediately processes the high-priority tasks
that are indicated as being high for a critical patient’s situation. Next, the normal tasks are
suggested. A maximum quantum of resources can be allocated to every task, even if it can
be constantly performed. The scheduler utilizes the specified size through the reference
value, and the initiating agent is used to calculate the priority [11] once an agent begins the
process of negotiation with another agent. The task is transferred from agent (i) to another
agent (j) and is reserved as Rij in the matrix of reference. The steps to decide the priority are
as follows:

1. Determine the task criticality;
2. Decide the size of the incoming task;
3. Comparison: the priority is determined utilizing patient history, considering whether

the size is equivalent to that of another task;
4. Sort: considering the priority and sorting the tasks;
5. Update the reference value.

Notice that the response of delayed tasks will be postponed as the higher priority
tasks may increase in number continuously. A task once postponed is no longer delayed in
the CHTM model to avoid this challenge.

3.2. Dynamic Tasks Allocation (DTA)

Resource and task allocation in fog computing can greatly increase the usage of
resources and can guarantee the QoS of users [23]. The nodes of the edge must exe-
cute/perform a group of jobs to support healthcare applications. Jobs are created, perhaps,
at high speed and must be finished immediately in terms of execution and allocation.
The scheduling and allocation of jobs is achieved in the control of the nodes set. The allo-
cation is followed by the assessment of the assignment of every task to a node, whereas
the scheduling primarily seeks the execution sequence of each job [24]. The allocation of
the resources includes determining the answers to the questions how many, what, when,
and where, making the resource accessible to the task. Users usually determine the number
and type of resource containers to be requested. Next, providers assign the demanded
resource containers to their data-centers’ nodes, which is not acceptable in healthcare

Sensors 2021, 21, 6923 6 of 17

critical-task applications. Potentially, the agents have the ability to manage the allocation of
the tasks in resources, specifically in distributed systems, taking into account the processing
of the request, cost optimization, and service composition as essential factors. The dynamic
allocation of the high-priority tasks in the processing modules present in the fog or cloud
is performed by dynamically specifying the maximum capability of all the connected fog
nodes. MASs direct all the incoming tasks in such a way that each task is associated with
a specific processing module in the fog nodes or cloud. In other words, the MAS have a
continuous list of resources, in which a high priority task will have a high availability of
priority resources. Thus, we create a list of task priorities according to their criticality and,
at the same time, we arrange a dynamic list of the preferred resources according to the
availability and response.

3.3. Load Balancing and Availability (LBA)

When a node of the fog receives an information processing demand from a PA, it will
process the demand and reply. If the node is busy handling other demands, only a portion
of the payload can be processed, and the residual portions can be offloaded to other nodes
of the fog. Two approaches are available for modeling interactions between nodes of the
fog: firstly, the centralized model, which depends on a central node and oversees the fog
nodes’ offload interaction, which is not appropriate for healthcare-critical task applications;
secondly, every node of the fog uses a protocol to distribute their modified state data to the
neighboring nodes. Next, every node of the fog includes a dynamically improved set of
top nodes, which may help the offloaded jobs [25]. The offloading may be performed by
multiple agents in the fog computing environment because of its distributed technique,
particularly in the context of the challenge of load balancing [26]. Balancing the tasks among
fog nodes should be conducted with the compatible fog nodes to support parallelism.

4. Methodology

This section shows the methodology of the CHTM model. Figure 2 represents the
processes, actions, and details of each step in CHTM, while it contains three main processes.
Prioritization has two main parts: personal agent (PA) prioritization and global prioritiza-
tion, which are achieved by the prioritization module in each fog node. The scheduling
involves two main actions, local and global resource evaluation, which are performed
by fog node agents (FNAs). Lastly, the most critical tasks with the most appropriate
available resources are processed.

The architecture of CHTM is presented in the following section and consists of three
levels: low, intermediate, and high level. The steps of the proposed algorithm that represent
the three levels of CHTM are shown in the proposed algorithm section.

4.1. CHTM Model Architecture

According to the proposed scheduling strategy, in this section, we present our CHTM
model, which was built using MASs (multi-agent systems). An MAS represents a system of
cooperating intelligent agents and autonomous entities that may communicate and behave
with each other in a definite environment, based on the state of the environment [27].
In the CHTM model, as shown in Figure 3, scheduling, nodes, tasks, and system fitness are
the monitoring objects. We take into account the model of the multi-agent system (MAS)
with four agent types: a fog node agent (FNA), master agent (MA), personal agent (PA),
and master personal agent (MPA). In the proposed model, three levels of processing are
provided: PAs, FNAs, and the cloud. Furthermore, two levels of control are provided:
MPAs and MFNs.

Sensors 2021, 21, 6923 7 of 17

Figure 2. CHTM methodology.

Figure 3. CHTM model architecture.

Sensors 2021, 21, 6923 8 of 17

4.1.1. CHTM Algorithm Steps

The proposed approach (shown in the following algorithm) is a practical scheduling
strategy implementation of the CHTM model in which two prioritization steps for the
incoming tasks are conducted: first, prioritization is conducted by PAs before allocating
the arrival tasks at fog nodes; secondly, the prioritization is conducted in the fog nodes
using FNAs among all connected PAs. In other words, the scheduling strategy in the
CHTM model distributes the workload among the fog nodes and cloud in a balanced way
to guarantee that critical tasks are processed with the most suitable resources to ensure a
fast response.

Algorithm 1 is the primary algorithm and consists of different methods. The CHTM
algorithm assumes the practical implementation of dynamic task allocation by providing
a complete network management from the edge to the cloud. A novel flow of critical
tasks is assigned to sufficient resources with traffic control, in which no static scenario of
task processing is followed; the procedure of processing the incoming tasks is decided
depending on the network situation.

Algorithm 1: CHTM Algorithms.

begin
Step 1: PA prioritizes the incoming tasks;
PA: Action check (input data);
Receive data from sensors;
if task is high priority (r) then

place task top of queue;

else
place task last of queue;

Step 2: Personal agent master checks the number of tasks;
foreach all PAs do

If PAn has tasks k larger than the FN threshold
transfer PA tasks to other low workload FN;
Step 3: Fog node agent prioritize the incoming tasks;
for all incoming tasks do

if task k is highest priority then
add k to the top of list;

Step 4: Fog node agent schedules the tasks;
FNA: action scheduling;
get local node available resources;

get neighbor nodes’ available resources;
if workload < threshold then

process tasks locally;

else
send the tasks to nearest neighbor available node;

Step 5: Master agent manages fog node agents;
MA: action manage;
get all nodes’ workload u;
check FNs’ response;
if low processing response occur DO then

transfer the incoming tasks to an-other FN;

if (all FNs are busy DO) then
transfer the tasks to cloud;

Sensors 2021, 21, 6923 9 of 17

4.1.2. Low Level: Personal Agents (PA)

A finite set of actions “A” is feasible for each agent: A = a1, a2, . . . , aN.
Personal agent: The personal agent (PA) collects the tasks from the connected sensors,

which are then organized according to their criticality, and each group of sensors is linked
to a single PA. Here, all the incoming sensor tasks will be rated by PA according to the
patients’ criticality. The critical tasks (C) list and normal tasks (N) list are the outputs
of PAs.

Master personal agent: The MPA is a gateway to check the number of incoming tasks
from the PA. If a PA sends a large number of tasks among other PAs, the MPA will forward
the extra tasks to other FNs with low workload µ.

4.1.3. Intermediate Level: Fog Node Agents (FNAs)

The fog node agent (FNA) collects the task list from the PA and then organizes the tasks
according to their criticality. Figure 4 shows the architecture of each fog node. The FNA
handles the incoming tasks as follows: B =k1, . . . , kn, r1,. . . , rn, w1, . . . , wn, o1, . . . , on, a1,
. . . , an, h1, . . . , hn, c1, . . . , cn, d1, . . . , dn, µ, σ where ki, with i = 1, . . . , n, is the tasks; ri,
with i = 1, . . . , n, is the priorities of the ith task; wi, with i = 1, . . . , n, is the workload of the
ith task; oi, with i = 1, . . . , n, is the PA output size of the ith task; ai, with i = 1, . . . , n, is the
required accuracy for the ith task; mi, with i = 1, . . . , n, is the demanded resources for the
ith task; hi, with i = 1, . . . , n, is the hashes of tasks; ci, with i = 1, . . . , n, is the acceptable
maximum cost for each task given by the service demander; di, with i = 1, . . . , n, is the
delivery location of the ith task; µ is the mean workload of all scheduled batches in all
nodes and cloud; and σ is the standard deviation of the workload for each scheduled batch.
To compare the present workload to that of the past tasks, the standard deviation σ and the
mean µ of the workloads are computed. This makes it possible to check if a task’s workload
is below a certain threshold, as shown in Equation (1):

|wi − µ| < σ ∗ σ (1)

where α is a tuning parameter to be calculated. The tasks are returned to the service request
if the workload is above the threshold. This enables a kind of global optimization to be
realized in order to ensure a certain balance in the global sensor network, in order not to
overload a node or to assign only small workloads to a given node. To perform a particular
type of local optimization, FNA is also responsible for tracking tasks by verifying task
attributes such as task size and task integrity. The main modules of each FNA are as
follows. The prioritization module in the fog node will distribute the incoming tasks from
all connected PAs according to their priority and create a list of prioritized tasks consisting
of classified abnormal tasks that involve a rapid response. The value of the priority should
be measured as Equation (2):

Priority = max(x = 0)z(r(k, t), Priority(x, t)) (2)

where t is the current time, priority (k, t) is the priority of task k value at time t, z is the
number of tasks associated with k, and r is the priority value of task k, at instant t, given
in advance by cloud–fog platform customers. The task scheduling module will decide
to process the incoming tasks in the local node (in case the task’s size fits the local node
resources) or forward the tasks to the neighboring nodes (in case of the unavailability of
local node resources). Indeed, the task scheduling module will make a decision according
to the set of features (priority, load balancing, resource availability). In other words,
three main decisions are provided by this module: execute locally, execute in neighbor,
and execute in the cloud. The task scheduling module obtains the cost (£) and available
resources from the cost function according to the cost and the history of each patient [28].
Tasks are scheduled through patient health records (PHRs) from the cloud.

Cost function: The main role of this function is to calculate the cost (£) of process-
ing a task according to the availability of resources and task complexity. The cost func-

Sensors 2021, 21, 6923 10 of 17

tion uses the cloud workload (CW), local workload (LW), task complexity, and neighbor
workload (NW).

Task processing module: Here, each fog node agent has its own processing module
with predefined processing resources. The current workload is sent to the cost function.

Collaborative function: This function is responsible for the interaction and collabora-
tion between fog node agents to share tasks and the current workload.

Figure 4. Fog node architecture.

Based on the components of the proposed model architecture above, a protocol for
interaction between these components is also proposed. There are three different cases:
(a) a local FN taking care of the execution of the task, (b) neighbor FNs taking care of the
execution of the task, and (c) the cloud being responsible for the execution of the task.
The aim here is to demonstrate the best effort protocol to manage incoming tasks without
errors, loss of tasks, etc. The priority of a task will be set as high, medium, or low according
to the sensor data in the local view, in which the personal agent will set the task according
to the data received from the sensors. Moreover, in the fog node agent (global view),
the priority module will set the priority of tasks for all of a personal agent’s tasks and the
cost of processing them, provided by the cost function. Based on the task completion time,
resources expended, and resources available, the complexity of a task will be determined.

4.1.4. High Level: Master Fog Node Agent (MFNA)

The basic characteristics of all the fog nodes are checked by the master agent. It
is responsible for the interoperability among fog nodes, as well as for supporting and
monitoring the scheduling genetic process in the fog nodes and cloud. The tasks are
dispatched to the fog nodes to be performed when the schedule is ready. The MFNA
receives information from FNA during the execution of tasks. It then determines the
increment or decrements in the workload, in order to achieve the optimum efficiency of
tasks. This is calculated by the system’s assumed fitness function. The fitness of the system
depends on the utilization of the fog nodes, which may be idle or overloaded. If several
fog nodes are idle, then the decision of MA forces the scheduling and dispatch of a new
portion of tasks. If more than threshold p of FNAs state that less work is required, q% is
then sent frequently by the batches. If more than p of the FNAs report that more work is
required and the total cost associated with such FNAs is not higher than c, the batches send
q% more frequently. The p and c parameters are set properly.

Sensors 2021, 21, 6923 11 of 17

5. Results

This section evaluates the efficiency of the proposed CHTM model. As described
above, the proposed mechanism includes different steps. Firstly, information is obtained by
using sensors for patients in the hospital. The sensed information is categorized into critical
and non-critical datasets utilizing the PAs, which are next sent to FNAs for processing.
Finally, the FNAs are incorporated into each other as well as the cloud layer. Henceforth,
the assessment of the performance is executed with the following goals:

1. Examine the network usage;
2. Examine the average response time for critical tasks;
3. Measure the average network delay;
4. Calculate the average energy consumption;
5. Find the instance cost.

5.1. Experimental Configuration

The proposed model simulation was carried out in a real-world ECG dataset, acquired
from the dataset store of UCI (University of California at Irvine) [27]. The Arrhythmia
dataset comprises 452 examples, 269 attributes, and 16 classes. The dataset has been divided
randomly into four parts. Four different settings were employed in the simulation to show
the performance. Then, each section was run in the cloud only to retrieve the delay in order
to compare it with the delay retrieved from using the proposed cloud–fog model. We used
the Java-created simulator (iFogSim) toolkit to simulate the embedded architecture and the
environment to illustrate the viability of our suggested CHTM model and for integration
with a cloud-based solution. In the first run (case1), the number of established nodes was 6;
later, in the second run (case2), the number of established nodes was 8; in case3, the number
increased to 10; and finally (case4), the number of established nodes was 12. The simulation
was carried out on a computer system with 16 GB Ram and a 3.2 Processor, Core i5, 6th
Gen HP, 500 GB HDD Windows 10 genuine 64 bit operating system.

5.2. Network Usage

The network usage describes the workload of the network. In other words, it shows
the contribution of the proposed model to balancing the network load while running the
critical tasks.

Firstly, the usage of the network was 54,069.097 kbps using the edge–cloud approach.
In case1, each node had one agent to communicate with each other and one agent at
MFNA, with a usage of 9127.8 kbps using the edge–fog–cloud approach for the same
quantity of information. Secondly, the usage of the network was 59,213 kbps using the
edge–cloud method. In case2, the usage of the network was 13,340.2 kbps using the edge–
fog–cloud approach for the same amount of information. Thirdly, the network usage was
64,227.78 kbps using the edge–cloud approach. In case3, we established two agents in
each fog node, in which one agent communicated with other fog node agents and MFNA,
while the other agent controlled the processing of the critical tasks. The network usage
was 18,013.9 kbps using the edge–fog–cloud approach for the same amount of information.
Lastly, the network usage was 77,046.54 kbps using the edge–cloud method. Moreover,
in case4, the network usage was 26,917.1 kbps using the edge–fog–cloud approach for
the same amount of information. The overall cloud network usage was 79%. The overall
CHTM model network usage was 21%. Figure 5 shows the simulation result.

Sensors 2021, 21, 6923 12 of 17

Figure 5. Network usage comparison.

5.3. Response Time

The effectiveness of the projected model in terms of the task processing response time
is elaborated in this section. A comparison between the edge–cloud response time and
edge–fog–cloud interoperability is shown in Figure 6 below.

Figure 6. Average response time comparison.

Firstly, the response time was 409.82 ms using the edge–cloud method. In case1, each
node had one agent to communicate with each other and one agent at MFNA. The response
time was 27.97 ms using the edge–fog–cloud approach for the same amount of informa-
tion. Secondly, the response time was 423.19 ms using the edge–cloud method. In case2,
the response time was 35.85 ms using the edge–fog–cloud approach for the same amount
of information. Thirdly, the response time was 431.87 ms using the edge–cloud method.
In case3, each fog node was established with two agents: one for the execution of critical
tasks and the other to communicate with other nodes. The response time was 42.47 ms, us-
ing the edge–fog–cloud approach for the same amount of information. Lastly, the response
time was 469.60 using the edge–cloud method. In case4, with the same number of agents
in the third run, the response time was 48.19 ms using the edge–fog–cloud approach for
the same amount of data. In terms of response time, we concluded that the CHTM model
has a 90% response as compared to the edge–cloud response.

Sensors 2021, 21, 6923 13 of 17

5.4. Network Delay

The flow of the tasks should not exhaust the network in order to avoid the delay in
processing the critical tasks.

For the first part of the dataset, we obtained a delay of 21.04 ms for 21 patients by
using the edge–cloud method. In case1, we achieved a delay of 10.43 ms by using the
edge–fog–cloud approach for the same amount of information. For the second part of the
dataset, we obtained 23.33 ms for 30 patients by using the edge–cloud method. Moreover,
we achieved a delay of 13.33 ms by using the edge–fog–cloud approach for the same
amount of information. In the third part of the dataset, we obtained a delay of 35.08 ms for
40 patients by using the edge–cloud method. In case2, we achieved a delay of 15.34 ms
using the edge–fog–cloud approach for the same amount of data. Lastly, we gained a delay
of 46.03 ms for 100 patients by using the edge–cloud method. Additionally, for the same
number of fog nodes used in the third run, we obtained a delay of 20.36 ms by using the
edge–fog–cloud approach for the same amount of information. The overall cloud network
delay was 65%. The overall CHTM model network delay was 30% in comparison with the
edge–cloud method. Figure 7 shows the simulation results.

Figure 7. Average network delay comparison.

5.5. Energy Consumption

Average energy usage is described, for any interval, as the infrastructure energy usage
(containing whole fog nodes and cloud data centers) normalized through the environment’s
extreme power. We measured the energy of the cloud, cloud gateway, fog nodes, and master
fog node.

For the first part of the dataset, we selected data from 10 patients, and we obtained
102.91 Joule in the cloud and 42.45 Joule in the cloud gateway. In case1, we obtained
38.78 Joule in the fog node and 22.56 Joule in the MFNAs fog for the same amount of
data. In the second part of the dataset, we selected data from 20 patients; we obtained
126.73 Joule in the cloud and 45.76 Joule in the cloud gateway. For the same number of fog
nodes in the first run, we achieved 45.15 Joule in fog node and 29.84 Joule in MFNAs for the
same amount of data. In the third part of the dataset, we selected data from 40 patients; we
obtained 136.92 Joule in the cloud and 50.70 Joule in the cloud gateway. However, in case2,
we received 49.87 Joule in the fog nodes and 35.12 Joule in the MFNAs for the same amount
of data. In the last part of the dataset, we selected data from 100 patients; we obtained
149.48 Joule in the cloud and 54.93 Joule in the cloud gateway. For the same number of fog
nodes in the third run, we obtained 58.30 Joule in fog nodes and 40.59 Joule in MFNAs
for the same amount of data. In terms of energy, we calculated the energy for each run
separately for the cloud, cloud gateway, fog, and MFNA. For the first run, the consumed
energy by the cloud and cloud gateway was 50% and 20%, respectively, whereas fog energy
consumption was 19%, and MFNA energy consumption was 11%. In the second run,
the consumed energy of the cloud was 51%, and in the cloud gateway, the consumed

Sensors 2021, 21, 6923 14 of 17

energy was 19%. The fog energy consumption was 18%, and MFNA energy consumption
is 12%. In the third run, the consumed energy of the cloud was 50% and the cloud gateway
energy consumption was 19%, whereas the fog energy consumption was 18% and MFNA
energy consumption was 13%. In the last run, the cloud energy consumption was 50% and
the cloud gateway was 18%, whereas the fog energy consumption was 19% and MFNA
was 13%. Figure 8 shows the simulation result.

Figure 8. Average energy consumption comparison.

5.6. Cost

Dynamic task scheduling for the professional use of the multi-layer resources in
stochastic environments is important for saving costs and energy and at the same time
developing the QoS of applications [29,30]. Therefore, in this section, we changed the
number of hospitals as well as fog nodes in four scenarios.

In the first run, we calculated the cost of data processing for six hospitals. The con-
sumed cost for the edge–cloud method was 54,290.12 units. However, in the edge–fog–
cloud model, we established six fog nodes for the six hospitals. The consumed cost was
23,769.33 units. In the second run, we doubled the number of hospitals—i.e., 12—and the
consumed cost was 69,301 units with the edge–cloud. However, when we established 8 fog
nodes for the 12 hospitals, the consumed cost was 33,140.85 units in the edge–fog–cloud
method. In the third run, we used the data of 16 hospitals; we obtained only 72,216.6 units
in the edge–cloud method. Moreover, when we established 10 fog nodes for the 16 hos-
pitals, the consumed cost was 37,001.9 units for the edge–fog–cloud. In the last run, we
calculated costs from the data of 20 hospitals; the consumed cost was 930,329.01 units in the
edge–cloud method. We established 12 fog nodes for the 20 hospitals; the consumed cost
was 46,106 units for the edge–fog–cloud model. The instance cost of the edge–cloud model
in the first run of the dataset was 85%, whereas the CHTM (edge–fog–cloud) model cost
was 15%. In the second run, the consumed cost of the edge–cloud model was 82%, whereas,
in the CHTM model, it was 18%. In the third run, the instance cost of the edge–cloud
model was 78%, whereas the CHTM was 22%. In the last run, the consumed cost of the
edge–cloud model was 72%, whereas that of the CHTM model was 28%. Figure 9 repre-
sents the simulation result. The proposed model shows a promising result as compared to
the other models; however, the limitation of this model is that it has been built to process
ECG-critical tasks, whereas the model should be able to process different vital signs at the
same time.

Sensors 2021, 21, 6923 15 of 17

Figure 9. Average cost comparison.

6. Comparison with State of the Art-Methods

Benchmarking is an important step that should be employed, especially in health-
care data, to evaluate the performance of the proposed works in recent studies. In this
paper, benchmarking is accomplished using the priority task scheduling and complete
network management in the edge–fog–cloud environment. In [18], the authors evaluate
edge–cloud and edge–fog approaches, indicating that there is no edge–fog–cloud interoper-
ability. Even though the number of nodes was fixed to 12, resource management variation
varied from one run to the next. Furthermore, the delay using 12 nodes was more than
40, whereas CHTM was 20.3. In [19], the average response time was 0.986 ms; similarly,
in [21], the response time was 250.11, whereas in CHTM, the response time was 0.28 ms.
By observing the obtained results, we can conclude that our proposed flow of tasks in the
CHTM algorithm has achieved its required performance. In conclusion for this section,
CHTM shows a superior result in terms of complete network management and for serving
critical health tasks with a fast response time.

7. Conclusions

This paper studied the challenge of providing an efficient resource scheduling scheme
for critical healthcare tasks between an edge layer, fog node layer, and cloud. We take
into account a model of a multi-agent system (MAS) with four kinds of agents: personal
agent (PA), master personal agent (MPA), fog node agent (FNA), and master fog node
agent (MFNA). In the proposed model, we provide three levels of processing—PAs, FNAs,
and the cloud—with two levels of control: MPAs and MFNs.The CHTM model was
effective in tackling the addressed challenges, such as providing effective prioritization
for the tasks according to criticality, scheduling the critical tasks among the available fog
nodes and cloud, and balancing network workload at global and local levels by calculating
the availability.

The scheduling strategy ensures dynamic task allocation, resource availability, and bal-
ancing. As compared to the cloud-only procedure, the results show that the CHTM model
is more efficient in the usage and delay of the network, average response time, energy con-
sumption, and instance cost. The results show that our model reduces the network usage
by 79%, the response time by 90%, the network delay by 65%, the energy consumption by
81%, and the instance cost by 80%. By observing the obtained results, we can conclude that
our proposed flow of tasks in the CHTM algorithm has achieved its required performance.

Sensors 2021, 21, 6923 16 of 17

Our future work will consider user mobility and enhancements in the model to process all
essential signs.

Author Contributions: Formal analysis, M.K.A.G. and A.A.M.; Funding acquisition, B.G.-Z.; Investi-
gation, A.A.M. and M.A.M.; Methodology, A.A.M. and K.H.A.; Supervision, M.K.A.G.; Validation,
A.L.; Visualization, O.M.; writing—review and editing, A.A.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received funding from Basque Country Government.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mutlag, A.A.; Abd Ghani, M.K.; Arunkumar, N.a.; Mohammed, M.A.; Mohd, O. Enabling technologies for fog computing in

healthcare IoT systems. Future Gener. Comput. Syst. 2019, 90, 62–78. [CrossRef]
2. Lahoura, V.; Singh, H.; Aggarwal, A.; Sharma, B.; Mohammed, M.A.; Damaševičius, R.; Kadry, S.; Cengiz, K. Cloud computing-

based framework for breast cancer diagnosis using extreme learning machine. Diagnostics 2021, 11, 241. [CrossRef]
3. Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R. HealthFog: An ensemble deep learning based

Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future
Gener. Comput. Syst. 2020, 104, 187–200. [CrossRef]

4. Abdulkareem, K.H.; Mohammed, M.A.; Gunasekaran, S.S.; Al-Mhiqani, M.N.; Mutlag, A.A.; Mostafa, S.A.; Ali, N.S.; Ibrahim,
D.A. A review of Fog computing and machine learning: Concepts, applications, challenges, and open issues. IEEE Access 2019,
7, 153123–153140. [CrossRef]

5. Jin, Q.; Lin, R.; Zou, H.; Yang, F. A distributed fog computing architecture supporting multiple migrating mode. In Proceedings
of the 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai, China, 22–24 June 2018; pp. 218–223.

6. Mahmud, R.; Ramamohanarao, K.; Buyya, R. Application management in fog computing environments: A taxonomy, review and
future directions. ACM Comput. Surv. (CSUR) 2020, 53, 1–43. [CrossRef]

7. Hong, H.K.; Park, S.S.; Song, S.K.; Youn, H.Y. A priority-based message scheduling scheme for multi-agent system dynamically,
adapting to the environment change. In Proceedings of the 2009 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Zhangjiajie, China, 10–11 October 2009; pp. 191–196.

8. Guo, S.; Qi, Y.; Jin, Y.; Li, W.; Qiu, X.; Meng, L. Endogenous Trusted DRL-Based Service Function Chain Orchestration for IoT.
IEEE Trans. Comput. 2021. [CrossRef]

9. Song, F.; Ai, Z.; Zhang, H.; You, I.; Li, S. Smart Collaborative Balancing for Dependable Network Components in Cyber-Physical
Systems. IEEE Trans. Ind. Inform. 2020, 17, 6916–6924. [CrossRef]

10. Yoon, Y.S.; Ko, H.; Han, S.; Youn, H.Y. Priority-based message scheduling for the multi-agent system in ubiquitous environment.
In Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-
Workshops, Silicon Valley, CA, USA, 5–12 November 2007; pp. 395–398.

11. Mohammed, M.A.; Abdulkareem, K.H.; Al-Waisy, A.S.; Mostafa, S.A.; Al-Fahdawi, S.; Dinar, A.M.; Alhakami, W.; Abdullah, B.;
Al-Mhiqani, M.N.; Alhakami, H.; et al. Benchmarking methodology for selection of optimal COVID-19 diagnostic model based
on entropy and TOPSIS methods. IEEE Access 2020, 8, 99115–99131. [CrossRef]

12. Mostafa, S.A.; Gunasekaran, S.S.; Mustapha, A.; Mohammed, M.A.; Abduallah, W.M. Modelling an adjustable autonomous
multi-agent internet of things system for elderly smart home. In International Conference on Applied Human Factors and Ergonomics;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 301–311.

13. Herrera, M.; Pérez-Hernández, M.; Kumar Parlikad, A.; Izquierdo, J. Multi-agent systems and complex networks: Review and
applications in systems engineering. Processes 2020, 8, 312. [CrossRef]

14. Hussain, A.; Bui, V.H.; Kim, H.M. An effort-based reward approach for allocating load shedding amount in networked microgrids
using multiagent system. IEEE Trans. Ind. Inform. 2019, 16, 2268–2279. [CrossRef]

15. Rao, P.T.; Rao, S.K.; Manikanta, G.; Kumar, S.R. Distinguishing normal and abnormal ECG signal. Indian J. Sci. Technol. 2016,
9, 1–5.

16. Auluck, N.; Rana, O.; Nepal, S.; Jones, A.; Singh, A. Scheduling real time security aware tasks in fog networks. IEEE Trans. Serv.
Comput. 2019. [CrossRef]

17. Ni, L.; Zhang, J.; Jiang, C.; Yan, C.; Yu, K. Resource allocation strategy in fog computing based on priced timed petri nets. Ieee
Internet Things J. 2017, 4, 1216–1228. [CrossRef]

18. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog computing for energy-aware load balancing and scheduling in smart
factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. [CrossRef]

19. Choudhari, T.; Moh, M.; Moh, T.S. Prioritized task scheduling in fog computing. In Proceedings of the ACMSE 2018 Conference,
Richmond, Kentucky, 29–31 March 2018; pp. 1–8.

http://doi.org/10.1016/j.future.2018.07.049
http://dx.doi.org/10.3390/diagnostics11020241
http://dx.doi.org/10.1016/j.future.2019.10.043
http://dx.doi.org/10.1109/ACCESS.2019.2947542
http://dx.doi.org/10.1145/3403955
http://dx.doi.org/10.1109/TC.2021.3051681
http://dx.doi.org/10.1109/TII.2020.3029766
http://dx.doi.org/10.1109/ACCESS.2020.2995597
http://dx.doi.org/10.3390/pr8030312
http://dx.doi.org/10.1109/TII.2019.2929284
http://dx.doi.org/10.1109/TSC.2019.2914649
http://dx.doi.org/10.1109/JIOT.2017.2709814
http://dx.doi.org/10.1109/TII.2018.2818932

Sensors 2021, 21, 6923 17 of 17

20. Fellir, F.; El Attar, A.; Nafil, K.; Chung, L. A multi-Agent based model for task scheduling in cloud-fog computing platform. In
Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5
February 2020; pp. 377–382.

21. Jamil, B.; Shojafar, M.; Ahmed, I.; Ullah, A.; Munir, K.; Ijaz, H. A job scheduling algorithm for delay and performance optimization
in fog computing. Concurr. Comput. Pract. Exp. 2020, 32, e5581. [CrossRef]

22. Mass, J.; Chang, C.; Srirama, S.N. Edge Process Management: A case study on adaptive task scheduling in mobile IoT. Internet
Things 2019, 6, 100051. [CrossRef]

23. Kolomvatsos, K.; Anagnostopoulos, C. Multi-criteria optimal task allocation at the edge. Future Gener. Comput. Syst. 2019,
93, 358–372. [CrossRef]

24. Al-Khafajiy, M.; Baker, T.; Al-Libawy, H.; Maamar, Z.; Aloqaily, M.; Jararweh, Y. Improving fog computing performance via
fog-2-fog collaboration. Future Gener. Comput. Syst. 2019, 100, 266–280. [CrossRef]

25. Mutlag, A.A.; Khanapi Abd Ghani, M.; Mohammed, M.A.; Maashi, M.S.; Mohd, O.; Mostafa, S.A.; Abdulkareem, K.H.; Marques,
G.; de la Torre Díez, I. MAFC: Multi-agent fog computing model for healthcare critical tasks management. Sensors 2020, 20, 1853.
[CrossRef]

26. D’Aniello, G.; De Falco, M.; Mastrandrea, N. Designing a multi-agent system architecture for managing distributed operations
within cloud manufacturing. Evol. Intell. 2020, 16, 1–8. [CrossRef]

27. Blake, C. UCI Repository of Machine Learning Databases. 1998. Available online: http://www.ics.uci.edu/~{}mlearn/
MLRepository.html (accessed on 20 May 2021).

28. Mutlag, A.A.; Ghani, M.K.A.; Mohammed, M.A. A Healthcare Resource Management Optimization Framework for ECG
Biomedical Sensors. In Efficient Data Handling for Massive Internet of Medical Things; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 229–244.

29. Podder, A.K.; Al Bukhari, A.; Islam, S.; Mia, S.; Mohammed, M.A.; Kumar, N.M.; Cengiz, K.; Abdulkareem, K.H. IoT based smart
agrotech system for verification of Urban farming parameters. Microprocess. Microsyst. 2021, 82, 104025. [CrossRef]

30. Abdulkareem, K.H.; Mohammed, M.A.; Salim, A.; Arif, M.; Geman, O.; Gupta, D.; Khanna, A. Realizing an effective COVID-19
diagnosis system based on machine learning and IOT in smart hospital environment. IEEE Internet Things J. 2021. [CrossRef]

http://dx.doi.org/10.1002/cpe.5581
http://dx.doi.org/10.1016/j.iot.2019.100051
http://dx.doi.org/10.1016/j.future.2018.10.051
http://dx.doi.org/10.1016/j.future.2019.05.015
http://dx.doi.org/10.3390/s20071853
http://dx.doi.org/10.1007/s12065-020-00390-z
http://www. ics. uci. edu/~{} mlearn/MLRepository. html
http://www. ics. uci. edu/~{} mlearn/MLRepository. html
http://dx.doi.org/10.1016/j.micpro.2021.104025
http://dx.doi.org/10.1109/JIOT.2021.3050775

	Introduction
	Related Work
	Motivation Scenario
	Priority Task Scheduling (PTS)
	Dynamic Tasks Allocation (DTA)
	Load Balancing and Availability (LBA)

	Methodology
	CHTM Model Architecture
	CHTM Algorithm Steps
	Low Level: Personal Agents (PA)
	Intermediate Level: Fog Node Agents (FNAs)
	High Level: Master Fog Node Agent (MFNA)

	Results
	Experimental Configuration
	Network Usage
	Response Time
	Network Delay
	Energy Consumption
	Cost

	Comparison with State of the Art-Methods
	Conclusions
	References

