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Abstract: The goal of the WrightBroS project is to design a system supporting the training of pilots
in a flight simulator. The desired software should work on smart glasses supplementing the visual
information with augmented reality data, displaying, for instance, additional training information or
descriptions of visible devices in real time. Therefore, the rapid recognition of observed objects and
their exact positioning is crucial for successful deployment. The keypoint descriptor approach is a
natural framework that is used for this purpose. For this to be applied, the thorough examination
of specific keypoint location methods and types of keypoint descriptors is required first, as these
are essential factors that affect the overall accuracy of the approach. In the presented research, we
prepared a dedicated database presenting 27 various devices of flight simulator. Then, we used it
to compare existing state-of-the-art techniques and verify their applicability. We investigated the
time necessary for the computation of a keypoint position, the time needed for the preparation of a
descriptor, and the classification accuracy of the considered approaches. In total, we compared the
outcomes of 12 keypoint location methods and 10 keypoint descriptors. The best scores recorded
for our database were almost 96% for a combination of the ORB method for keypoint localization
followed by the BRISK approach as a descriptor.

Keywords: keypoint descriptors; local feature classification; cockpit devices database; feature vectors
matching

1. Introduction

This manuscript describes research aiming at finding a rapid and efficient method
for the classification of flight simulator elements in the cockpit. This is part of a project
that aims to design an augmented reality (AR) system for the training of pilots and the
efficient maintenance of the flight simulator. The AR will be presented in parallel with
the cockpit interior to the user. In addition to simply displaying the static information
to familiarize the user with the available flight procedures, the system will interactively
support the pilot in task execution training and testing. In interactive mode, the system will
assist technicians in performing procedures that are needed for simulator maintenance.
The described software will work based on mixed reality smart glasses—e.g., HoloLens
and Oculus. As a consequence, the chosen algorithms must work on the CPU. This is
because when a device is equipped with a GPU, it is not accessible for external use.

With these project goals in mind, we evaluated the latest state-of-the-art methods used
for image description. In our initial literature overview, we found that using keypoint
descriptors should be a beneficial approach. However, the data characteristics should
verify their applicability [1–4]. Considering the huge number of solutions that allow objects
to be compared in images, we decided to investigate the differences that influence the
effectiveness of image description in the presented problem. Attempts to find an answer to
this question in the literature turned out to be futile because most comparative studies limit
themselves to the use of a few methods, and it is difficult to draw unequivocal conclusions.
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This situation is worsened by the fact that many of these studies use different datasets,
making the results difficult to compare. Additionally, the presented conclusions were
sometimes contradictory, which suggests that the performance of the method depends on
the analyzed data. Therefore, it is necessary to carry out research on the use of various
methods on one data set to enable their in-depth comparison.

In traditional approaches to object recognition, two steps are used to build the feature
vector. In the first step, these methods determine a set of characteristic locations that
describe the object well. Next, for each location the keypoint descriptor is calculated. As
a consequence, a set of feature vectors is used to describe each object, but only a few of
these are sufficient for recognition. This surplus of descriptors is necessary, as, in the case
of object rotation or partial occlusion, not all features are available. Recognition is achieved
using k-nearest neighbours.

Finding an exact location of an object within a larger scene is a very important
problem in the field of computer vision. Therefore, many attempts to develop an optimal
solution have been made. The nature of region sampling differs between approaches.
However, all of them try to find regions characterized by rapid changes in illumination that
correspond to edges, corners, or isolated points. Moreover, these candidate points should
be clearly visible at various scales. Candidates found close to each other are also removed.
The keypoint descriptor gathers the information from the pixel distribution around the
location. It may use the information derived from the gradient on the image patch, store
the information about the permutation of pixel values, or derive a statistical distribution
for these data.

In this study, the most representative keypoint location and description methods were
chosen, implemented, and tested, and we report our results and conclusions here. In
addition, to make our work well suited to the task, we prepared a dedicated database. This
database consists of thousands of images of 27 selected devices installed in the cockpit of a
flight simulator. Each element was photographed under varying lighting conditions, with
different camera parameters, using various acquisition qualities. The scenarios used for
the acquisition were chosen to reflect situations that might be encountered in everyday
life; therefore., they include rotation, translation, and other types of movement.

The contributions of this work are the following:

1. The preparation of a novel database describing the flight simulator cockpit elements;
2. The evaluation of the time and repeatability of the keypoint location methods most

widely used in the literature;
3. The proposal to calculat e keypoint descriptors for the best methods of locating

keypoint instead of those originally proposed, which , to the best of our knowledge,
have not previously been considered;

4. The evaluation of the keypoint description accuracy depending on the method used
for finding the localization.

We start this article with a detailed description of the method evaluated during the
experiments in Section 2. This section also introduces the WrightBroS database and gives
basic information about the Oxford University Database. Next, Section 3 presents the
results of the experiments conducted, supplemented by a thorough discussion. Finally,
Section 4 draws the conclusions.

2. Material and Methods

This section describes the theoretical basis of the methods considered for flight simu-
lator device description. It introduces the WrightBroS database and presents a baseline
database that has been in several experiments relating to image description, the Oxford
University Database. In this section, we also present the methodology used for the
classification of images.
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2.1. Object Recognition with Keypoint Description

Object classification is based on discriminating between features that describe objects.
These features should include the most characteristic features of the item but should also
include more general features for objects of its type. Moreover, the algorithm should
work correctly in the event of the occlusion or invisibility of some parts of the object. Over
several decades, many solutions based on keypoint descriptors have been introduced to
address this problem [5–9].

First, these methods were dedicated to achieving simple object detection. Later,
the range of possible application s of these algorithms grew significantly. There exist
examples of text detection in complex backgrounds [10] as well as methods designed
for face recognition [11,12]. Other solutions enable texture recognition [13] or allow for
the better matching of remotely sensed images [14]. Recently, research has moved in the
direction of precise texture localization [15]. It is also worth mentioning that, according
to the conclusions of [16,17], hand-crafted methods tend to outperform deep neural
network-based methods.

2.1.1. Keypoint Location
Derivative Approach

One of the earliest method s for keypoint location was the Harris corner detector [18],
which determines the average changes in image intensities within a moving window, w,
applied to the image I. The following equation describes the energy E of the keypoint:

E(x, y) = ∑
u,v

w(u, v)|I(x + u, y + v)− I(x, y)|2, (1)

where only four shifts are considered: (u, v) = (1, 0), (1, 1), (0, 1), (−1, 1). This can be
improved by first introducing derivative calculations, such as applying a Sobel filter to the
image spot and reformulating the equation as follows:

E(x, y) = Ax2 + 2Cxy + By2, (2)

where A is a horizontal, B a vertical, and C a diagonal derivative. In order to diminish the
influence of noise on the computation, the corner response can be formulated as:

E(x, y) = Det− k · Tr2 = (AB− C2)− k · (A + B)2. (3)

This approach was also implemented in SURF (Speeded Up Robust Features) [19],
but the keypoints were determined for various scales, and the k parameter definition was
slightly modified. In the case of KAZE (which means wind in Japanese) [20], the Hessian
matrix is found for points at each scale (built using anisotropic diffusion), and a non-
maximal suppression suggested in SIFT (Scale Invariant Feature Transform) is also applied.
Using a Scharr filter in place of Sobel in the KAZE method is an interesting modification.
The STAR approach (also named CenSurE—Center surround extrem es) [21] pays special
attention to the necessity of finding precise positions of the keypoints. Therefore, in
this latter method, scale-space data are used with the original image resolution without
completing subsampling. The Laplacian is computed for all scales and the local extremes
are detected. To concentrate on the most characteristic keypoints, the Harris measure
and non-maximal suppression over scales are applied. The strength of the keypoint is
calculated as a magnitude of the filter response. Moreover, the authors remove keypoints
located at the lines by analyzing the eigenvalues of the second moment matrix (equivalent
to the Harris measure). It is also worth noting that features that are useful for trackick
(GFTT) [22] should have eigenvectors that are larger than a threshold in order to remove
the noise effect, and that both should be of similar magnitude.
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Point Sampling

FAST (Features from Accelerated Segment Test) [6,23], instead of analyzing all pixels
of the image patch, focuses on pixels sampled on the circumference of a circle with a radius
equal to three pixels, which consists of 16 points. For the rapid version, only four points on
the axes are considered, and when three of them are darker or brighter than the central one
the corner is found. This comparison requires a threshold, allowing minimal contrast.

AGAST (Adaptive and Generic corner detection based on the Accelerated Segment
Test) [7] improves FAST by sampling nine consecutive pixels at the circumference that are
brighter or darker than the central point for keypoint location. Next, BRISK (Binary Robust
Invariant Scalable Keypoints) [24] calculates FAST-9 for each layer. Then, an approximating
function (parabola) is calculated to first find the best scale and then determine the most
appropriate coordinates. ORB (Oriented FAST and Rotated BRIEF) [25] also determines
the keypoints with FAST-9. However, to find the points of significance, a Harris corner
measure is applied.

Other Approaches

In SIFT [26–29], the difference of Gaussian operator is applied to define the pyramid
levels. Non-maximal suppression is used to find the extrema. Chosen extrema are then
validated by whether they depict a valid corner or by verifying the curvature derived from
the Hessian matrix. AKAZE (Accelerated KAZE) [30] detects the keypoints by comparing
the gradients of small image patches rather than points themselves. MSER (Maximally
Stable Extremal Regions) [31] starts the search for extremal regions by ordering the image
pixels according to their intensity. The pixels are then placed in the image and a list of
connected components and their areas is calculated. Next, intensity levels that are the
local minima of the rate of change in the area function are selected as the threshold for
producing MSER.

2.1.2. Keypoint Description
Gradient Analysis

SIFT [26,27] aligns the patch according to the orientation defined previously and then
the gradients are calculated at a scale of s corresponding to the keypoint location. These
are additionally weighted with a Gaussian (σ equal to half the width of the descriptor
window). The patch is divided into 4× 4 regions where the direction histograms of 8 bins
are computed. This results in a 128-element feature vector, which is normalized to reduce
the impact of lighting variation (see Figure 1 for idea visualization).

The descriptor of the determined keypoint is based on its neighbourhood at a cor-
responding scale s. A distribution of the first-order Haar wavelet responses replaces
the gradient calculation when determining SURF [19] features. The KAZE [20] and
AKAZE [30] methods follow the above-mentioned approach for keypoint description, but
in place of applying Haar wavelet responses to the image transformation these methods
use anisotropic diffusion.

Point Sampling

BRIEF (Binary Robust Independent Elementary Feature) [32,33] removes noise by
applying a Gaussian filter (σ = 2) to an image square patch with a size of W = 9 pixels.
Next, a feature detection function is defined as a test, τ

τ(pA, pB) =

{
1 I(pA) < I(pB)

0 otherwise,
(4)
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where (pA, pB) is a pair of locations defined by a set nd of locations pairs considered to
uniquely define the binary test, as depicted in Figure 1. Then, knowing the test responses,
a binary string is transformed into a decimal descriptor:

E(nd) = ∑
1≤i≤nd

2i−1τ(pA, pB), (5)

whose resolution depends on the number of tests performed; usually, 128, 256, or 512
comparisons are made.

The creators of the DAISY [34] method for an input image calculate one H orientation
map −+ Go for each of the quantized directions. Each orientation map is convolved with
Gaussian kernels of different values σ, resulting in a daisy-like patch (see Figure 1 for
sampling point visualization).

Figure 1. Visualization of the computation of feature descriptors. At the top are examples of features
derived from gradients and encoded as real values. At the bottom are different approaches for
building a binary string for data description.

BRISK [24] combines the two approaches described previously; it selects a set nd of
interesting points as in BRIEF, and follows the DAISY pattern, as presented schematically in
Figure 1. ORB [25] applies rotation normalization, then the BRIEF patch descriptor is used
to determine the binary strings describing the patch. FREAK (Fast REtinA Keypoint) [35]
reflects the methods used for point selection that have already been mentioned in the
previous approaches, but the point sampling corresponds to the receptive field properties
of the retina. Another variation is termed LATCH (Learned Arrangements of Three Patch
Codes) [36], where instead of pairs of sampled points, triplets of small patches m×m are
considered and denoted by the coefficient of the central pixel (pα, pβ, pγ), as presented in
Figure 1. The Frobenious norm (|| · ||F) is evaluated to build the comparison, allowing one
to create a binary string:

τ(pα) =

{
1 ||pα − pβ||2F > ||pα − pγ||2F
0 otherwise

. (6)

As in previous methods, the learning approach for selecting the valid triplets is
suggested. This method combines the keypoint descriptors with small texture operators ,
which are widely represented in different versions of Local Binary Patterns—e.g., CLBP
and DTP [37,38].
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2.2. WrightBroS Database

In the database, we stored images and videos of devices installed in the cockpit of
a helicopter flight simulator. Figure 2 depicts the cockpit interior, where the elements of
interest on the front panel (on the left) and top panel (on the right) are marked. As shown
in the figure, each device selected on the front panel represents a separate class, while on
the top panel one class is represented by a set of switches organized next to each other.

Figure 2. Interior of helicopter cockpit, in which the devices were photographed to prepare the
WrightBroS image database. On the left, one can see the front panel. On the right, one can see the
top panel.

The database creation process was accelerated by recording videos of selected devices
instead of taking a series of photos. The recordings were prepared by different technicians,
with various cameras being operated to achieve variable conditions for data acquisition.
The technical details of the cameras used are given in Table 1. During each recording,
particular attention was paid to reflecting the natural movement of the recording device.
Thus, this process was performed manually. Additionally, the technicians were asked to
add some reasonable motion. It was assumed that each video would start with the object of
interest occupying most of the frame, and that the camera would move away throughout
the video, finishing with a general overview of the cockpit. This final assumption simplified
the work of the automatic film annotation system, which selected the area of the object from
each frame and copied it to the final image database. Data collected by each technician
were recorded separately, which allowed us to not only examine the recognition ability of
the methods but also to infer the impact of data quality on the results. Figure 3 depicts
class representatives, while Table 2 summarizes the number of elements describing each
object. The data are accessible online at http://wrightbros.lgnexera.at (accessed on 15 May
2019), the details for access are given in Data Availability Statement.

Table 1. The parameters of the acquisition equipment used for the collection of the WrightBroS
database.

Parameter Camera Set I Camera Set II Camera Set III

Smartphone Samsung Galaxy Note 8 Iphone 7 Samgung Galaxy J3
Lens f/1.7|f/2.4 f/1.8 f/1.9

Sensor 9.1 MP 12 MP 13 MP
Resolution 1440× 1440 4096× 2160 (4K) 1920× 1080 (fullHD)
Frame rate 30 30 30

Videos presenting general cockpit spots complement the database. They show several
elements on each frame, making them valuable for use in location precision tests. They
were registered by the technicians preparing the database as well as other people, including
staff of the Virtual Flight Laboratory at the Silesian University of Technology, thereby
giving a greater variation among samples.

 http://wrightbros.lgnexera.at
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(a) airspeed (b) horizon (c) rate of climb (d) altitude (e) navigation

(f) altimeter (g) course (h) engine (i) rotor pitch (j) turn indic.

(k) gas temp. (l) engine regime (m) cabin temp. (n) gearbox (o) oil gearbox

(p) STBD eng. (q) fuel quantity (r) anti icing (s) current (t) fire

(u) switches A-C (v) No 34 (w) No 35 (x) speakers (y) No 37

Figure 3. WrightBroS database class representatives.

2.3. Oxford University Database

The Oxford University Database consists of 6 classes of images: bark, bikes, boats,
graffiti, trees, and a wall. There are five changes in imaging conditions: viewpoint change,
scale change, image blur, JPEG compression, and illumination. Up to two conditions were
applied to each image class to assure the separability of the effects from the image content.
The image resolution was kept constant within a class but slightly varied within a data
set from 765× 512 to 1000× 700 pixels. All images except the boat class are in color, yet
in experiments gray-scale transform is applied. The reasons why this dataset might be
chosen are twofold. Firstly, it is the most popular database addressing the problems of
feature detection for object recognition and location. Secondly, compared to the WrightBroS
database, the limited number of images provided allows for insightful research to be carried
out within a reasonable timeframe.
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2.4. Image Matching

Image matching algorithms need to compare all descriptors computed for an image.
This a computationally expensive task due to a large number of descriptors used and
their size. The solution searches for short descriptors and a fast comparison function.
Therefore, algorithms based on some heuristics to diminish the number of comparisons
are preferable. Bearing all these issues in mind, the literature bases the classification on
different implementations of k-nearest neighbor (kNN). In all cases, for each keypoint
descriptor of an object, the distance and class label of the three closest neighbours must
be evaluated. Increasing the distances allows the keypoints to be sorted. Only 15% of the
best-matched descriptors are considered in the final rating, neglecting the information
contained in vectors characterized by longer distances, as the entire object may not be
visible in the image due to it being rotated or overlapping with other objects. Given the
label set, the probability of the object belonging to each class is calculated and the class
with the highest score is reported.

Table 2. Number of elements in classes of the WrightBroS dataset.

Set I Set II Set III All

airspeed 1463 2011 1208 4682
altimeter 1762 1486 2089 5337
altitude 1531 1212 2359 5102
antiIcing 819 532 811 2162
course 1249 705 1193 3147
current 1249 431 700 2380
engine 3866 2611 3935 10,412
engineReg 381 238 1018 1637
fire 1075 465 439 1979
fuelQuant 660 682 743 2085
gasTemp 968 502 1505 2975
horizon 1981 1661 2792 6434
mainGear 1057 708 917 2682
mainRotorPitch 715 440 900 2055
navigation 2044 1379 3139 6562
No_34 560 387 516 1463
No_35 569 459 738 1766
No_37 453 102 186 741
oil 790 483 1408 2681
portSTBDEngine 1924 1310 2132 5366
rateOfClimb 1516 1339 1765 4620
speekers 327 23 50 400
switchesA 1051 377 845 2273
switchesB 482 271 287 1040
switchesC 302 287 249 838
tempPass 805 384 846 2035
turnIndicator 2054 1089 2050 5193

Total 31,653 21,574 34,820 88,047

Many distances could be calculated for multidimensional floating or binary data. The
first that comes to mind is the Euclidean distance, which represents the shortest distance
between two points. In the presented case, each point is a multidimensional vector given
as~k = (k1, k2, . . . , kn) and ~m = (m1, m2, . . . , mn), where n is the number of dimensions (in
our case, features) and the distance metric is defined as follows:

Euclidean =

√
n

∑
i=1

(ki −mi)2. (7)
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Next, the Mahalanobis distance is the dissimilarity measure between two vectors,~k
and ~m, that have the same distribution with a known covariance matrix, S:

Mahalanobis =

√
(~k− ~m)TS−1(~k− ~m). (8)

Both allow for the precise determination of the distance between the data, assuming
real values are used. However, for binary data, the time-consuming calculations associated
with them generate an excessive overhead, and the use of the Hamming distance, which
is calculated for two strings of the same length by comparing characters at the same
position, is suggested. The number of character differences corresponds to the distance.
In the case of binary data, the use of Hamming distance is preferable due to its rapid
means of calculation, even in standard kNN searches. On the contrary, when float data
are considered the Mahalanobis or Euclidean distances are considered. Additionally, to
improve the timing, the use of the approximated algorithm for kNN is suggested. The
FLANN-based (Fast Approximate Nearest Neighbours Search) [39] approach stores the
information gathered from the training dataset in several randomized kd-trees and, if
necessary, uses the hierarchical k-means tree of the data. The choice of data representation
depends on the data themselves and is determined automatically. A randomized kd-tree
randomly chooses the split dimension for the first D = 5 dimensions on which the data
have the greatest variance. A single priority queue is maintained across all the randomized
kd-trees. A fixed number of leaf nodes, checked before completing the search and
returning the result, determine the degree of approximation. The data points are split
using recursive k-means clustering at each level to construct a hierarchical k-means tree.
The algorithm stops when K objects are in each cluster. During the search, the algorithm
adds to the priority queue all unexplored branches in each node along the path. Then, it
extracts the branch that has the closest center to the query point and restarts the search.
The approximation degree is defined by the number of iterations of these procedure s.

The method used for the evaluation of the correct classification rate (CCR) in object
recognition was as follows. Since the matching procedure assumes a comparison of all
descriptors calculated for each image and there are thousands of these, the time taken for
the evaluation is considerable. Moreover, in a real-life scenario, this method should work
for a small database of training samples. Therefore, the descriptors of ten images were used
to train the classifier, while 100 samples were used to test it. However, while the training
set may seem small, one should bear in mind that each image is described by hundreds
of features. Moreover, according to the experiments we performed (though they are not
presented here), the use of more training data does not improve the results obtained.

We performed the classification in two regimes, which both assum e the use of
3-fold cross-validation. In regime A, the data were divided by the technician who made
the videos. Since there were three technicians, each dataset prepared by one of them was
selected for the testing set (e.g., set I). For training purposes, five images were selected
from each of the two other sets (e.g., set II and III). Regime B mixed the data from the
entire database, dividing images into three non-overlapping folds with a similar number
of samples in the training and testing cohorts (as in previously described case).

3. Results and Discussion

Choosing an appropriate method for object detection in images requires the fulfilment
of several constraints. In the initial experiments presented in Section 3.1, we focused
our efforts on determining which keypoint location method was the most promising
one. In these experiments, we investigated the number of keypoints and their location.
Next, having chosen the representative number of methods for the keypoint location, the
keypoint descriptors were examined. The experiments described in Section 3.2 mainly
focused on the time required to carry out the available algorithms. These were executed on
a server with an Intel Core i9-7960X with 2.8 GHz CPU and 128 GB RAM. Next, Section 3.3
describes the object recognition performance. The code was written in C++ using OpenCV
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library version 3.3. In all the experiments, the default settings of the methods were used
unless it is stated otherwise.

3.1. Keypoints Detection

We used the Oxford University Database for the verification of the keypoint location
quality. Figure 4 presents the characteristic points selected by each of the considered
techniques. Generally, the regions selected by keypoints overlap between methods, but
details, coordinates, and the number of points var y.

A secondary goal was to verify whether the location of keypoints selected by different
methods overlapped. For verification, the keypoints calculated for one randomly selected
image were considered. As one can observe in Figure 4, the number of keypoints detected
by each method varied. Therefore in Table 3, we present the probability of keypoint
repetition between techniques. In the keypoints detected in method A (column) and
method B (row), the probability is understood as the ratio of the number of points in set A
located in similar positions to those in set B divided by the total number of points in set A.
Analyzing these results, when method A has 11 keypoints, method B has 1000 keypoints,
and 10 points overlap, one achieves a value of 0.91, but when the order is changed the
value becomes 0.01; this is visible, for instance, for GFTTcolumn – FASTrow and FASTcolumn
– GFTTrow. For the measurements considered to be perfect matches (where the distance
between the points considered as overlapping was 0) the AGAST and FAST methods
showed a high correlation. For an admissible distance of three pixels (presented in Table 3),
BRISK and FAST, GFTT and AGAST, GFTT and BRISK, and GFTT and FAST all show a
reasonable correlation.

Table 3. The percentage of keypoint repetitions (with an up to 3-pixel distance between points
considered as overlapping) detected using the considered techniques.

A
G

A
ST

A
K

A
ZE

BR
IS

K

FA
ST

G
FT

T

H
ar

ri
sC

or
ne

r
K

A
ZE

M
SE

R

O
R

B

SI
FT

ST
A

R

SU
R

F

AGAST 0.10 0.76 1.00 0.97 0.17 0.14 0.00 0.86 0.41 0.10 0.14
AKAZE 0.11 0.50 0.21 0.54 0.04 0.86 0.18 0.79 0.61 0.43 0.68
BRISK 0.71 0.40 0.77 0.83 0.17 0.40 0.00 0.94 0.46 0.23 0.40
FAST 0.67 0.15 0.56 0.97 0.15 0.15 0.03 0.85 0.44 0.18 0.10
GFTT 0.06 0.04 0.06 0.10 0.01 0.05 0.03 0.50 0.28 0.04 0.07

HarrisCorner 1.00 0.33 1.00 1.00 1.00 0.33 0.00 1.00 0.67 0.33 0.33
KAZE 0.06 0.44 0.26 0.10 0.34 0.01 0.12 0.28 0.56 0.19 0.65
MSER 0.00 0.10 0.00 0.04 0.24 0.00 0.11 0.14 0.15 0.07 0.19
ORB 0.14 0.11 0.16 0.21 0.87 0.04 0.08 0.04 0.38 0.10 0.12
SIFT 0.07 0.07 0.08 0.10 0.60 0.02 0.18 0.04 0.47 0.06 0.18
STAR 0.14 0.38 0.33 0.29 0.57 0.05 0.38 0.10 0.71 0.52 0.38
SURF 0.05 0.29 0.18 0.05 0.43 0.03 0.57 0.20 0.43 0.54 0.14

For further processing, the following methods were selected:

• AKAZE as an example of a diffusion method application;
• FAST for its point detection speed and as a representative of AGAST and BRISK;
• GFTT and ORB because they calculate the keypoints in a reasonable time;
• MSER, which uses a different methodology for point selection (despite its performance

being too time-consuming, it will be used in further experiments);
• STAR and SIFT for their speed and accuracy, respectively.
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(a) AGAST (133) (b) AKAZE (24) (c) BRISK (145)

(d) FAST (198) (e) GFTT (147) (f) Harris Corner (3)

(g) KAZE (122) (h) MSER (77) (i) ORB (134)

(j) SIFT (70) (k) STAR (0) (l) SURF (99)

Figure 4. Presentation of the locations of detected characteristic keypoints. The number in the
brackets gives the number of locations detected.

Following the conclusion of the keypoint calculation experiments performed with the
Oxford University Database, the selected methods were used to prepare keypoint data
using the WrightBroS dataset. Since the characteristics of the data differ from those of
the first image set, it was necessary to confirm the usability of the chosen methods. We
investigated the number distribution of the keypoints within all the images of each class
in the WrightBroS dataset. Figure 5 depicts the histograms of the number of keypoints
calculated for one class. In each case, it presents the worst scenario, a class in which objects
were described as the smallest number of characteristic points. To obtain a good object
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description, many characteristic points should be found. This is important, because some
of these points disappear when object rotation or occlusion take place. The conclusion
drawn from our experiments is that a minimum number of 200 keypoints describing an
object is sufficient.

An analysis of the data allows one to draw the following conclusions:

AKAZE: The number of keypoints proved to be unsatisfactory. In most classes, the majority
of images had less than 200 keypoints. Therefore, we have removed this approach
from future experiments. An example of the distribution is presented in Figure 5a.

FAST: The number of keypoints detected in the images had a wide range. Some of the
samples only showed several keypoints, but in general the number of selected
keypoints was large (around 1000); see Figure 5b.

GFTT: This method detected the maximum number of points, and in the case of this
dataset less characteristic points were found only in several cases (see Figure 5c).

MSER: In all the classes, a small number of keypoints describes the largest number of
images. However, only the class presented in Figure 5d has images with such a
small number of keypoints.

ORB: This method detects the top range of keypoints. Yet, there are some images with a
lower number of elements, as depicted in Figure 5e.

SIFT: This method generated the largest amount of keypoints for several images. There
were also samples with a low number of characteristic points, but these are
comparatively rare; see the example in Figure 5f.

STAR: Similarly to AKAZE, the number of keypoints proved to be unsatisfactory. In most
of the cases, the number of keypoints was less than 200; see Figure 5g for example.

3.2. Computation Time

The Oxford University Database was also used to perform experiments addressing the
time necessary to obtain keypoint locations. Figure 6 shows the significant differences in
time performance. The bar plot presents the average time needed to compute one keypoint
considering all the points detected by each method. Since the number of detected keypoints
per image is relatively large, the influence of system interruptions can be neglected when
considering the whole database. Considering the required time efficiency, the execution
times recorded in our experiments excluded the use of the KAZE, SIFT, MSER, AKAZE,
and BRISK algorithms as keypoint detection algorithms.

Next, the performance of the feature description computation was evaluated using
the Oxford University Database. Figure 7 summarizes the total average time taken by each
descriptor calculation method, distinguishing between the keypoint location techniques.
We observed the computational load resulting from each keypoint description technique
when analyzing the bar plot using color. For instance, when AGAST was used for keypoint
location, KAZE took the longest time to calculate the descriptions. Conversely, when the
SURF method was used to locate the keypoints, SIFT required the longest time period
to prepare the descriptors. This plot also depicts the changes in performance when the
keypoints were located with the same approach but various methods were used to calculate
the descriptor. The average times taken to calculate the descriptions of one keypoint are
depicted in Figure 8. As can be seen, the worst performance was found for KAZE. A much
better speed was recorded for AKAZE, LATCH, and SIFT. However, a time of 0.04 ms was
required for the calculation of a descriptor, which is still too long, as one might be required
to calculate thousands of descriptors for each image. ORB achieved the best performance of
0.002 ms, and this was closely followed by SURF, which had a processing time of 0.003 ms.
Next were BRIEF, BRISK, DAISY, and FREAK, which could calculate the descriptor in
0.02 ms.
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Figure 5. Examples of keypoint distribution over classes in the WrightBroS database. The histogram
on the bottom shows distribution over the full keypoint number range, while the one on the top
concentrates only on the range [0–200].
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Figure 6. Average time taken for keypoint detection in all images from the Oxford University
Database.
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Figure 7. Time taken to calculate the descriptors for all keypoints in the Oxford University Database.
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Figure 8. Average time taken to calculate a descriptor for a key point in all images in the Oxford
University Database.
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3.3. Object Recognition

All these experiments used the image-matching techniques described in Section 2.4. In
the case of the binary descriptors (BRIEF, BRISK, FREAK, LATCH, and ORB), the Hamming
distance was applied, while for the floating point feature vectors a FLANN-based approach
was used. In the second case (DAISY, SIFT, SURF), the experiments with other distance
metrics (e.g., L1 and L2) were performed for the selected methods. We omit the detailed
presentation of these methods because the outcomes were shown to be similar CCR.

Table 4 shows the classification results achieved by combinations of the methods con-
sidered. Along with the average CCR, the standard deviation is presented. The outcomes
show that using the FAST and GFTT approaches for keypoint selection results in a weak
performance. Neither of the considered techniques provides a good recognition quality for
feature description. Yet, in the case of MSER, ORB, and SIFT, several combinations provide
promising results.

Table 4. Regime A: Evaluation of the method’s discriminative capabilities.

Key Point FAST GFTT MSER ORB SIFT
Detector CCR + STD CCR + STD CCR + STD CCR + STD CCR + STD

BRIEF 29.16 ± 7.75 33.73 ± 8.91 27.39 ± 4.20 37.42 ± 10.85 30.91 ± 7.55
BRISK 14.20 ± 5.97 19.49 ± 8.56 78.03 ± 6.39 90.45 ± 5.05 32.25 ± 13.94
DAISY 19.43 ± 4.22 25.83 ± 3.00 21.68 ± 4.81 26.36 ± 6.41 25.69 ± 4.24
FREAK 24.70 ± 6.77 27.01 ± 11.38 65.60 ± 5.01 85.35 ± 4.70 62.07 ± 9.72
LATCH 33.35 ± 5.95 35.85 ± 7.70 28.15 ± 4.21 48.60 ± 14.28 42.25 ± 10.49
ORB 18.51 ± 5.27 25.44 ± 7.20 18.40 ± 3.86 72.94 ± 13.38 —
SIFT 39.37 ± 10.01 24.27 ± 7.00 78.72 ± 8.69 78.01 ± 6.38 76.85 ± 4.15
SURF 10.10 ± 3.09 8.21 ± 2.49 50.49 ± 8.68 82.59 ± 10.34 10.63 ± 0.95

The BRISK feature descriptor applied to the keypoint prepared using the ORB ap-
proach achieved the best score (90.45%). Slightly worse outcomes: 85.35% and 82.59%,
were obtained for the FREAK and SURF methods, respectively, when applied for the same
keypoints (i.e., keypoints computed by ORB). The best performance for keypoints calcu-
lated by the MSER method was achieved when BRISK and SIFT were used to calculate the
descriptors, but in this case the CCR did not exceed 78%. Finally, the CCR results for the
standard SIFT method fell below 76%.

Table 5 shows the information obtained regarding the correct classification ratio for
regime B. We restricted the number of experiments to those combinations which achieved
a CCR of at least 50% in regime A. Preparing a database with varying image quality
improved the performance in all the considered cases, and the CCR reached a level of
96% for the ORB BRISK combination. Additionally, the significant reduction in the fold
variance demonstrated the stability of this approach. To be sure that the results were
significantly different, a statistical analysis was performed. We used a t-test to evaluate
the null hypothesis that the distribution was similar to a statistical significance level equal
to 0.05. This hypothesis did not hold in almost all cases when considering results within
groups (columns). The exceptions to this were MESR BRISK andMSER SIFT as well as ORB
SIFT and ORB SURF. Next, comparing the best scores from each group, it was found that
the hypothesis did not hold up, with a p-value equal to 0.0006 being achieved for ORB
BRISK and MSER SIFT and a p-value of 0.0002 achieved for ORB BRISK and SIFT SIFT.
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Table 5. Regime B: Evaluation of the methods’ discriminative capabilities.

Key Point MSER ORB SIFT
Detector CCR + STD CCR + STD CCR + STD

BRISK 86.97 ± 1.68 95.98 ± 0.76 —
FREAK 91.68 ± 0.75 92.74 ± 0.94 75.33 ± 0.55
ORB — 84.99 ± 1.06 —
SIFT 86.42 ± 0.44 90.60 ± 0.96 83.37 ± 0.58
SURF 66.68 ± 2.21 89.28 ± 0.69 —

Bearing these two sets of experiments in mind, it can be concluded that it is beneficial
to use data collected by different camera operators and different types of equipment.
However, even when this condition is not fulfilled, the proposed solution still allows for
very satisfactory object recognition.

4. Conclusions

The purpose of these studies was twofold. On the one hand, we aimed to find a
quick method for recognizing objects in a flight simulator cockpit that would be useful
in an augmented reality system designed in the WrightBroS project. On the other hand,
we wanted to explore the possibility of the use of existing methods for locating and
describing keypoints.

Firstly, we prepared the WrightBroS database for research purposes. We verified the
keypoint location methods that allowed us to choose the most reliable and fast approaches
to be FAST, STAR, Harris Corner, ORB, GFTT, and AGAST and determined that AKAZE,
BRISK, KAZE, MSER, and SIFT are far slower. We also compared the repeatability of the
keypoint location prepared by each of these methods. We concluded that these methods
return significantly different locations.

Secondly, we concentrated on the problem of time constraints in keypoint descriptor
calculation. The ORB keypoint descriptor was found to be the fastest method. SURF was
found to be slightly slower. We recorded far worse performances for the BRIEF, BRISK,
DAISY, and FREAK. AKAZE, LATCH, and SIFT methods, which were the slowest to
find solutions.

Finally, we evaluated the classification of cockpit elements of the WrightBroS database.
Our research showed that methods based on the location of FAST, GFTT and ORB key
points have great potential. The best result (90%) was obtained by the use of the ORB
keypoint location algorithm followed by the BRISK keypoint descriptor method. We also
concluded that when preparing a training set, it is advisable to fill it with images of varying
quality. In our experiments, we managed to improve the correct classification ratio to 96%.
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