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Abstract

Transcranial direct current stimulation (tDCS) and peripheral nerve electrical stimulation

(PES) can change corticospinal excitability. tDCS can be used to non-invasively modulate

the cerebral cortex’s excitability by applying weak current to an electrode attached to the

head, and the effect varies with the electrode’s polarity. Previous studies have reported the

effect of combined tDCS and PES on corticospinal excitability; when compared to single

stimulation, combined stimulation increases cortical excitability. In contrast, another study

reported that the effect of tDCS is attenuated by PES; hence, there is no consensus opinion

on the effect on combined stimulation. Therefore, this study aimed to clarify the effect of

combined tDCS and PES on corticospinal excitability. In Experiment 1, the combined stimu-

lation of anodal tDCS and PES (anodal tDCS + PES) was performed, and in Experiment 2, a

combined stimulation with PES, after cathodal tDCS (PES after cathodal tDCS), was per-

formed using a homeostatic metaplasticity theoretical model. In Experiment 1, anodal tDCS

produced a significant increase from baseline in motor-evoked potential (MEP) amplitude

10 min after stimulation, but no significant changes in MEP amplitude were observed with

PES or the anodal tDCS + PES condition. Experiment 2 showed a significant decrease in

MEP amplitude immediately after cathodal tDCS, and a significant increase in MEP ampli-

tude 15 min after PES, but no significant change in MEP amplitude was observed with

sequential PES following cathodal tDCS. In conclusion, our data indicate that PES with

anodal tDCS suppressed the effect of tDCS. Also, PES after cathodal tDCS did not induce

homeostatic metaplasticity and increase corticospinal excitability.

Introduction

Transcranial direct current stimulation (tDCS), a noninvasive electrical stimulation method

inducing excitatory changes in the corticospinal circuitry [1], can be used to modulate the
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cerebral cortex’s excitability by applying weak current to an electrode attached to the head.

Cortical excitability increases under the anodal electrode, and decreases under the cathodal

electrode, by interposing tDCS for 5 min at an intensity of 1 mA in the primary motor cortex

(M1); this effect lasts several minutes [2]. Regarding the mechanism of the effect of tDCS,

polar changes in neurons’ resting membrane potential have been reported [3], and the activa-

tion of cortical N-methyl-D-aspartate (NMDA) receptors has been verified pharmacologically

[4, 5]. A recent study has reported that, in astrocytes, synaptic transmission is likely to be

enhanced by increased intracellular Ca2+ concentrations [6]. However, significant inter-indi-

vidual variability in response to tDCS has been reported in healthy individuals [7, 8].

Peripheral electrical stimulation (PES) can induce excitatory changes in the corticospinal

circuitry [9–12]. In animal experiments, corticospinal excitability significantly increased when

electric stimulation was applied for 2 h to rats’ sciatic nerves [13]. Human studies have

reported that PES also increases corticospinal excitability significantly [10, 14]. In addition, the

effect of electrical stimulation varies depending on the stimulation intensity. For example, cor-

ticospinal excitability decreases when stimulation at the sensory threshold intensity is given,

but it increases when stimulation at the motor threshold intensity is given [9, 11, 14]. However,

reports also indicate that, even with stimulation at the motor threshold intensity, corticospinal

excitability does not change with continuous electrical stimulation, increasing only with inter-

mittent PES which repeated stimulation and rest [9]. The mechanism increasing the corticosp-

inal excitability result from PES depresses the gamma-aminobutyric acid system suppressor in

M1 [15].

Recently, the combined stimulation of tDCS and PES effects on corticospinal excitability

and motor performance have been studied [16–19]. A previous report has shown that, when

anodal tDCS is combined with PES, the post-intervention corticospinal excitability duration is

significantly longer than with anodal tDCS alone [17]. However, another study has demon-

strated that post-intervention corticospinal excitability did not significantly change with com-

bined anodal tDCS and PES [18]. Several aspects of these differences remain unclear,

including whether the differences are due to stimulation conditions, homeostatic metaplasti-

city, or other gating mechanisms. In addition, the influence of combined tDCS and PES on

corticospinal excitability remains unknown.

We aimed to clarify whether it is possible to increase corticospinal excitability by a combi-

nation of tDCS and PES. In Experiment 1, we examined the effect of 10 min of anodal tDCS

and PES, simultaneously delivered, on corticospinal excitability. Consistent with gating theory

[20], we assumed that corticospinal excitability would be further increased by applying anodal

tDCS, which reduces intracortical suppression [21] and increases excitability of M1, at the

same time as PES. This theory proposes that gating of the plastic response occurs because of a

higher net calcium influx and stronger NMDA receptor-dependent post-synaptic response

[20] related to diminished inhibition or increased facilitation, upstream from cortical output

neurons [20, 22].

Conversely, it is possible to reduce the threshold for synaptic plasticity induction by

decreasing corticospinal excitability [20, 23]. Previous studies have shown that corticospinal

excitability increased when high frequency, repetitive transcranial magnetic stimulation was

provided after cathodal tDCS which reduces corticospinal excitability [24]. Thus, we based

Experiment 2 on homeostatic metaplasticity theory. Homeostatic metaplasticity is thought to

decrease the threshold for inducing synaptic plasticity by lowering the neuronal activity in M1

before the intervention [20]. We hypothesized that corticospinal excitability would further

increase with the intervention of PES after cathodal tDCS of M1. We examined the effect of

PES on corticospinal excitability when it immediately succeeded cathodal tDCS. We
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hypothesized that corticospinal excitability would increase with the gating mechanism in

Experiment 1 and homeostatic metaplasticity in Experiment 2.

Transcranial magnetic stimulation (TMS) was used to evaluate corticospinal excitability.

TMS can be used to noninvasively stimulate M1, allowing motor-evoked potentials (MEPs) to

be recorded from the target muscle [25–27]. MEP is a method to record surface electromyo-

grams by stimulating M1 [25–27]. The values of MEP amplitude elicited via TMS reflect the

magnitude of corticospinal excitability. It is thus possible to evaluate changes in the magnitude

of corticospinal excitability by comparing the values of MEP amplitude before and after the

intervention.

Materials and methods

Experimental conditions

In this study, Experiments 1 and 2 were set up and performed using three experimental

groups. In Experiment 1, the groups included: anodal tDCS of the left M1 (the anodal tDCS

condition), PES of the right ulnar nerve (the PES condition), and simultaneous anodal tDCS

and PES (the anodal tDCS + PES condition). In Experiment 2, the groups included: cathodal

tDCS of the left M1 (the cathodal tDCS condition), PES of the right ulnar nerve (the PES con-

dition), and PES after cathodal tDCS (PES after cathodal tDCS condition).

Subjects

In Experiment 1, 15 healthy subjects aged 21.1 ± 0.6 years (mean ± standard deviation) partici-

pated; four were female and 13 were right-handed. In Experiment 2, 15 healthy subjects aged

22.3 ± 4.0 years (mean ± standard deviation) participated; two were female and 11 were right-

handed. None of the subjects was taking medications or had a history of physical, neurological,

or psychiatric disorders. We fully explained the research protocol, and all subjects gave their

written informed consent to participate. This study was approved by the ethics committee at

the Niigata University of Health and Welfare, Niigata, Japan. In all experiments, subjects were

seated in a comfortable reclining chair with a mounted headrest, with their right forearm

placed on the table during experiments.

Electromyography recording

Surface electromyography (EMG) was recorded from the right first dorsal interosseous muscle

(FDI), via disposable Ag/AgCl electrodes, in a belly-tendon arrangement. The earth electrode

was wrapped around the right forearm. The EMG signals were amplified (×100) by an ampli-

fier (A-DL-720-140, 4 Assist, Tokyo, Japan), filtered (high pass, 20 Hz), digitized at 4 kHz

using an A/D converter (Power Lab 8/30, AD Instruments, Colorado Springs, CO, USA), and

stored on a lab computer for later offline analysis (LabChart7, AD Instruments).

Motor-evoked potential (MEP) recording

MEPs were used to evaluate corticospinal excitability before and after each intervention. A

Magstim 200 (Magstim, Dyfed, UK) was used as a magnetic stimulator, and a figure-of-eight

TMS coil (diameter, 9.5 cm) was placed tangentially at approximately 45˚ from the midline,

with the handle facing posterolateral to the subject’s skull. The optimal coil position over the

left M1 region for each subject was defined as the site eliciting the largest MEP (hot spot). The

coil’s position and orientation for the hot spot were marked according to magnetic resonance

imaging via Visor2 TMS Neuronavigation (eemagine Medical Imaging Solutions GmbH, Ber-

lin, Germany). The TMS intensity used was the lowest pre-intervention stimulus intensity that
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induced a MEP with a 1 mV peak-to-peak amplitude in the relaxed FDI muscle. The magnetic

stimulation interval was set to 4 to 6 seconds.

tDCS

tDCS was delivered using a direct current stimulator (Eldith, NeuroConn GmbH, Germany)

through a pair of saline-soaked surface sponge electrodes (5 × 7 cm, 35 cm2). In Experiment 1,

the anodal electrode was placed at the left M1, and the cathodal electrode was placed above the

contralateral orbit. The current intensity was 2 mA (current density, 0.057 mA/cm2) [28]. In

Experiment 2, the cathodal electrode was placed at the left M1, and the anodal electrode was

placed above the contralateral orbit. The current intensity was 1 mA (current density, 0.028

mA/cm2) [8, 29]. For both Experiments 1 and 2, tDCS was applied for 10 min (fade-in/fade-

out time, 5 s), and the electrode attached to the left M1 was placed on the left scalp over the hot

spot identified by TMS. For sham stimulation in Experiment 2, the cathodal tDCS was turned

on for 30 s [30]. All the conditions other than the time of stimulation were the same for the

cathodal tDCS condition in Experiment 2.

PES

PES was delivered through bar electrodes to the right ulnar nerve at the wrist using an electri-

cal generator (SEN-8203, Nihon Kohden, Tokyo, Japan). The electrical stimulation was deliv-

ered using a square wave with a pulse duration of 0.2 ms. Current was delivered at 30 Hz, and

the stimulus intensity was determined to be 110% of the motor threshold at which the mini-

mum stimulus intensity elicited M-waves. In addition, the stimulus pattern of 4 sec on, 6 sec

off was used for repetitive stimulation and rest [9–11]. In Experiment 1, the stimulus duration

was set to 10 min, which is the same stimulation duration, used for anodal tDCS to avoid over-

hang in the stimulation period during simultaneous stimulation. In Experiment 2, it was set to

20 min in accordance with the study by Chipchase et al. [9].

Experimental procedures

The experimental procedures are shown in Fig 1. In Experiment 1, 24 MEPs were measured

using TMS before (pre), 5 min (post5), and 10 min (post10) after the intervention. The same

TMS intensity was used before and after the interventions. In Experiment 1, the three inter-

ventions (anodal tDCS, PES, and anodal tDCS + PES) were applied to the same subject in ran-

dom order, spaced by at least 72 h.

Experiment 2 also had three interventions (cathodal tDCS, PES, and PES after cathodal

tDCS) for the same subjects. 15 MEPs were measured before, just after, and every 5 min after

the intervention for 20 min (post0, post5, post10, post15, and post20) by TMS. Interventions

were randomly spaced by least 72 h.

TMS was applied between 12 and 25 times, in accordance with previously published meth-

ods [28, 31–33].

Data analysis

LabChart software (LabChart 7, AD Instruments) was used to analyze the MEPs. In Experi-

ment 1, the peak-to-peak amplitudes of 22 of the 24 recorded MEPs (excluding the maximum

and minimum) were averaged for each time point (pre, post5, post10).

In Experiment 2, the peak-to-peak amplitudes of 13 of the 15 recorded MEPs (excluding

the maximum and minimum) were averaged for each time point (pre, post0, post5, post10,

post15, post20).

Effect of tDCS with PES on corticospinal excitability
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Statistical analysis

Statistical analyses were performed using SPSS 21.0 for Windows (IBM, Armonk, NY, USA).

In Experiments 1 and 2, Dunnett’s test of multiple comparisons was used. Statistical signifi-

cance was set at P< 0.05.

Fig 1. Outlines of the experimental procedures and timelines. In Experiment 1, subjects participated in three experimental

conditions (anodal tDCS, PES, and anodal tDCS + PES). MEPs induced by TMS were measured before intervention (pre), 5 min

(post5) and 10 min (post10) after intervention. In Experiment 2, the subjects participated in three experimental conditions

(cathodal tDCS, PES, and PES after cathodal tDCS). MEPs induced by TMS were measured before intervention (pre),

immediately (post0), 5 min (post5), 10 min (post10), 15 min (post15), and 20 min (post20) after intervention. In both

experiments, each stimulation condition was spaced out over at least 72 hours and randomized.

https://doi.org/10.1371/journal.pone.0214592.g001

Effect of tDCS with PES on corticospinal excitability

PLOS ONE | https://doi.org/10.1371/journal.pone.0214592 March 29, 2019 5 / 12

https://doi.org/10.1371/journal.pone.0214592.g001
https://doi.org/10.1371/journal.pone.0214592


Results

Experiment 1

1. Changes in MEP amplitudes before and after the interventions

Changes in the time course of MEP amplitudes are shown in Fig 2 and Table 1. In the

anodal tDCS condition, multiple comparisons showed a significant increase in MEP amplitude

at post10 compared with pre (P< 0.05). However, in the PES and anodal tDCS + PES condi-

tions, multiple comparisons test revealed no significant differences.

Experiment 2

Changes in the time course of MEP amplitudes are shown in Fig 3 and Table 2. In the cathodal

tDCS condition, multiple comparisons showed a significant decrease in MEP amplitude at

post0 compared to pre (P< 0.01). In the PES condition, the multiple comparison showed a

Fig 2. Time course of changes in MEP amplitudes for all subjects in Experiment 1. The mean MEP amplitudes, with anodal tDCS, PES, and anodal tDCS

+ PES, are shown before intervention (pre), 5 min (post5) and 10 min (post10) after intervention. In the anodal tDCS condition, MEP amplitudes significantly

increased at post10 compared with pre (P< 0.05). In the PES condition, and the anodal tDCS + PES condition, no significant changes in MEP amplitudes were

observed before or after the intervention. The gray line indicates the amplitude of the MEP for each individual. The black line indicates the mean amplitude of

the MEP. The asterisk indicates a significant difference in MEP amplitudes compared to pre (�P< 0.05, Dunnett’s test).

https://doi.org/10.1371/journal.pone.0214592.g002
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significant increase in MEP amplitude at post15 compared to pre (P< 0.05). However, in PES

after the cathodal tDCS condition, the multiple comparisons revealed no significance.

Discussion

The Experiment 1 results indicate anodal tDCS of M1, for 10 min at an intensity of 2 mA, sig-

nificantly increased the MEP amplitude 10 min after the intervention. Previous studies have

Table 1. Mean values of MEP amplitudes (mean ± standard error of the mean) before and after the three interventions in Experiment 1.

pre post5 post10

Anodal tDCS 0.97 ± 0.03 1.11 ± 0.08 1.19 ± 0.11�

PES 1.03 ± 0.03 1.03± 0.09 1.11± 0.07

Anodal tDCS + PES 1.01 ± 0.03 1.05± 0.10 1.12± 0.10

mean ± standard error (mV)

�P < 0.05 vs pre

https://doi.org/10.1371/journal.pone.0214592.t001

Fig 3. Time course of changes in MEP amplitudes for all subjects in Experiment 2. The mean MEP amplitudes at pre, immediately after the intervention

(post0), and 5 min (post5), 10 min (post10), 15 min (post15), and 20 min (post20) after the intervention are shown. In the cathodal tDCS condition, the MEP

amplitude significantly decreased at post0 compared to pre (P< 0.01). In the PES condition, the MEP amplitude significantly increased at post15 compared to

pre (P< 0.05). In the PES after cathodal tDCS condition, no significant changes in MEP amplitudes were observed pre- and post-intervention. The gray line

indicates the amplitude of the MEP for each individual. The black line indicates the mean amplitudes of the MEP. The asterisks indicate a significant difference

of MEP amplitudes compared to pre (�P< 0.05, ��P< 0.01, Dunnett’s test).

https://doi.org/10.1371/journal.pone.0214592.g003
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reported that cortical excitability increases with anodal tDCS of M1 at an intensity of 1 mA

[2]. Previous research also indicated that modulation of the neuronal membrane potential

depends on stimulus polarity [3], and NMDA receptors are involved in cortical excitability

changes resulting from tDCS [4, 5]. In addition, the data suggest that synaptic transmission is

likely to be enhanced by increased intracellular Ca2+ concentrations in astrocytes [6]. Con-

versely, recent studies have demonstrated significant inter-individual variability in response to

tDCS in healthy individuals [7, 8]. Thus, consistent with previous research, the present study

may indicate increased variability in the effect of tDCS and the possibility that the effect

appeared 10 min after, but not 5 min after, tDCS.

No significant change in MEP amplitude was observed with PES for 10 min in this study.

Previous studies reported that PES at the motor threshold intensity inducing muscle contrac-

tion significantly increases the MEP amplitude compared to the amplitude before intervention,

and decreases it with stimulation intensity at the sensory threshold. [9, 11, 14]. Although the

stimulation intensity of PES used in this study was above the motor threshold, no significant

increase in MEP amplitude was observed. One reason for this may be the duration of stimula-

tion. Many previous studies using PES reported that corticospinal excitability changes with

interventions of more than 20 min [9–11]. Corticospinal excitability increased more with a

stimulation time of 20 min than of 40 or 60 min [10], whereas PES of less than 10 min did not

significantly change MEP amplitude [16, 17]. In the present study, the intervention time of

PES was set to 10 min. This duration was selected to be the same as the intervention time of

tDCS. Thus, it is possible that PES for 10 min might not increase corticospinal excitability.

Combining anodal tDCS and PES resulted in no significant change in MEP amplitude

before and after the intervention. Rizzo et al. examined the effect of combined anodal tDCS

and PES and found that there was no significant change in MEP amplitude with PES alone

but, with combined anodal tDCS and PES, the MEP amplitude duration of increase was signif-

icantly longer than with anodal tDCS alone [17]. However, Schabrun et al. reported that the

MEP amplitude significantly increased after anodal tDCS or PES, but not after the two inter-

ventions combined [18], which supports our current study results. In addition, applying PES

during transcranial static magnetic field stimulation, which decreases the excitability of the

primary somatosensory cortex, did not affect cortical excitability [34]. Additionally, simulta-

neous anodal tDCS and paired associative stimulation have failed to increase corticospinal

excitability [35]. Paired associative stimulation is one way to induce plasticity changes in the

brain by repeating paired stimulation, which synchronizes PES and TMS of the primary sen-

sory-motor cortex for�20 min [36]. Notably, motor tasks executed during anodal tDCS over

M1 reduced the increase in corticospinal excitability more than anodal tDCS under the resting

conditions [31, 37]. This suggests that, if somatosensory input from the periphery to the corti-

cal region occurs during an intervention that changes the cortex excitability, such as tDCS, it

may inhibit cortical excitability changes. In this study, it is possible that the neural activity of

Table 2. Mean values of MEP amplitudes (mean ± standard error) before and after the three interventions in Experiment 2.

pre post0 post5 post10 post15 post20

Cathodal tDCS 0.96 ± 0.03 0.53 ± 0.07�� 0.75 ± 0.08 0.83 ± 0.09 0.9 ± 0.08 0.97 ± 0.10

PES 0.95 ± 0.04 1.08 ± 0.13 1.2 ± 0.09 1.21 ± 0.11 1.24 ± 0.07� 1.12 ± 0.07

PES after cathodal tDCS 1.02 ± 0.05 0.83 ± 0.11 1.00 ± 0.14 0.99 ± 0.12 1.06 ± 0.09 0.96 ± 0.12

mean ± standard error (mV)

�P < 0.05

��P < 0.01 vs pre

https://doi.org/10.1371/journal.pone.0214592.t002
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the sensory-motor cortical region by PES inhibited the slight membrane potential fluctuations

of cortical neurons due to tDCS. Another possible explanation is the activation of calcium

dependent gating mechanisms. The gating time-course is different than that of homeostatic

plasticity. Gating is thought to instantaneously occur, whereas homeostatic plasticity is thought

to be activated only when two plasticity-inducing protocols are sequentially applied [22]. This

implies that gating mechanisms are more likely to underlie the effects associated with concur-

rent intervention. However, in the present study, corticospinal excitability increased with

anodal tDCS, but not with PES. As a result, we hypothesize that sensory input to the sensory-

motor area from PES might inhibit the slight membrane potential fluctuation of motor cortical

neurons induced by tDCS.

Experiment 2 showed that the cathodal tDCS of M1, for 10 min at an intensity of 1 mA, sig-

nificantly decreased the MEP amplitude. A previous study reported that corticospinal excit-

ability decreased with 1 mA cathodal tDCS of M1 [2]. Regarding the mechanism of the effect

of cathodal tDCS, shifting of the neuronal cell membrane potential toward hyperpolarization

is involved [3, 5]. This study’s results are similar to those of previous studies, and we suggest

that the MEP amplitude decreased after the intervention because corticospinal excitability was

reduced by cathodal tDCS.

In previous studies, the stimulus was given for 20 min [10, 14] or 30 min [9, 11] using elec-

trical stimulation conditions (30 Hz frequency, duty cycle of 4 sec on 6 sec off, at the intensity

of the motor threshold); this was similar to this study, and an increase in MEP after stimulation

was observed. Also, PES at the intensity of the motor threshold for 20 min increased the MEP

amplitude after the intervention compared to before the intervention. Therefore, as in previous

studies, increased corticospinal excitability may have been induced.

Based on the homeostatic metaplasticity theory [20, 23], we hypothesized that, with the

combined stimulation conditions of this study, PES, after the decreased excitability of M1

induced by cathodal tDCS, would increase corticospinal excitability. However, no signifi-

cant change in MEP amplitude was shown after that intervention. We believe this is related

to the decreased excitability of M1, induced by cathodal tDCS, which did not reduce corti-

cal excitability sufficiently to induce homeostatic metaplasticity. In a previous study

reporting that homeostatic metaplasticity was induced, the effect after prior tDCS inter-

vention was sustained for at least 20 min [23, 24]. However, the effect of the cathodal tDCS

in this study ceased immediately after intervention, so the MEP amplitude decreased

immediately after starting PES following cathodal tDCS. Therefore, we believe that, in the

cathodal tDCS in this study, the time during which the MEP amplitude was decreased was

insufficient to increase corticospinal excitability, so the MEP amplitude did not increase

after PES.

The intervention-related effects of tDCS and PES in patients with pathological condi-

tions have been reported [38, 39]. It is difficult to directly compare patients and healthy sub-

jects in terms of the effects of the interventions on the brain. Because the effects of the

interventions will significantly vary in healthy people, further studies on healthy partici-

pants are warranted.

Conclusions

In this study, we attempted to increase corticospinal excitability using a combination of tDCS

and PES, but we found that PES during anodal tDCS inhibited tDCS’ effect. In addition, the

combination of cathodal tDCS and PES did not induce homeostatic metaplasticity and

increase corticospinal excitability. Overall, we conclude that, under the conditions used in this

study, PES combined with tDCS did not enhance corticospinal excitability.
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