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Abstract: Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such
as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types
and tissues in addition to the nervous system, such as epithelia, where they have been little studied,
and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces.
A response to pull and push is assumed to constitute an essential part of morphogenetic movements
of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding
to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide
further investigations concerned with the mechanistic role of these ion channels in epithelial cells.
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1. Introduction

Epithelial cells constitute one of the four general tissue types. Epithelial tissue does not
only cover the whole organism as such but also wraps all the visceral organs. Epithelial cells
are polarised, i.e., the cortical proteins and organelles are differentially distributed. Tight
and septate junctions segregate the apical side from the basal within a typical epithelial
sheet, forming a diffusion barrier. In contrast, epithelial cells differ internally within the
plane of a tissue sheet, establishing planar cell polarity [1]. Epithelial tissues are meant to
undergo a series of morphodynamic and functional changes in the course of development.

Individual epithelial cells communicate chemically or mechanically to promote tis-
sue morphogenesis, remodelling, and pattern formation [2]. Chemical coordination is
widespread and long-lived but time-consuming. On the contrary, mechanical communica-
tion is almost instantaneous, although spatially limited, between neighbouring cells [3].
It is remarkable how thousands of epithelial cells work in unison to polarise their force-
generating types of machinery and remodel their contacts during such tissue-scale changes.
The adherens junctions and cytoskeleton mediate mechanical communication. At the cen-
tre of adherens junctions, E-cadherin-catenin complexes constitute the mechanical link
between neighbours by the Ca2+-dependent homotypic trans-binding of two extracellular
domains. α-catenin links adherens junctions to the cytoskeleton [4]. Mechanical forces from
the actin cytoskeleton prompt the conformational change in α-catenin from its closed to
open state, facilitating actin-binding protein vinculin to interact with α-catenin. The link
between E-cadherin clusters and the cytoskeleton is reinforced and strengthened in this
manner (Figure 1a) [5,6]. Besides adherence junctions, integrin-rich focal adhesion sites at
the basal domain of epithelial cells establish mechanical reciprocity between the viscoelas-
ticity of the ECM and the traction force exerted by the cell [7]. Integrins are essential for
epithelial polarisation around epidermal wounds in Drosophila, eventually leading to the
closure [8].

Yet another category of mechanosensitive proteins, called mechano-gated ion channels
(MGCs), had long been elusive for functioning in epithelial cell communication (Figure 1a).
During the last two decades, several researchers gradually pointed out the existence and im-
portance of these channels in the spectrum of model organisms, including Drosophila [9–11].
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In Drosophila, such channels were initially identified in the sensory neurons, primarily
involved in proprioception, nociception, hearing, locomotion, etc. [12,13]. These channels
remain in “open” or “closed” conformational states. The switching between these states
is regulated by mechanical force exerted by the plasma membrane or the cytoskeletal
proteins [14]. Being in the open state, MGCs exhibit permeability to the ions, such as Ca2+,
K+, Na+, and Cl−, which act as effector molecules to induce various signalling pathways.
For example, Ca2+ has been shown to promote epithelial tight junction remodelling by
activating RhoA in Xenopus embryonic epithelium (Figure 1b) [15].
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Figure 1. Mechanotransduction machinery in epithelial cells. (a) The E-cadherin-catenin complex is the key to adherens 
junction-mediated mechanotransduction. Pulling force (F) due to the contractile actin ring of the cell at the centre promotes 
a force-induced conformational change in α-catenin from closed to open conformation in the cell at the left. α-catenin at 
its open conformation binds with actin-binding protein vinculin and acts as an actin nucleator. Mechano-gated channels 
(in the cell at right) can sense forces directly from the membrane or the cytoskeleton. In response, they change confor-
mation from closed to open state and allow the ions to flow in and out of the cell. (b) Increased intracellular Ca2+ concen-
tration in epithelial cells modulates the actomyosin assembly by activating non-muscle myosin II (NMII), the principal 
effector molecule. CaM, Calmodulin, MLCK, myosin light chain kinase, MLC, Myosin light chains, ROCK, Rho-associated 
kinase. 
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Figure 1. Mechanotransduction machinery in epithelial cells. (a) The E-cadherin-catenin complex is the key to adherens
junction-mediated mechanotransduction. Pulling force (F) due to the contractile actin ring of the cell at the centre promotes
a force-induced conformational change in α-catenin from closed to open conformation in the cell at the left. α-catenin at its
open conformation binds with actin-binding protein vinculin and acts as an actin nucleator. Mechano-gated channels (in
the cell at right) can sense forces directly from the membrane or the cytoskeleton. In response, they change conformation
from closed to open state and allow the ions to flow in and out of the cell. (b) Increased intracellular Ca2+ concentration
in epithelial cells modulates the actomyosin assembly by activating non-muscle myosin II (NMII), the principal effector
molecule. CaM, Calmodulin, MLCK, myosin light chain kinase, MLC, Myosin light chains, ROCK, Rho-associated kinase.

This review will focus on Drosophila and highlight some of the promising new devel-
opments that have paved the way to investigate further the mechanistic role of these ion
channels in epithelial cells with greater detail.

2. Epithelial Cells in Drosophila

In Drosophila, the epithelial epidermis undergoes a series of spatially defined morpho-
genetic movements from gastrulation onwards, including tissue invagination, collective cell
migration, convergent extension, dorsal closure, tube formation, head involution, etc. [16].
Coordination among the epithelial cells is necessary to ensure tissue integrity for the mor-
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phogenetic events to occur seamlessly [17]. Endodermal cell masses from both the ends
of the Drosophila embryo collectively migrate along the visceral mesoderm and merge to
form the continuous gut epithelium [18]. Yeast ingestion-induced stretching of mature
gut epithelium causes yki (yorkie)-mediated proliferation, lacking which the tissue may
undergo atrophy [19]. Coordinated asynchronous oscillations of the follicle cells in the
Drosophila ovary are essential for egg-chamber elongation [20]. The E-cadherin-based me-
chanical connection between border and nurse cells is necessary for border cell migration
in the egg chamber [21]. In Figure 2, we exemplify a few of the dynamic epithelial tissue
types and morphological characteristics of the cells involved.
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maintains the tissue area and integrity, whereas positive coupling induces closure. Ca2+ influx is sufficient to induce cell 
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tributed to initiating the differentiation of the enteroendocrine cells. (d) The Drosophila ovary consists of a series of devel-
oping egg chambers. A dense monolayer of somatic epithelial cells called follicle cells surrounds a single oocyte and 15 
supporting nurse cells in each egg chamber. Egg chamber elongation largely depends on the asynchronous oscillation of 
these cells, which Ca2+ regulates. 

Figure 2. Dynamic epithelial tissues during morphogenesis and homeostasis in Drosophila. (a) Highly dynamic columnar
epithelial cells of the germband during germband extension. The frequency of Ca2+ spikes increases during the first fast
phase of germband extension, though the correlation with cell and junction dynamics are still unclear. (b) Periodically
oscillating squamous epithelial cells of amnioserosa before dorsal closure. Neighbouring cells are either positively (contract
and relax together) or negatively (when one contracts, the other relaxes and vice versa) coupled. Negative coupling
maintains the tissue area and integrity, whereas positive coupling induces closure. Ca2+ influx is sufficient to induce
cell contraction guided by actomyosin assembly. (c) Drosophila midgut comprises a diverse group of cuboidal epithelial
cells: enterocyte with microvilli for absorption, intestinal stem cell (light blue) for regeneration and proliferation, and
enteroendocrine cell (dark blue) for secretion. Ca2+ induces proliferation of the intestinal stem cells. Piezo-mediated Ca2+

is attributed to initiating the differentiation of the enteroendocrine cells. (d) The Drosophila ovary consists of a series of
developing egg chambers. A dense monolayer of somatic epithelial cells called follicle cells surrounds a single oocyte and
15 supporting nurse cells in each egg chamber. Egg chamber elongation largely depends on the asynchronous oscillation of
these cells, which Ca2+ regulates.
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3. Calcium Ion in the Epithelium

The importance of calcium signalling in epithelial morphogenesis has been found to
be crucial in various model organisms. The convergent extension is defective under the
inhibition of calcium signalling in Zebrafish and Xenopus. In contrast, the experimentally
induced increase in calcium ion (Ca2+) concentration triggers gastrulation in Echinoidea,
neural fold formation in Ambystoma, and egg chamber elongation in Drosophila [22–26]. Two
patterns of Ca2+ activity have been reported in Drosophila early embryos: (a) Ca2+ waves
that are spontaneous, repetitive, and are often followed by a wave of tissue contraction,
and (b) Ca2+ spikes that arise stochastically in a single cell or a group of few cells and
are transient [27]. In the Drosophila wing disc, intracellular Ca2+ transients act as a signal
integrator and decrease over time as the wing disc matures [28,29]. Increased intracellular
Ca2+ corresponds to intestinal stem cell proliferation in Drosophila by regulating calcineurin
and CRTC (CREB-regulated transcriptional co-activator) [30]. In processes like wound
healing, Ca2+ waves help build rapid communication across many cells [31,32]. Ca2+ spikes
are proven to have a close connection with Wnt signalling, the inhibition of which leads
to decreased spike activity and eventually morphogenetic impairment in the developing
embryo [33–35]. Such waves and spikes temporally coincide and thus hold the potential
to regulate various morphogenetic events like dorsal closure, cuticle formation, and head
involution [27,35].

The reciprocity between cell contraction and adherens junction-mediated force trans-
duction to the neighbouring cells contributes to emergent tissue behaviours like folds and
furrows formation [36]. Intracellular Ca2+ has long been a principal regulator of contrac-
tion in many cell types, including muscle cells, stromal fibroblasts, and epithelial cells in
culture [37–40]. Experiments in Drosophila embryos pointed out the importance of intracel-
lular Ca2+ to induce contractility in amnioserosa cells during dorsal closure, neural tube
closure, and neural plate folding [41–44]. Ventral furrow formation during gastrulation and
contraction of amnioserosa cells during dorsal closure revealed the “ratchet” mechanism
caused by a pulsatile cortical network of medioapical actomyosin [45]. The contractility
in such non-muscle cells is driven by non-muscle myosin II (NM II), primarily regulated
by Rho-ROCK signalling [46–48]. In the follicle cells of the Drosophila blade, intracellu-
lar Ca2+ seems to control the basal concentration of NM II. Chelating cytosolic Ca2+ by
BAPTA reduces basal NMII. The effect can be reversed by adding ionomycin, driving Ca2+

influx [26]. Intracellular Ca2+ can also directly form a complex with tetravalent calmodulin
protein, activating myosin light chain kinase (MLCK) that activates the regulatory light
chain of NM II (Figure 1b) [49,50].

The amnioserosa is a monolayer of 150–200 autonomously oscillating squamous ep-
ithelial cells covering the dorsal opening of developing Drosophila embryos at stages 13–15
(Figure 2b) [51,52]. Inducing rapid Ca2+ bursts by uncaging intracellular Ca2+ can trigger
amnioserosa cell contraction in single-cell resolution by activating NM II, wherein Ca2+ is
reported to be linked at the position of ROCK (Rho-associated kinase) in the Rho-ROCK
pathway [53]. Besides directly phosphorylating the myosin II regulatory light chain (RLC),
ROCK also prevents the dephosphorylation of NM II by inhibiting protein phosphatase I
(PP I), stabilising the activated NM II [54]. Constitutive activation of MLCK in the entire
amnioserosa results in the overall rounding of the cells. Expression in individual cells
triggers premature apical constriction [55]. In 3T3 fibroblast cells, ROCK is more centrally
localised, whereas MLCK is localised more towards the periphery [50]. This localisation
bias has to do with the spatially differential stability of the actomyosin structure within a
cell. It could be investigated further to confirm such an argument in epithelial cells.

4. Mechanosensitive Ion Channels in the Epithelium

Not only are highly specialised sensory cells involved in hearing and proprioception,
but potentially almost every eukaryotic cell can sense the force from its milieu via the
conformational changes of membrane-bound proteins or protein complexes, so-called
mechanosensors. These mechanosensors can detect and transduce the external mechanical
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signal into a cell. Junctional molecules, cytoskeletal proteins, G-protein coupled recep-
tors, and mechanosensitive ion channels (MSCs) constitute a wide range of mechanosen-
sors [56,57]. MSCs are evolutionarily ancient, pore-forming integral membrane proteins
present in literally every living organism from archaea to bacteria to eukaryotes [58]. While
in an open state, they allow ions such as Ca2+, Na+, K+, and Cl− to flow into and out of
cells. The gating behaviour, i.e., the transition from closed to open conformation of MSCs,
is regulated either by forces parallel to the plasma membrane (membrane tension model)
or by forces applied by the associated cytoskeletal or extracellular matrix proteins (tether
model) [14,59]. Channels are considered mechanically gated if a specific stimulus is imme-
diately followed by the ion flux, at least faster than any other known second messenger
and if knockdown of their expression leads to a loss of mechanosensory response [60].
In the following, we will discuss several mechano-gated ion channels, namely, Piezo,
transmembrane Channel-like Protein (Tmc), No Mechanoreceptor Potential C (NompC),
Transmembrane protein 16 (TMEM16), epithelial sodium channel (DEG/ENaC), and two
pore domain K+ channel (K2P), in Drosophila epithelial morphogenesis (Figure 3).
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Figure 3. Schematic representation of mechano-gated channels and their gating mechanisms. (a) The Piezo channel is
supposed to form a caveolae-like depression in the membrane. It is directly gated by membrane tension. Directional
membrane tension flattens the channel to allow Ca2+ influx. (b) The transmembrane Channel-like Protein (Tmc channel)
forms complexes with a group of other proteins that bring extracellular mechanical inputs. Intracellular Tmc is connected to
the cytoskeleton by ankyrin and calcium-binding proteins. The channel is gated via the tension mediated by the tethering
proteins from both extra and intracellular interfaces. (c) No Mechanoreceptor Potential C (NompC) has a substantially
long (29 ankyrin repeats) cytoplasmic domain that interacts with the microtubules. The gating of NompC depends on
the deflections of the ankyrin repeat helices mediated by the cytoskeleton components. (d) Transmembrane protein 16
(TMEM16) is a calcium-dependent chloride channel (CaCC). The dual function of TMEM16 as a lipid scramblase and as an
ion channel makes it unique. These two functions are mutually exclusive and depend on the membrane tension-mediated
conformational change of the protein. (e) The epithelial sodium channel (ENaC) interacts with both extracellular and
intracellular proteins. Hydrostatic pressure, membrane stretch, and shear forces are the key mechanical cues that determine
the gating of the channel pore. (f) The two pore domain K+ channel (K2P), in its closed state, is blocked by the lipid.
Membrane tension releases the lipid blockade and allows the hinge-like bending of the transmembrane domain and
eventually ion flux.
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4.1. Piezo Channel

Since Piezo1/2 was discovered in 2010, many investigations have been conducted
to reveal the structure and function of these novel groups of cation channels in eukary-
otes [61]. Piezo proteins are approximately 2500 amino acids long and possess numerous
transmembrane domains [62]. A cryo-EM study has revealed that Piezo consists of a central
cap, three peripheral extracellular blade-like domains, and three long beams on the intra-
cellular side (Figure 3a) [63]. Purified and membrane-incorporated Piezo1 allows cation
influx across the membrane while subject to mechanical stress [64]. Piezo1 preferentially
allows calcium influx in response to stimulation in whole-cell or outside-out patch-clamp
recording [65]. GsMTx4, a peptide isolated from the tarantula spider and a known modifier
of MSC gating, blocks Piezo1 activity [66]. A small molecule called Yoda1, on the contrary,
can trigger Piezo1 and Piezo1-mediated calcium influx even in the absence of a mechanical
stimulus [67]. Similar to Piezo1, Piezo2 also acts as a Ca2+-sensitive mechano-gated channel.
Piezo2-mediated Ca2+-influx is reported to activate RhoA, which controls the assembly
and orientation of stress fibres and focal adhesions [68].

Recent studies revealed the involvement of the Piezo channel in epithelial cell home-
ostasis using MDCK cells in culture. Piezo1 detects and transduces epithelial cell stretch at
low-cell-density areas, resulting in cell division [69]. Genetic knockdown of Piezo1 hinders
homeostatic cell extrusion in developing zebrafish epidermis, leading to the formation of
epithelial cell clusters [70]. Piezo channels are expressed across the body in many different
types of epithelial cells, subject to compressive and shear stresses, for example, vascular
endothelial cells, mammary epithelial cells, urinary bladder cells, pancreatic acinar cells,
and so on [71]. Piezo1 knockout causes embryonic lethality of E14.5 mice due to impaired
vasculogenesis [72]. Piezo2 has recently been discovered in the human enteroendocrine
cell (EEC) population [73].

The Drosophila genome contains two Piezo genes: Piezo, an ortholog, and piezo-like
(Pzl), a homolog of Piezo gene families. Piezo knockout flies are viable and fertile, and it
seems not to induce major developmental defects. Piezo knockout larvae show severely
reduced behavioural responses to noxious mechanical stimuli [12]. Pzl is functional in
proprioceptive chordotonal neurons of Drosophila larvae. Loss of Pzl severely affects the
locomotion and body gesture control in the larvae and can be rescued by the expression
of human or mouse Piezo1 [74]. Drosophila midgut, analogous to the stomach and small
intestine in vertebrates, has a distinct population of intestinal stem cells. These cells commit
to becoming secretory EECs under the influence of low Notch signalling, constituting
1% gut epithelial cells. Distension of the gut by mechanical forces triggers the differentia-
tion of Piezo+ EEC precursors into Piezo+ EEC. He et al. [75] proposed that Piezo-mediated
Ca2+ influx and Notch inhibition were sufficient to drive the EEC differentiation through
a series of experiments. On the other hand, ERK signalling drives EEC cell proliferation
but not differentiation [75,76]. These findings raise open questions like whether these
pathways are mechanically interlinked and Piezo’s possible implication in human gastroin-
testinal pathologies.

4.2. Transmembrane Channel-like Protein (Tmc)

The TMC family comprises integral membrane proteins of a ~115 amino acid-long TMC
domain that starts with a highly conserved “CWET” signature sequence (Figure 3b) [77]. Ver-
tebrates have eight TMC proteins encoded by TMC1-8 genes [78,79]. TMC4 is expressed in
the kidney, small intestine, and colon epithelia. It is proposed to form a Ca2+-dependent Cl-

channel [80]. TMC6 and TMC8 are associated with zinc transporters in keratinocytes [81].
Mechanosensory functions of TMC proteins are not conclusive except for TMC1 and TMC2,
which are found to form the core of a multimeric mechanosensitive complex in auditory
hair cells and lateral line organs of fish [82,83]. A sound wave creates deflections of the
“hair bundle,” a cluster of actin-rich stereocilia located at the apical surface of the hair
cells. Extracellular protein filaments called “tip links” transmit mechanical distortions to
the MSCs at the stereocilia tips [84]. Tip links interact with protocadherin-15 (PCDH15)
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homodimers, transmembrane, and cytoplasmic domains, further interacting with the TMC
proteins [85,86]. In C. elegans, ankyrin is found to tether TMC channels intracellularly like a
spring via Calcium and Integrin Binding protein, CALM-1 [87].

Both TMC1 and TMC2 are highly selective to Ca2+; however, TMC2 has ~3-fold higher
selectivity than TMC1 [88]. In mice, TMC2 is expressed from birth to postnatal day 10
and then declines to zero, followed by expression of TMC1 that continues throughout
life [89]. The upsurge of TMC1 localisation at the tips of hair cell stereocilia parallels with
the onset of auditory function [88,90]. TMC1 and TMC2 seem to have mutually distinct
physiological functions, as the expression of TMC2 cannot compensate for the loss of
expression of TMC1 in auditory hair cells. Zebrafish neuromast cells along the lateral line
organ can be classified into three groups based on their differential reliance on the TMC2b
channel for mechanotransduction [83].

In Drosophila, the only Tmc gene translates to the protein. The sequence is highly
conserved with Tmc family members across different organisms. Tmc is expressed in Class
I da, Class II da, and bd sensory neurons. Tmc mutant larvae have defects in locomotion,
and adults show difficulty in food texture sensation [91]. The roles of Tmc in epithelial
morphogenesis have not been studied thoroughly yet. Our work indicates an essential
function of Tmc in homogenous tension distribution across the oscillating amnioserosa
cells and maintaining the synchronisation of neighbouring cells [92]. Moreover, Tmc null
embryos exhibit a significant reduction in Ca2+ influx in response to wounding or tissue
damage. It is worth investigating the molecular mechanism and the direct interacting
partners of Tmc in the future.

4.3. No Mechanoreceptor Potential C (nompC)

nompC is the only member of the TRPN family that comes under a large superfamily
of characterised or putative MSC proteins, known as transient receptor potential (TRP)
channels. The TRP superfamily consists of more than 30 cation channels, most of which are
permeable to either Ca2+ or Mg2+ [93]. The gene nompC was first identified in Drosophila in
a screen for mechanoreceptive mutants with defects in mechanosensory physiology. Loss-
of-function point mutations of nompC abolish the mechanosensory transduction current.
Various nonsense and missense point mutations of nompC cause a series of defects in
Drosophila, such as hearing impairment, locomotion, gentle touch sensation, adaptive
response to mechanical stimuli, and food texture sensation [13]. The structure of NompC
was described in 2017 by single-particle cryo-electron microscopy. NompC protein contains
a short transmembrane neck domain and a distinctive 29 ankyrin repeats-long helical
cytoplasmic domain (Figure 3c). NompC ankyrin repeats interact with microtubules and is
implicated as a rope to convey force from the cytoskeleton to the channel, thus controlling
the gating [94,95]. Most TRP channels are reported to be permeable for monovalent cations
like Na+ and K+ and divalent cations like Ca2+ [96–98]. Ca2+ influx is proposed to change
the state of motor proteins that, in turn, adjust cellular tension [97].

A recent finding demonstrates that nompC point mutations are attributed to defective
dorsal closure phenotypes in the Drosophila, such as irregular purse string and increased
embryonic lethality [99]. Furthermore, induced expression of NompC constructs with
truncated ankyrin repeats in amnioserosa leads to defects in dorsal closure, like failure to
organise an actomyosin purse string, loss of leading-edge cell elongation, and so on [99].
Taking these results into account, it is worth investigating the physiological relevance of
nompC in amnioserosa and the underlying mechanism of NompC mechanotransduction
that leads to the rapid tissue-scale transmission of multidirectional forces.

4.4. Transmembrane Protein 16 (TMEM16)

Though in the early 1980s, Ca2+-activated Cl− channel (CaCC) activity was observed
in frog oocytes [100,101], three groups independently developed their molecular identity
in 2008. The gene encoding TMEM16A is responsible for the Cl− currents in response to
increased intracellular Ca2+ concentration [102–104]. The TMEM family includes CaCCs
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like TMEM16A and TMEM16B. Most family members are Ca2+-activated scramblases,
facilitating bidirectional diffusion of lipids between membrane leaflets [105]. Cryo-EM
revealed that TMEM16A is a dimeric channel. Each subunit includes 10 transmembrane
segments (Figure 3d) [106]. In silico analysis demonstrates an evolutionary connection
of TMEM with a Ca2+-permeable stress gated cation channel (CSC), Tmc, etc. [107]. In
human and mouse bile duct epithelial cells or cholangiocytes, shear stress is shown to
activate TMEM16A-mediated Cl− transport, a process dependent on extracellular ATP and
intracellular Ca2+. The mechanical stimuli do not directly regulate the channel’s gating;
rather, it depends on the rate-driven delivery of ATP to the membrane (shear rate) [108].

In Drosophila, TMEM16A or subdued is found in non-excitable epithelial cells and
implicated in host defence [109–111]. An absence of TMEM16 is marked by dysmorphic
epithelial organisation in the trachea, oesophagus, and kidney of mouse embryos [112].
TMEM16A is essential to maintain a critical level of cytoplasmic Cl−. Cytoplasmic Cl−

is necessary to regulate microdomain partitioning of PI(4,5)P2, endocytic trafficking, and
recycling endosome, ensuring membrane supply during ciliogenesis and junctional remod-
elling [112]. TMEM16A seems to have a bunch of activating agents working in parallel. It
also appears to induce various signalling pathways upon activation. Hence, it is worth
investigating the molecular association and the procedure of mechanical induction of
TMEM16A more thoroughly.

4.5. DEG/ENaC Channels

Monovalent cations like sodium ions (Na+) are implicated in epithelial homeostasis
and morphogenesis [113,114]. Recent studies have found multiple known sodium chan-
nels to be mechanically gated. Nav1.5, a voltage-sensitive sodium channel in the human
heart and gut, is activated by membrane stretching. Mutations of this channel disrupt
the mechanical sensitivity of gut epithelial cells, resulting in abdominal pain syndrome
and irritable bowel syndrome [115]. Epithelial sodium channel (ENaC) mediates passive
sodium transport at the apical domain of many different epithelial cell types: kidney, lungs,
skin, colon, and reproductive tract [116–120]. ENaC can be activated by shear force across
organisms, especially in vascular endothelium, to maintain its tonicity [121]. Shear forces
can be transduced by the N-glycosylated extracellular domain of ENaC tethering with
extracellular matrix (ECM) [122]. ENaC directly interacts with spectrin, ankyrin, actin
cytoskeleton, and actin-associated proteins [123–125]. Cellular responses to hydrostatic
pressure differences and membrane stretch depend on such interactions [126]. Degenerin
(Deg), C. elegans-specific ENaC, gained function mutations resulting in degenerations like
swelling, vacuolation, and apoptosis [127]. Studying mechanoreceptor currents reveals
activation of DEG channels in response to gentle and nociceptive mechanical stimuli [128].

Ripped pocket (Rpk) and Pickpocket (Ppk) were identified as two novel ENaC proteins
in 1998 in Drosophila. rpk transcripts are abundant in early-stage embryos and adult ovaries,
whereas ppk is only expressed in sensory neurons in late-stage embryos [129]. It points
to the potential functions of rpk during early embryonic development. Rpk localises in
patches at the apical surface but not at the junctions of amnioserosa cells. Knockdown of rpk
in amnioserosa causes elongation failure of the lateral epidermis. rpk mutant embryos show
impaired epitheliogenesis, including defective germband extension, dorsal closure, head
involution, and consequent lethality [41]. rpk has recently been implicated in depolarising
the membrane potential of anterior epithelial cells during imaginal disc development. Rpk
expression in these cells depends on Hedgehog (Hh) signalling. Suppression of rpk leads
to a reduction in depolarisation of anterior cells and a disruption in compartmentalisation
between anterior and posterior cell populations [130].

4.6. K2P Channels

The K2P (two pore domain K+ channel) family of channels are potassium (K+) chan-
nels made of a dimeric assembly of two subunits, each containing four transmembrane
domains [131]. The channel was first identified in yeast [132]. Later on, 15 channels of the
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K2P family were discovered in mammals by sequence homology screening of the pore
domain region [133]. Out of these 15 channels, three channels appear to be mechanically
gated, namely, TREK-1 (TWIK-related K+ channel 1), TREK-2, and TRAAK (TWIK-related
arachidonic acid-stimulated K+ channel). K+ currents through these channels can be me-
chanically induced by membrane stretch in both in vitro and in vivo systems [134–136].
The Xenopus oocyte expressing TREK-1 channel shows induced channel activity upon
mechanical stress like membrane stretch, osmotic swelling, and shear stress [137]. TREK-1
also induces actin cytoskeleton remodelling and colocalises with ezrin in filopodia-like
structures [138]. Studies in the human alveolar epithelial cell line reveal that TREK-1
regulates cell deformability by cytoskeletal remodelling and cell detachment following
mechanical stretch [139]. However, whether the cytoskeletal interaction is responsible for
channel gating remains unclear.

TREK-1 is essential for the proliferation of the human endometrial epithelial cell
line [140]. Deficiency of TREK-1 ortholog sandman in Drosophila causes cardiac fibrosis
and diastolic dysfunction [141]. Decreased expression of Drosophila TREK-1 homolog Ork-
1 (Open rectifier potassium channel 1) has been found to modulate learning and sleep
behaviour [142]. Cardiac-specific inactivation of Ork-1 causes increased heart rhythm [143].
The gating of K2P channels is regulated by the transmembrane domain (TM2.6), more
specifically by a single amino acid (aspartate) residue in this domain both in the vertebrates
and invertebrates like Drosophila [144,145]. The role of K2P channels is still not clear in
epithelial cells in Drosophila. Promising studies from other model organisms and direct
membrane-stress-induced mechano-gating like the Piezo channel held K2P channels worth
investigating in Drosophila, especially in the context of epithelial morphogenesis where
mechanical forces are very obvious and dynamic.

5. Concluding Remarks

Genome-wide studies have revealed the expression of mechano-gated and mechano-
sensitive ion channels outside of their typical cell types within the nervous system and
neurosensory organs. Despite their presence, a physiological function of these channels
has remained elusive in epithelia. The new-generation microscopy techniques and high-
throughput quantitative image analysis have improved the tractability of tissue-wise
cellular motions [146,147]. Hence, the changes in epithelial morphodynamics and the
underlying biomechanical perturbations inflicted by the mutants of the mechano-gated
channels can be studied in depth.

TRP channels like Trp1 are reported to severely affect the dorsal closure in Drosophila [41].
Although Trp1 is not yet shown to be mechanically gated, it can disrupt the force orches-
tration in and around amnioserosa tissue. Both mouse TRPM7 and its ortholog Trpm in
Drosophila are shown to be responsible for Ca2+ influx during egg activation [148]. Knock-
down of Trpm results in decreased intracellular calcium and impaired actomyosin cable
formation in post-wounding Drosophila pupal notum epithelium [149]. TRPM7 is activated
by mechanical triggers, but whether TrpM in Drosophila responds the same way in re-
sponse to mechanical cues during ovulation remains unclear [148]. Two more Drosophila
proteins, Brivido-1 (Brv1) and Tmem63, reportedly form mechano-gated ion channels.
However, their roles in mechanotransduction are not clear. Brv1 coexpresses NompC in
larval class III da neurons, where it seems to facilitate mechanoactive NompC currents in
gentle touch sensation [150]. Tmem63 needs a relatively strong mechanical stimulus to get
activated [151]. The expression and mechanosensory activities of these ion channels in the
context of epithelial homeostasis and morphogenesis need to be addressed.

By combining the ions, cytoskeleton, and junctional proteins, mechanosensitive
ion channels became a fascinating group of ion channels in the epithelium. For exam-
ple, NompC was revealed to link to microtubules for channel opening, Piezo1 shows
an essential function for Rho signalling, and the adherence junction is a defect in the
TMEM16 mutant. These phenomena are awe-inspiring. It is worth investigating in the fu-
ture whether (1) mechanosensitive ion channels interact with junctional proteins physically,
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(2) mechanosensitive ion channels coordinate with junctional proteins during mechan-
otransduction, and (3) mechanosensitive ion channels open via the mechanical forces from
junction proteins.
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