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Abstract: Several self-matched approaches have been proposed, includ-
ing case-crossover, case-time control, fixed-effects case-time control, 
and self-controlled case series. Rather than comparing treatment effects 
between different individuals, studies use these approaches to evaluate the 
acute effects of transient exposures, often called “triggers,” by comparing 
outcome risk among the same individual at different times. This elimi-
nates confounding by between-person characteristics that remain stable 
over time, allowing for valid analyses even in situations where information 
on some health behaviors is not available, such as long-term smoking his-
tory. However, to attain valid results, differences in the probability of expo-
sure and outcome that change over time must be addressed in the design 
and analysis of the study. In this article, we describe the setting, assump-
tions and analytic options for conducting studies using self-matched data. 
Approaches that involve matching or a group of noncases to address time-
varying confounding may have less statistical flexibility but they are pow-
erful tools that overcome the need to assume a particular form of any time 
trends in potential confounders. If data are available for all of the person–
time under study, there is a gain in statistical efficiency and the ability to 
address time-varying confounding using flexible regression models, under 
the strong assumption of no mis-specification of the model.

Keywords: Patient Centered Outcomes Research, Epidemiologi-
cal Methods, study design, Case-Only Designs, Self-Controlled 
Designs, triggers

(Epidemiology 2018;29: 804–816)

Self-matched approaches, also known as “case-only”1–3 or 
“self-controlled”4 designs are useful for examining the 

impact of transient exposures on acute outcomes. Rather than 
comparing the effect of an exposure between different indi-
viduals, self-matched techniques evaluate the acute effects of 
intermittent exposures by comparing outcome risk within the 
same individual at different times. The great strength of these 
self-matched approaches is that they eliminate confounding 
by fixed and slowly varying characteristics, both measured 
and unmeasured. Therefore, there is no confounding by fac-
tors such as sex, race, habitual smoking, or medical history. 
However, factors related to exposure and outcome that change 
over time must be addressed in the design and analysis to 
ensure the validity of the results.

In this article, we describe the case–crossover,5 case-time 
control,6,7 fixed-effects case-time control,8 and self-controlled 
case series9,10 approaches. Although other self-matched tech-
niques have been proposed, in this article, we do not describe 
methods that do not address biases from time-varying fac-
tors.11–14 We also do not discuss case-only gene–environment  
interaction studies to identify interactions between genetic 
factors and environmental factors or case–specular studies to 
evaluate exposures defined by proximity to an environmental 
source.

All analyses of self-matched data examine the acute risk 
of an outcome during exposed and unexposed times within 
each individual. However, because these techniques were 
introduced with different substantive examples using different 
terminology and they utilize different sampling mechanisms 
and statistical models, they are often incorrectly seen as more 
different than is actually the case. In this article, we describe 
the setting, assumptions, and analytic options for each tech-
nique, and factors to consider when selecting the optimal self-
matched approach to examine the acute effects of a potential 
trigger. A summary of the characteristics of the approaches 
described below is presented in Table 1, and a summary of the 
different analytic options is presented in Table 2.

CONDITIONAL EXCHANGEABILITY  
FOR SELF-MATCHED DATA

In a randomized crossover experiment, each partici-
pant receives different interventions at different times during 
the trial, and the order in which each individual receives the 
exposures is determined by random allocation. An analysis 
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matched on the individual compares outcomes under differ-
ent exposure regimes. The investigators design the study to 
compare exposed and unexposed periods that are close in time 
so that the probability of the outcome independently of expo-
sure is expected to be the same across the time periods (e.g. 
the participants’ age and underlying health is not progress-
ing), and they include sufficiently long washout periods to 
minimize the risk of carryover effect of treatment in the first 
phase on outcomes in the second phase. In this setting, the 
exposed and unexposed times under comparison are assumed 
to be exchangeable; after accounting for any causal effect of 
exposure on outcome, the probability of the outcome is identi-
cal. Therefore, any difference in risk across the time periods is 
expected to be attributable to the causal effect of the exposure.

When randomization is infeasible or unethical, there 
are several approaches to examine causal effects of exposures 
that vary over time within individuals. However, in the obser-
vational setting, exposure is determined by the individual or 
imposed by society or the natural environment rather than by 
randomization. Therefore, sources of nonexchangeability can 
threaten the validity of the study. Time-varying confounding 
can arise due to temporal changes in the risk of the outcome 
related to the timing of exposure. Selection bias can occur if 
referent periods for each individual are not sampled indepen-
dent of their exposure. These sources of nonexchangeabil-
ity are addressed in the design and analysis of self-matched 
data.15 Similar to a randomized crossover experiment, the 
analysis may be restricted to fairly short time windows so 
that the baseline risk of the outcome is assumed to be con-
stant across the times under comparison, and washout periods 
between the time windows may be used to minimize a car-
ryover effect. Just as in cohort and case-control studies, we 
account for common causes of exposure and outcome (con-
founding) using restriction, matching and statistical adjust-
ment to achieve conditional exchangeability within levels of 
the measured confounders.

APPROACHES FOR EXAMINING  
SELF-MATCHED DATA

Some self-matched approaches compare all exposed 
person–time to all unexposed person–time for each individual, 
and some approaches sample some of the eligible person–time 
(Figure 1). This is directly analogous to the identical objective 
of a cohort study comparing all exposed and unexposed per-
son–time across individuals and a case-control study comparing 
an efficient sampling from the underlying study base to answer 
the same question—whether the outcome rate can be attrib-
uted to the exposure.16 Despite the common goal, each self-
matched approach uses different techniques to attain conditional 
exchangeability between the time periods under comparison.

Case-crossover
Maclure5 proposed that, similar to a randomized cross-

over experiment, treatment effects can be estimated in an 
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TABLE 2. Analytic Approaches for Self-matched Studies

 Design Analysis Advantages Disadvantages

Mantel-

Haenszel

M:1 or M:M matched or 

case–crossover (individual 

exposures)

Mantel-Haenszel estimator for 

sparse data of exposure during 

the hazard period and exposure 

during sampled referent 

periods within each matched 

set; algebraically equivalent to 

McNemar estimator for matched 

data on a categorical exposure 

and binary outcome

Easy to calculate Only calculable for categorical 

exposures

Limited flexibility and statistical 

power to stratify on co-exposures 

and time trends

Interaction based on stratified 

estimates rather than in model

Usual frequency case-

crossover (individual 

exposures)

Mantel-Haenszel estimator for 

sparse data of exposure during 

the hazard period and person–

time of exposure during all other 

person–time within each  

matched set

Easy to calculate

Uses information on all 

available person–time, 

eliminating concern of bias 

from selection of specific 

matched referent periods

Only calculable for categorical 

exposures

Limited flexibility and statistical 

power to stratify on co-exposures 

and time trends

Interaction based on stratified 

estimates rather than in model

Conditional 

logistic

M:1 or M:M matched case-

crossover, unidirectional 

sampling (individual or 

shared exposures)

Conditional logistic with outcome 

as dependent variable, stratified 

by individual

clogit[p(outcome=1| covariates, ith 

stratum)] = β1exposure + β2time 

factors

Adjustment for confounding 

by co-exposures and time 

trends with covariates and/

or by matching on time

Overlap bias

Cannot adjust for monotonic time 

trends in exposure

Does not use information on all 

available person–time, reducing 

statistical precision and introducing 

potential bias from selection of 

specific matched referent periods

M:1 or M:M matched case-

crossover, bidirectional 

sampling (individual or 

shared exposures)

Conditional logistic with outcome 

as dependent variable, stratified 

by individual

clogit [p(outcome=1| covariates, ith 

stratum)] = β1exposure + β2time 

factors

Algebraically equivalent to 

fixed-effects case-time control 

(individual or shared exposures)

Time-stratified bidirectional 

design does not result in an 

overlap bias and adjusts for 

short-term time trends by 

design

If full symmetric sampling, overlap bias

Slow convergence when fitting 

interaction terms for individual 

factors, cannot account for 

overdispersion and autocorrelation

Does not use information on all 

available person–time, reducing 

statistical precision and introducing 

potential bias from selection of 

specific matched referent periods

Case-time control (individual 

exposures)

Conditional logistic with exposure 

as dependent variable, stratified 

by individual

clogit[p(exposure=1)| covariates, 

ith stratum] = β1period + 

β2(exposure*group)

OR

clogit[period=1| covariates, 

ith stratum] = β1exposure + 

β2exposure*group

where group indicates case vs. 

control and period reflects hazard 

vs. referent period

No overlap bias

Can adjust for monotonic time 

trends in exposure

Requires control group

Developed to examine binary 

exposures

Assumes no confounding or 

modification of time trends

Does not use information on all 

available person–time, reducing 

statistical precision and introducing 

potential bias from selection of 

specific matched referent periods

Fixed-effects case-time control 

(individual exposures)

Conditional logistic with 

exposure as dependent 

variable, stratified by individual 

clogit[p(exposure=1)| covariates, 

ith stratum] = β1outcome event + 

β2time factors

No overlap bias

Can adjust for monotonic time 

trends in exposure

Only applicable if single binary 

exposure and single outcome event

(Continued)
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observational setting by comparing each participant’s expo-
sure immediately before the outcome event (referred to as the 
case period or hazard period) with that individual’s exposure 
at other times (referred to as the control periods or referent 
periods). The referent periods must be close enough to the 
hazard period to ensure that the assumption of exchange-
ability is met, but far enough in time from the hazard period 
to prevent short-term autocorrelation and carryover effects 
within an individual.

In the initial studies using this approach, patients were 
recruited after events occurred, and they retrospectively 
reported their usual frequency of past exposure as an esti-
mate of exposure during the entire observation period.17,18 For 
instance, patients admitted for a myocardial infarction (MI) 
were asked about marijuana use immediately before the MI 
(the hazard period) and about their typical frequency of mari-
juana use in the past year (the referent period). Because the 
referent period is restricted to times close to the hazard period, 
the baseline risk of the outcome is expected to be similar, 
but within-person confounding due to short-term changes in 
exposure and outcome risk is not easily addressed. The data 
are analyzed using a Mantel-Haenszel measure that is efficient 

for sparse data, which is necessary here because each stra-
tum includes data from only one individual. It only requires 
the assumption that, conditional on the causal effect of expo-
sure on outcome, the probability of outcome is the same for 
the hazard period and each of the matched referent periods 
(pairwise exchangeability).19 However, this approach is only 
useful for categorical exposures, it relies on a summary of 
prior exposure rather than more finely resolved data, and the 
statistical power to jointly stratify on the individual and on 
time-varying factors may be limited by the practicality of data 
collection.

To reduce confounding by time-varying factors such as 
circadian rhythm, day of week, or co-exposure to other factors 
that may impact outcome risk, matched interval sampling is 
used to compare the risk of the outcome, conditional on expo-
sure, during the hazard period to the risk in one or more refer-
ent periods matched on some time factor for each individual.20 
For example, in a study examining whether coffee intake trig-
gers an MI, there is a higher risk of cardiovascular events in 
the morning and people are more likely to drink coffee in the 
morning than at other times of day. Therefore, the heightened 
risk may be at least partially due to the time of day rather 

Unconditional 

Poisson

Time series (shared  

exposures)

Unconditional Poisson with number 

of outcome events in the interval 

as the dependent variable, 

Log(number of outcome events) 

= β1exposure + β2time factors

No overlap bias

Allows for further adjustment 

for confounding

Uses information on all 

available person–time, 

eliminating concern of bias 

from selection of specific 

matched referent periods

Allows for variance 

overdispersion

Assumes parameterization of time 

trends is correctly specified

Only allows for baseline risk to vary 

between prespecified strata

Slow convergence when fitting 

interaction terms for individual 

factors

Time-stratified case–crossover 

study of a shared exposure

Log(number of outcome 

events|covariates) = β1exposure + 

β2time factors

Eliminates short-term trends 

by design rather than 

with no concern of model 

misspecification

Slow convergence when fitting 

interaction terms for individual 

factors

Conditional 

Poisson

Self-controlled case series 

(individual or shared 

exposures)

Conditional Poisson with number of 

outcome events in the interval as 

the dependent variable, stratified 

by individual

Log(number of outcome 

events|covariates, ith stratum) 

= β1exposure + β2age group + 

β3time factors + offset (log of 

time spent in interval)

Algebraically equivalent to 

time-stratified case–crossover 

(individual or shared exposures)

No overlap bias

Allows for further adjustment 

for confounding

Can use information on all 

available person–time, 

eliminating concern of bias 

from selection of specific 

matched referent periods

Applicable for both individual 

or shared exposures

Can adjust for monotonic 

time-trends

Can account for 

overdispersion and 

autocorrelation

Assumes parameterization of time 

trends is correctly specified

Standard approach only appropriate 

when outcome event does not 

impact censorship and long-term 

probability of exposure

TABLE 2. Analytic Approaches for Self-matched Studies

 Design Analysis Advantages Disadvantages
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than to the coffee intake. To address this concern, exposure 
in the hour before MI is compared with exposure in matched 
referent periods at the same time of day on prior days, or time 
is included as a covariate in the model.20 Other time-varying 
factors can be also be addressed by statistical adjustment. For 
instance, covariates for co-exposure to physical activity can be 
included in the regression model.

Analyses of matched referent periods are commonly 
conducted using routinely collected data with high temporal 
resolution to account for time-varying factors. When expe-
riencing an outcome event impacts subsequent exposure, 
reverse causation may occur so only times preceding the out-
come event are selected as referent periods (unidirectional 
sampling); otherwise, times before and after the hazard period 
can be used (bidirectional sampling). Matched interval data 
are analyzed with conditional logistic regression, allowing for 
continuous exposures and confounders. Compared with an 
analysis of usual frequency data with a Mantel-Haenszel esti-
mator, this often yields greater flexibility to adjust for covari-
ates, but only a sample of referent person–time is included so 
it typically has less statistical efficiency.20 Furthermore, stron-
ger assumptions are necessary when there are two or more 
referent periods per case. In addition to pairwise exchange-
ability between the hazard period and each referent period, 
the probability of outcome must be independent across all 
periods within a matched set conditional on the causal effect 

E

B

C

D

A

FIGURE.  Options for self-matched analyses. Hypothetical 
data for six individuals. Solid lines represent exposed person–
time and dashed lines represent unexposed person–time. Dark 
shading represents time included in the analysis and light 
shading represents time excluded from the analysis. An “X” 
represents the time of the outcome event for each case and 
an “O” represents the time when someone was sampled as 
a control. The vertical dashed line represents stratification by 
time (month). Vertical lines for further stratification could be 
added to any of these figures because all approaches allow for 
further adjustment for time-varying factors. Arches represent 
the referent periods sampled to be close in time to the hazard 
periods. Each panel represents an example with no censoring,  

FIGURE (Continued). but can be extended to situations with 
left and/or right censoring. All approaches can be conducted 
with exposures ascertained prospectively or retrospectively 
for individual or shared exposures. A, Unidirectional case-
crossover with one referent period sampled for each out-
come event. Additional referent periods before the outcome 
event can also be included. In this example, #5 would not 
contribute information to the estimate because the individual 
was exposed during the hazard and referent period. B, Time-
stratified bidirectional case–crossover. Stratification by time 
(month) before sampling the referent periods as all days fall-
ing on the same day of the week in the same month as the 
outcome event. Randomly sampling a referent period before 
or after the hazard period (semisymmetrical bidirectional sam-
pling) or including all recent days other than the hazard period 
as the referent times (full stratum bidirectional sampling) also 
avoid overlap bias. C, Case-time control to account for pop-
ulation-level trends in exposure using a sample of controls. 
The approach was developed for analyses using unidirectional 
sampling but could theoretically be used with semisymmetric 
bidirectional sampling. D, Fixed-effects case-time control and 
self-controlled case-series data for all person–time before the 
outcome event. A case–crossover analysis of usual frequency 
data includes this person–time, but exposure is summarized 
as typical frequency rather than using each time unit in the 
analysis. E, Self-controlled case-series and fixed-effects case-
time control include all person–time under observation, both 
before and after the outcome event.
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of exposure on outcome (global exchangeability).19 Second, 
there can be no dependence (autocorrelation) in exposure over 
time. A third concern is the issue of overlap bias.21 The con-
ditional likelihood formula for conditional logistic regression 
reflects the probability of the observed data configuration rela-
tive to the probability of all possible permutations of the data. 
If referent periods always precede the outcome event or if ref-
erents are systematically selected at specific intervals before 
and after the outcome event, overlap bias arises because the 
referent periods are a function of the outcome event times.21,22

Case-time Control
The case-time control approach was developed for phar-

macoepidemiologic research, where confounding by indica-
tion is a great challenge. Therefore, a self-matched approach 
is appealing. Typically, unidirectional sampling is necessary 
because experiencing an outcome event likely changes sub-
sequent treatment. In addition to temporal changes in individ-
ual-level factors, there are also population-level changes. For 
instance, the probability of treatment may increase over time 
as its benefits or risks become widely recognized. If there are 
time trends in exposure, even in the absence of changes in 
outcome risk, and hence, no time-varying confounding, there 
is a problem of selection bias, because rather than selecting 
referent times that represent the exposure distribution in the 
underlying study base, referent periods were selected when 
exposure was systematically different.23

To address time trends in exposure, Suissa6,7 proposed 
the case-time control approach as an extension of the case-
crossover technique. Cases and a sample of noncases (con-
trols) at risk at the time the case occurred are recruited at the 
time of the cases’ outcome event as in a risk-set sampling 
paradigm, and information on a dichotomous exposure during 
the hazard period and an earlier referent period is obtained for 
all participants. The data are analyzed using conditional logis-
tic regression. However, rather than the conventional approach 
of estimating the odds of the outcome, exposure is modeled 
as the dependent variable and outcome and time factors are 
included as predictors, with the model stratified by individual. 
In an intuitive mathematically identical parameterization, the 
model includes period (hazard or referent) as the dependent 
variable with independent variables for exposure and an inter-
action term for exposure and group (case or control). The 
association for the controls is estimated by the coefficient for 
exposure as a function of time period, which if there were no 
time trend in exposure would be null. The interaction term 
corresponds to the self-matched exposure effect based on the 
cases adjusted for the self-matched time (period) effect esti-
mated among the controls.

The design has been criticized because it assumes the 
same time trend in exposure for cases and controls.7,23 This 
is analogous to difference-in differences estimators in econo-
metrics24 that require the assumption that, in the absence of 
treatment, the average outcomes for the treated and untreated 

groups would have followed parallel trends over time. These 
assumptions are unverifiable in a standard case-time control 
study, because it is restricted to intermittently exposed cases 
and controls at two time points. However, one could exam-
ine whether the time trends are different between cases and 
controls if the sample were nested within a population-based 
registry or other well-defined cohort. Another drawback is that 
it was developed for data with one hazard period and one ref-
erent period. If all person–time during the observation period 
is available, accounting for time trends using only a sample 
of controls and only two time points may not maximally use 
the richness of the data. Despite these limitations, if data on 
an appropriate control group is available, it provides a valid 
and easy computational method for conducting a self-matched 
analysis with unidirectional sampling that accounts for time 
trends in exposure and is free from overlap bias.

A subsequent variant of the case-time control design25 
aimed to address time trends in exposure using data restricted 
to cases and referent times preceding the outcome event. How-
ever, if exposure impacts survival, this approach is likely to 
induce selection bias by modeling time trends based on the 
exposure distribution among future cases rather than a sam-
ple that represents exposure in the underlying study base. 
Furthermore, when exposure and outcome are associated, 
referent times selected from future cases are more likely to 
be unexposed times, inducing a bias from sampling referent 
times dependent on exposure. This limits the utility of this 
approach, and may be particularly problematic in the setting 
of pharmacoepidemiology.

Fixed-effects Case-time Control
To address the limitations of the case-time control 

approach, Allison and Christiakis8 proposed a method that 
also models exposure status as the dependent variable in a 
conditional logistic regression model to adjust for time trends 
in exposure, but it only requires information on cases and uti-
lizes all person–time under observation before the outcome 
event. For each case, there is one row of data for each day of 
observation. If observation continues after the outcome event, 
the data are analyzed with a conventional conditional logistic 
regression model. If occurrence of the outcome event is a cen-
soring event (e.g. death), a standard conditional logistic model 
would not converge because the outcome event is always the 
last observation for each participant. Therefore, the case-time-
control technique of reversing the dependent and independent 
variables in the conditional logistic regression model is applied. 
This approach is only applicable for a dichotomous exposure, 
though a multinomial logit model for polytomous exposures 
should be possible. When appropriate, it offers several advan-
tages. Unlike a unidirectional case–crossover analysis, there 
is no concern of overlap bias because the dependent variable 
is not perfectly predicted by time, and adjustment for mono-
tonic functions of time is possible. Unlike the case-time control 
approach, there is no need to obtain information on controls.
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Self-controlled Case Series
Farrington9 proposed the self-controlled case series 

approach that uses all person–time both before and after the 
outcome event. A dataset is created with person–time for each 
case partitioned into exposed and unexposed intervals. To 
attain exchangeability, the data are further divided by time-
varying factors that are strong predictors of exposure and 
outcome, such as age. In the standard approach, the data are 
analyzed with a conditional Poisson model stratifying on the 
individual with the number of outcome events as the response 
variable and the log of each interval length as an offset. This 
is mathematically identical to a multinomial or fixed effect 
model.26 This approach uses all of the person–time under 
observation, it does not require the assumption of global 
exchangeability, and overlap bias does not occur. Semipara-
metric extensions using conditional Poisson27 or Cox strati-
fied proportional hazards models28 were designed to avoid 
misspecification of the baseline incidence.

In this approach, it is assumed that within individuals, 
outcome events are recurrent and independent of each other 
or rare and nonrecurrent, and that occurrence of an outcome 
event does not alter the probability of subsequent exposure. 
If experiencing an event temporarily alters exposure, adjust-
ment for the immediate preexposure period removes this per-
son–time from the referent information. If each individual 
experiences one episode of exposure, this problem could be 
addressed by redefining the beginning of observation as the 
start of exposure time, with some loss in statistical power.10 
Alternatively, for dichotomous exposures with short post-
exposure risk, a pseudo-likelihood approach can be used to 
reclassify postevent exposure time. The final assumption is 
that the occurrence of an outcome event does not impact the 
censoring of the observation period. Extensions have been 
developed to address violations of changes in postevent expo-
sure29 or censoring.30,31

SELECTING THE OPTIMAL SELF-MATCHED 
APPROACH AND ANALYSIS

All self-matched techniques examine the acute risk of 
an outcome event following transient exposure to a potential 
trigger by comparing risk among each individual at different 
times, assuming no misclassification of exposure, outcome, or 
covariates. Similar to matched cohort and case-control stud-
ies, all of these approaches are susceptible to greater bias from 
nondifferential exposure misclassification than analyses that 
do not require matching.32,33 In all approaches, as with any 
study design, the etiologically relevant hazard period may be 
immediately before the outcome event or may involve time 
lags. All regression models for self-matched data provide an 
estimate of the relative risk assuming a constant baseline inci-
dence within categories of the specified time-varying factors 
for each individual.10,19 They all adjust implicitly for expo-
nential time trends in the baseline incidence and account for 
other nonmonotone time-trends with parametric terms.19 The 

case-time control and fixed-effects case-time control can also 
include covariates for monotonic time trends. There are, how-
ever, several factors to consider when selecting an approach 
for analyzing self-matched data.

Changes in Exposure and Outcome
The concern of time-varying confounding depends on 

the substantive question of interest and on the composition 
of the study base. There may be little concern of confounding 
in a study conducted on an open cohort of individuals hos-
pitalized at a local hospital over a relatively short follow-up 
period. However, an aging closed cohort may involve con-
cerns that there are factors that systematically change in a 
manner related to exposure and outcome. For instance, in a 
self-matched study examining the acute risk of MI following 
the death of a spouse, individuals in a closed cohort are aging 
over time, with a potentially corresponding higher probability 
of experiencing the death of a spouse and a higher probability 
of experiencing an MI.

Person–time Contributing Information
The exposure effect in all self-matched approaches is 

based on cases, but the individuals who contribute information 
differ. A case–crossover analysis with usual frequency data is 
restricted to intermittently exposed cases, and a case–cross-
over study with matched interval data is restricted to cases 
with exposures that are discordant for the hazard period and at 
least one of the matched referent periods. The case-time con-
trol approach includes individuals who were not cases at the 
time of inclusion in the study (controls), and the fixed-effects 
case-time control and self-controlled case series approaches 
include cases whose exposure remains constant during the 
observation period to model changes in the risk of the out-
come over time. If it is necessary to account for the effect 
of long-lasting or monotone exposures, unexposed cases may 
be required to separate age and exposure effects.27 Including 
cases with constant exposure could theoretically be included 
to estimate time trends in a case–crossover analysis. The dif-
ferences in who contributes information may impact the inter-
nal validity and generalizability of the results because cases 
that are never exposed during long observation periods may 
be different from people with variation in exposure during the 
study. In these situations, restricting the sample to people who 
were exposed at some time over the observation period may 
result in lower precision and limit generalizability, but it may 
improve internal validity8 and avoid violations of the positiv-
ity requirement that there are exposed and unexposed partici-
pants for each value of the covariates.34

Exposure, Confounder, and Outcome 
Assessment

In all self-matched approaches, exposure may be 
recorded prospectively before outcomes occur, such as data 
obtained with self-report daily questionnaires, electronic 
health records, administrative records, or meteorologic 
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surveillance with local monitors. Alternatively, exposure data 
may be ascertained retrospectively after the onset of the out-
come. For instance, information may be obtained via. inter-
views upon hospitalization for the outcome event or medical 
record review after identifying arrhythmias from implantable 
defibrillators.

The study may involve self-reported exposures and out-
comes, such as anger outbursts, alcohol intake, or physical 
activity, or they can be conducted using objectively recorded 
data from sources such as sleep polysomnography35 and actig-
raphy monitors. Routinely collected data are immensely useful; 
phone billing records36 include data on the timing of cell phone 
use; administrative health datasets often include information 
on dates of prescription drug orders and dispensed doses, vac-
cinations, and procedures; and national registries often have 
information on inpatient and outpatient diagnoses. If data have 
already been collected for a well-defined cohort over many 
years, the choice among self-matched approaches may depend 
on how the investigator prefers to minimize bias due to time-
varying factors. These methods include matching restriction to 
periods close in time and statistical adjustment (case–crossover),  
a control group and further matching; restriction and statistical 
adjustment (case–time control); statistical adjustment in a con-
ditional Poisson (self-controlled case–series); or discrete-time 
modeling (fixed-effects case–time control).

Total Observation Period versus a Sample of 
the Observation Period

Some case–crossover and case–time control stud-
ies use a sample of person–time that may seem analogous 
to case-control studies, whereas the fixed-effects case–time 
control and self-controlled case-series approaches use all of 
the person–time in the observation period, which may seem 
analogous to cohort studies. However, as we have discussed 
previously,15 a study using all of the person–time under obser-
vation may garner greater statistical precision than a study 
using a sample of the person–time,37 but in the absence of 
confounding and selection bias, both approaches yield identi-
cal results in expectation because all case-control studies can 
be conceptualized as an efficient sampling from the underly-
ing, possibly hypothetical, pool of person–time.16,38

Given this equivalence, the choice between using a 
sample or all of the person–time depends on the ability to 
address time-varying factors. One option is to select referent 
periods that are close in time to the hazard period to minimize 
concerns of time-varying confounding by changes in baseline 
risk but spaced far enough apart to prevent carryover effects 
and autocorrelation.15 Selecting more referent periods per 
case may yield greater statistical precision, but may result in 
greater risk of autocorrelation between referent periods. Fur-
thermore, selecting one referent period for each hazard period 
only requires the assumption of pairwise exchangeability, but 
selecting two or more referent periods requires the stronger 
assumption of global exchangeability.19

An analysis using all person–time can improve statistical 
efficiency and prevent selection bias arising from incorrectly 
sampling referent times when individuals are more or less 
likely to be exposed. To minimize time-varying confounding, 
the investigator parameterizes time-trends in multivariable 
models with indicator variables, polynomials, or splines for 
time-varying factors such as season, age, or policy changes. 
This allows for flexibility in handling time trends beyond what 
is possible with matching on discrete time blocks, but there 
may be a greater concern of long-term trends in exposures and 
confounders for studies where individuals contribute person–
time for many years, and one must assume that the shape of 
the time trends are correctly specified.

Impact of Outcome Events on Subsequent 
Exposure

Experiencing an outcome event may affect subsequent 
exposure. For instance, having an MI may lead to less physi-
cal activity and changes in medication use. In this situation, 
including postevent referent times leads to reverse causation. 
For example, if outcome decreases subsequent exposure, it 
would lead to an upward bias if postevent times were included. 
In a self-controlled case-series analysis, postevent changes in 
exposure are addressed by including a term for the immedi-
ate preexposure period, by redefining the beginning of the 
observation period as the start of a single exposure time under 
observation, or by using a technique that reclassifies postevent 
exposure time as unexposed time with the number of events 
estimated from other unexposed times. In a case-crossover, 
case-time control or fixed-effects case-time control analysis, 
this is addressed by selecting all referent periods from times 
preceding the hazard period (unidirectional sampling).

If unidirectional sampling is appropriate, a case-cross-
over analysis can be conducted with either a Mantel-Haenszel 
measure for usual frequency data or conditional logistic 
regression for matched interval data, though the latter may 
lead to overlap bias.22 In a unidirectional case–crossover anal-
ysis, changes in the probability of exposure between the haz-
ard and referent period(s) may induce selection bias because 
the selected referent times have a systematically different 
exposure distribution than the underlying study base.23 Condi-
tional logistic regression can be used with the case-time con-
trol and fixed-effects case-time control approaches to address 
selection bias from time trends in exposure. In these analyses, 
the dependent variable is exposure, so the fact that the referent 
periods systematically precede the outcome no longer induces 
overlap bias.

Bidirectional sampling is appropriate when experienc-
ing the outcome event does not impact subsequent long-term 
exposure. For instance, in a study of coffee intake and the 
occurrence of migraines, a regular coffee drinker may resume 
their daily habit regardless of whether they recently suffered a 
migraine. Similarly, having an MI does not impact subsequent 
population levels of ambient pollution or weather. Therefore, 
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in these situations, bidirectional sampling can be used to 
include either a sample or all available person–time before 
and after the outcome occurs.

Several approaches use a sample of person–time, either 
randomly sampling a referent period before or after the hazard 
period (semisymmetrical bidirectional sampling),39 including 
all recent days other than the hazard period as the referent 
times (full stratum bidirectional sampling),40 or most com-
monly, selecting referent times on the same day of the week 
within the same calendar month as the hazard period (bidirec-
tional time-stratified sampling).41 Bidirectional sampling may 
improve statistical efficiency by including more referent peri-
ods per hazard period, it overcomes the problems of overlap 
bias and confounding by slowly varying characteristics39,41 in 
a time-stratified or full stratum case–crossover analysis, and 
it is a requirement for standard self-controlled case-series 
analyses.

Individual and Shared Exposures
Self-matched analyses can be conducted for individual 

exposures such as medication use and lifestyle factors, and it 
can be used to study exposures shared across individuals such 
as ambient pollution. In studies of individual exposures and 
fatal outcomes, unidirectional sampling is typically used. In 
studies of shared exposures, bidirectional sampling is appro-
priate even though the individual is no longer at risk of a 
subsequent event, because referent periods selected after the 
outcome event still represent the exposure distribution in the 
underlying study base.15,42

In analyses of shared exposures, potential confounders 
are factors that change over time in a manner related to fluc-
tuations in the exposure and outcome at a population level, 
such as environmental factors. Therefore, functions of time 
are included in the regression model with indicator variables, 
periodic (sine/cosine) functions, or flexible splines. In studies 
of individual exposures, there is no concern of a correlation 
in exposure or outcome between individuals, but in studies of 
shared exposures, the assumption that there is no correlation 
in the number of events (i.e., between strata) must also be con-
sidered. If events are not independent and there is clustering by 
day, this autocorrelation in events may lead to overdispersion.

There are several techniques for studying shared expo-
sures. Typically, the dataset for a time-stratified bidirectional 
case–crossover analysis includes rows for each hazard and 
each referent period per case. This expanded layout can result 
in large datasets when there are many cases, and it has slow 
convergence when fitting interaction terms for individual-level 
modifiers. Because several cases occur each day with the same 
shared exposure level, a more compact semiexpanded dataset 
includes a row for each day and a row for each of its matched 
referent days, with a count of events on those days. For both 
layouts, the data are analyzed with a conditional logistic 
regression model stratified by the event date, and the semiex-
panded data are weighted by event frequency. The approach is 

intuitive for comparing hazard and referent days, and it allows 
for examination of individual-level modifiers, but there is no 
ability to account for overdispersion or autocorrelation in the 
outcome.

An alternative computationally efficient approach can 
be conducted using a compact data set with one row for each 
day with at least one event and measures of exposure, time-
varying factors, and the number of events on that day. By 
assuming that the population size remains fairly stable over 
the time scale under analysis, the denominator of total popula-
tion size is not needed. Although it is not self-matched, this 
aggregated time series data accomplish the same goal as the 
self-matched approaches; it eliminates confounding by fixed 
or slowly varying factors, such as population age distribution 
or socioeconomic position. If analyzed with unconditional 
Poisson regression, only group-level modifiers can be exam-
ined. If analyzed with a conditional Poisson model, individ-
ual-level modifiers can be included, but either way, all of the 
person–time under observation is included and the model can 
account for overdispersion or autocorrelation.3,43

The results of a full-stratum bidirectional or time-strati-
fied case–crossover study using conditional logistic regression 
are mathematically equivalent to the results of a time series 
study using unconditional Poisson regression with indica-
tor variables for strata of time,3,22,44 where the smooth func-
tion of time is assumed to be a step function with a separate 
level of baseline risk for each prespecified stratum.22 It is also 
equivalent to a conditional Poisson model conditioned on 
the number of outcome events in each stratum, and the latter 
allows for overdispersion, autocorrelation, and varying rate 
denominators.43

Compared with a time-series analysis using uncondi-
tional Poisson regression, a case–crossover analysis using 
conditional logistic regression offers an intuitive conceptual-
ization of the comparison of interest, providing insight that 
could be missed when analyzing aggregated daily data with 
complex multivariable models that include nonlinear terms for 
time trends.45 Also, it is more suitable for examining poten-
tial modifiers of the association to identify characteristics of 
individuals who are particularly susceptible to adverse health 
effects or are more likely to benefit from healthful exposures. 
Conversely, a time-series approach is often more computa-
tionally straightforward because aggregated data are typically 
readily available from existing data sources, and the analysis 
allows for overdispersion and autocorrelation.

CONCLUSION
In all self-matched approaches, exposure and out-

come information may be collected prospectively or retro-
spectively, and they may be ascertained objectively or via. 
self-report. The validity of all self-matched analyses relies on 
the assumption that, conditional on the causal effect of expo-
sure on outcome, there are no temporal changes in the risk 
of the outcome related to the timing of exposure. Different 
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techniques aim to attain this comparability in different ways: 
matching, restriction to periods close in time, and statisti-
cal adjustment (case–crossover), a control group and further 
matching, restriction and statistical adjustment (case-time 
control) or statistical adjustment in a conditional Poisson 
(self-controlled case-series) or discrete-time model (fixed-
effects case-time control).

Prior Presentation
Some of these ideas were presented in a presentation for 

the Society for Epidemiologic Research Epidemiologic Meth-
odology Applications Conference on November 17, 2012.
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