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1   |   INTRODUCTION

The human body hosts extensive symbiotic microbes, 
primarily bacteria, residing in varied niches including 
the gut, skin, vagina, and oral cavity.1 These microbes 
present inter- and intra-individual variations in diversity 
and abundance across different organs.2 Factors such as 
dietary habits, environmental exposures, and host genet-
ics have been attributed to the broad microbial variance.3 
Notably, the microbiota and its metabolites may regulate 
the development and function of the host's immune sys-
tem.4 These microbiota also influence other physiological 
activities in mammals, including metabolism and behav-
ior.5,6 Recent scientific research suggests an important role 
of commensal bacteria in the pathogenesis of various dis-
eases, particularly autoimmune diseases (AID).7

Mendelian randomization (MR) offers a new approach 
to analyze the intricate interactions between the gut mi-
crobiota and AID.8,9 The aim of this review was to synthe-
size existing research and enhance our understanding of 
the microbiota's role in AID pathogenesis. We also aimed 
to evaluate the potential use of MR in this area.

2   |   THE PATHOPHYSIOLOGY OF 
AID

AID occur when the immune system mistakenly attacks 
the body's own tissues, leading to tissue damage and sys-
temic disturbances.10 AID include a range of diseases, 
from rheumatoid arthritis (RA) to systemic lupus ery-
thematosus (SLE).11,12 Distinctly marked by the immune 
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system's heightened reactivity to self-antigens, AID often 
result in inflammation and damage in various tissues.13 
The exact etiology behind these diseases is multifactorial, 
often rooted in a combination of genetic susceptibilities, 
environmental triggers, and at times, hormonal influ-
ences.14–16 Of note is the prevalence of AID, which stands 
at approximately 4.5%, with a marked gender disparity: 
females exhibit a 6.4% prevalence rate compared to 2.7% 
in males, underlining potential gender-based disparities 
in the immune response.17

2.1  |  Immune cells

The pathogenesis of AID may be intricately linked with 
immunocyte dysfunction.18 Within the T-cell subgroups, 
regulatory T-cells (Tregs) play an indispensable role in 
maintaining immune tolerance.19 Compromised function 
of Tregs may pave the way for effector T-cells to target 
self-tissues.20 In addition, T-helper 17 (Th17) cells primar-
ily work in autoimmune pathologies via interleukin-17 
(IL-17) secretion, which leads to recruitment of neutro-
phils, activation of innate immune cells, enhancement of 
B-cell functionality, and the induction of pro-inflammatory 
cytokines.18 Th1 cells are typical cellular actors in cell-
mediated inflammation and delayed-type hypersensitivity 
reactions. They are deemed pivotal in immunity against 
intracellular pathogens. Moreover, interferon-γ (IFN-γ), 
a signature cytokine of Th1 subset, has been historically 
related to the pathophysiology of several AID, including 
type 1 diabetes (T1D), multiple sclerosis (MS), and RA.18 
Th2 cells were initially characterized as anti-inflammatory, 
based on their capacity to counteract cell-mediated or Th1 
disease models. Genain's group reported that in marmo-
sets with experiment allergic encephalomyelitis, cytokine 
production was shifted from a Th1 to Th2 pattern, and ti-
ters of autoantibodies to myelin oligodendrocyte glycopro-
tein were increased. They hypothesized that Th2 response 
might exacerbate autoimmunity by amplifying the produc-
tion of pathogenic autoantibodies.21

Additionally, while B-cells are the primary source of an-
tibodies, anomalies in certain subgroups may related to AID 
pathogenesis.22 Excessive immune responses can lead to an 
overabundance of self-antibodies, ultimately resulting in au-
toimmune disorders. For example, neutrophils may pose an 
exaggerated response against self-tissues particularly in con-
ditions like SLE.23 Neutrophil extracellular traps can expose 
self-antigens, activating T-cells, B-cells, and macrophages. 
This instigates autoimmune reactions and results in tissue 
or organ damage.24,25 Overactive macrophages may stimu-
late protease secretion, leading to a significant rise in soluble 
CD163 levels in peripheral blood, ultimately causing tissue 
damage and accelerating disease progression.26–28

2.2  |  Gut microbiota

The gut microbiota, consisting of diverse microbes, holds 
a critical position in human health. They not only facili-
tate nutrient absorption and metabolism but also greatly 
influence our immune functions. Human gut microbiota 
enriched of an estimated 1000 unique species with gra-
dient concentrations vary from a mere 102–3 bacteria per 
gram in the stomach to 1011–12 bacteria per gram in the 
large intestine.29

Changes in the composition and metabolic functions 
of the gut microbiota are correlated with numerous patho-
logical conditions. Dysbiosis, or the imbalance in the gut 
microbial ecosystem, can trigger inflammatory responses 
and is suspected to promote autoimmune conditions like 
RA and inflammatory bowel disease.30 In addition, the 
metabolic byproducts of these gut microbiota can regulate 
the function and proliferation of immune cells. For exam-
ple, short-chain fatty acids can promote the proliferation 
of Tregs.31 Meanwhile, beneficial microbes, primarily 
Bifidobacterium and Lactobacillus, also play crucial roles 
in promoting Tregs and maintaining immunological tol-
erance.32,33 Furthermore, these beneficial microbes bol-
ster the integrity of intestinal mucosal barrier, protecting 
bloodstream from harmful agents, and pathogens infiltra-
tion.34,35 The dynamic relationship between the gut micro-
biota and the human immune system is fundamental for 
maintaining immunologic balance and preventing AID.

Recent studies have shed light on the relationship be-
tween gut microbiota and AID.36 Dysbiosis has been con-
sistently linked to conditions such as RA and SLE.30,37 
In particular, individuals with AID have demonstrated 
a marked reduction in the abundance of beneficial bac-
teria and an increase in certain microbial species.38 
Furthermore, therapeutic strategies like fecal microbiota 
transplantation have shown promise in improving dysbi-
osis and AID-associated symptoms.39 Nevertheless, com-
prehensive and multifaceted studies are still required to 
understand the complex interactions between the gut mi-
crobiota and AID.

3   |   MR ANALYSIS

3.1  |  Basic concepts and methodological 
features

MR is a genetic-based instrumental analytical tool for 
evaluating causal relationships in epidemiological stud-
ies. This statistical method uses genetic variants, primarily 
single nucleotide polymorphisms (SNPs), as instrumental 
variables (IVs) to discern the causal effect of exposures on 
outcomes.40
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3.1.1  |  Basic concepts

Genetic IVs: IVs refer to genetic variants that are associ-
ated with the exposures but not with confounders.41

Assumptions: MR analysis has three core assumptions. 
(1) The genetic variant should be robustly associated with 
the exposure. (2) The variant should affect the outcome 
only through exposure. (3) The variant should be inde-
pendent of any confounder of the exposure-outcome 
relationship.42

3.1.2  |  Methodological characteristics

Thanks to the random assortment of alleles during gamete 
formation and the Mendelian law of segregation, individ-
uals inherit genetic variants independent of confounding 
factors. This genetic lottery offers a sort of “natural experi-
ment”, allowing MR to sidestep many biases observed in 
traditional observational studies.43 Subsequently, reverse 
causation is a main challenge in epidemiology research. 
By deploying genetic variants fixed at conception, MR can 
effectively avoid this issue, since these variants precede 
the onset of disease or outcome.44 Moreover, although MR 
may be biased to pleiotropy, advanced MR techniques, 
such as MR-Egger regression and weighted median meth-
ods, have been developed to address pleiotropic effects and 
provide more valid causal estimates.45 While MR provides 
a powerful platform for causal inference, it's not without 
limitations. For instance, the method depends  on the 
availability of robust genetic instruments, and the results 
can be skewed if the aforementioned assumptions are 
violated. Furthermore, MR conclusions are population-
specific, owing to genetic differences across populations.46 
In conclusion, MR offers a unique window into causal re-
lationship investigation, drawing strength from the prin-
ciples of genetics. As with all statistical methods, while it 
has several advantages, it also demands a judicious under-
standing of its assumptions and potential pitfalls.

4   |   RESEARCH PROGRESS ON 
GUT MICROBIOTA AND SLE

The term “lupus” was created by physicians in the 19th 
century to describe cutaneous manifestations, and it took 
nearly a century to realize that the disease is systemic and 
caused by abnormal autoimmune reactions.47 Currently, 
lupus or SLE is defined as a medical condition where the 
immune system mistakenly attacks and damages normal 
cells and tissues across the entire body.48 It primarily im-
pacts females in their reproductive years and manifests 

in multiple organs, encompassing the skin, joints, and 
kidneys.49

Globally, the estimated adult SLE prevalence ranges 
from 30 to 150 per 100,000 people, with annual incidence 
rates between 2.2% and 23.1% per 100,000 people.50 SLE 
is characterized by abnormal immune system activation, 
resulting in exaggerated response of B and T cells and the 
loss of immune tolerance to self-antigens. SLE clinical 
symptoms include mild fatigue and articular pain, as well 
as severe life-threatening organ injury.48

Possible etiologies of SLE involve genetic, environmen-
tal, hormonal, and immunological factors.47 Genome-
wide association studies (GWAS) have identified over 60 
SLE susceptibility risk loci.51 Various environmental fac-
tors, including ultraviolet exposure, silica exposure, smok-
ing, as well as viral and bacterial infections, all contribute 
to the development of SLE.52–56 The treatment options 
currently available for SLE consist of glucocorticoids, im-
munosuppressive drugs, and antimalarial medications; 
however, their application is restricted due to the occur-
rence of severe adverse effects.48,57 Recently, increased 
research has revealed that the gut microbiota, as an en-
vironmental factor, plays a role in the advance of SLE,58 
and adjusting the gut microbiota seems like an available 
therapeutic approach.59

4.1  |  Gut microbiota changes and SLE

The gut microbiota is significantly dysregulated in sub-
jects with SLE. In 2014, Hevia et al. first reported the lim-
ited gut microbiota diversity in lupus patients compared 
to healthy individuals.60 Similarly, Azzouz et  al. also 
found that disease activity in lupus was negatively corre-
lated with gut microbiota biodiversity. Moreover, in SLE 
patients with higher disease activity, the abundance of 
the anaerobic genus Ruminococcus gnavus was five times 
higher than normal levels on average.37 Additionally, a 
previous research indicated the changed composition of 
the gut microbiota in SLE patients, and seven enriched 
microbes experienced reduction after treatment.58

The Bacteroidetes and Firmicutes are the dominant 
bacteria groups in human body.61 In SLE patients, how-
ever, there is an increase in Bacteroidetes and a decrease 
in Firmicutes, leading to a significant decline in the 
Firmicutes/Bacteroidetes (F/B) ratio.62 Widhani et al. also 
reported that the F/B ratio was lower in lupus subjects with 
moderate or high disease activity compared to those with 
mild disease activity.63 Moreover, studies have demon-
strated a negative correlation between Firmicutes and the 
SLE disease activity index,64 suggesting that Firmicutes 
may delay lupus progression. Therefore, a decreased F/B 
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ratio is an important indicator of gut microbiota in SLE 
patients.

Furthermore, research indicated that certain bacterial 
genera were enriched in SLE patients, such as Rhodococcus, 
Eggerthella, Klebsiella, Prevotella, Actinomyces, and 
Flavonifractor, while Dialister and Pseudobutyrivibrio 
were significantly reduced.60,62 In a systematic review 
including SLE patients, there was an abundance de-
cline of Ruminococcaceae, a rise in Enterobacteriaceae 
and Enterococcaceae, and no significant changes in 
Spirochaetaceae and Bacteroidaceae.65

In summary, SLE patients exhibit significant changes 
in gut microbiota, including microbial diversity, abun-
dance of specific microbes, and F/B ratio. These changes 
may be related to the development of SLE.

4.2  |  The role of gut microbiota in SLE

Although observational correlation between the gut mi-
crobiota and SLE has been extensively studied, whether a 
causal relationship exists remains unclear.

An MR study selected SNPs related to the human gut 
microbiota from GWAS involving 18,473 individuals and 
122,110 variant loci.66 A total of 25 population-based co-
horts from various countries participated in this exten-
sive multi-ethnic GWAS. The primary objective was to 
investigate the relationship between ordinary genetic 
variations on autosomes and the gut microbiota. To ex-
tract the effect estimates of relevant SNPs, data from a 
substantial SLE GWAS comprising 7219 cases and 15,991 
controls of European ancestry were utilized.67 This study 
indicated negative correlations between Bacteroides, 
Faecalibacterium, Ruminococcus, and Actinobacteria and 
the risk of SLE. Bacilli, Lactobacillus, and Eggerthella were 
identified as potential risk factors for SLE, supporting a 
potentially beneficial or detrimental cause and effect from 
the gut microbiota components to SLE risk.9

In addition, Xu et  al. carried out another study to 
verify the relationship between the gut microbiota and 
AID.8 Data for gut microbiota were derived from GWAS 
meta-analysis with 340,240 individuals from 18 cohorts.66 
Exploration of microbial composition was conducted 
using three distinct variable regions within the 16S rRNA 
gene. To account for variations in sequencing depth, all 
datasets were standardized to include 10,000 reads per 
sample. A comprehensive set of 211 taxa were incorpo-
rated. Summary statistics pertaining to SLE were derived 
from publicly accessible GWAS that encompassed 7219 
cases and 15,991 controls.67 The results indicated that 
higher genetic predicted Bifidobacterium were related to 
a lower risk of SLE, while higher levels of Ruminococcus 
were positively correlated with SLE risk.8

In conclusion, MR analyses support a potential causal-
ity between components of the gut microbiota and SLE 
risk.

5   |   RESEARCH PROGRESS ON 
THE GUT MICROBIOTA AND MS

MS is a progressive neuro-inflammatory and neurodegen-
erative disease, which typically begins in early adulthood.68 
It has a female tendency, with an estimated prevalence 
of 450.1 per 100,000 for women and 159.7 for men.69 
Immune activation plays a key role in MS pathological 
mechanism, involving T cells, B cells, and microglia. T cell 
subsets like CD8+ T cells, CD4+ Th1 cells, and Th17 cells 
are linked to MS.70 Autoreactive T cells also produce cy-
tokines contributing to MS, including interferon-gamma, 
IL-17, and granulocyte-macrophage colony-stimulating 
factor.71 Besides, B-cell depletion in MS can attenuate the 
pro-inflammatory activity of CD4+ and CD8+ T cells.72,73 
Moreover, in early active MS lesions, approximately 40% 
of phagocytic cells are pro-inflammatory microglia, and 
their activation can result in axonal injury, demyelination, 
and blood–brain barrier disruption, among others.74

The etiology of MS remains unclear, with potential 
risk factors including genetics,75 low vitamin D levels,76 
Epstein–Barr virus exposure,77 smoking,78 and the gut 
microbiota.79 Several studies have linked low vitamin D 
levels with an increased risk of MS.80,81 Across numerous 
meta-analyses, Epstein–Barr virus antibody seropositivity 
and infectious mononucleosis have consistently been as-
sociated with an increased risk of MS.82 Of note, the gut 
microbiota is essential for the onset and maturation of the 
immune system.83 It connects the immune system to cer-
tain environmental factors and helps it tolerate harmless 
external and self-antigens.84

5.1  |  Gut microbiota changes and MS

Previous studies have reported changes in the gut micro-
biota composition of MS patients. Galluzzo et  al. found 
that MS patients had a lower abundance of Firmicutes and 
a higher abundance of Bacteroidetes.85 In MS-discordant 
monozygotic twins, the untreated MS twin had a higher 
level of Akkermansia than the healthy twin.86 MS patients 
also had lower levels of Prevotella, Faecalibacterium praus-
nitzii, and Bacteroides, and higher levels of Akkermansia 
muciniphila.87,88 Moreover, Cantarel et  al. found less 
Faecalibacterium in fecal samples from seven MS patients 
compared with eight healthy controls in the USA.89 Chen 
et al. reported increased Blautia, Mycoplasma, and Dorea, 
along with decreased Prevotella and Adlercreutzia in 
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relapsing–remitting MS patients.90 Furthermore, a case–
control study found that patients with MS had higher 
levels of Methanobrevibacter and Akkermansia, while 
Butyricimonas was less abundant.87

5.2  |  Relationship between gut 
microbiota and MS by MR

The association between the gut microbiota and MS has 
been widely researched, but a causal link is still uncertain.

We have searched one MR study of gut microbiota and 
MS. Xu et  al. used a two-sample MR to reveal a causal-
ity between the gut microbiota and AID including MS.8 
They used summary statistics of gut microbiota from a 
GWAS meta-analysis, including 340,240 individuals from 
18 cohorts.66 Meanwhile, summary-level data for MS were 
downloaded from the most recent GWAS meta-analysis 
by the International MS Genetics Consortium, which in-
cluded 14,802 MS cases and 26,703 controls of European 
ancestry.91 SNPs associated with gut bacterial taxa with 
p < 5.0 × 10−8 were selected as potential IVs. Finally, the 
analysis results indicated a causal association between 
the Bifidobacterium and MS, with higher Bifidobacterium 
abundance being associated with a higher MS risk.8

6   |   RESEARCH PROGRESS ON 
GUT MICROBIOTA AND RA

RA is a chronic systemic AID primarily affecting the 
joints, with symmetric peripheral joint inflammation 
(such as wrist and metacarpophalangeal joints) as its 
main characteristic. The affected joint structures undergo 
progressive damage and are often accompanied by sys-
temic symptoms.92,93 RA affects 0.5% to 1% of the global 
population, with a female incidence rate 2–3 times higher 
than that of males.93 In China, the prevalence is estimated 
to be 0.42%, with a total affected population of approxi-
mately 5 million, and a male-to-female ratio of about 1:4.94 
RA not only impairs the physical function, social partici-
pation of patients and quality of life but also imposes a 
significant economic burden on families and society.95,96 
The pathogenesis of RA is still unclear. Current research 
suggests that its development involves a complex inter-
action between genetic, environmental, and immune 
factors.97 Genetic factors determine 60% to 70% of the 
risk of RA, and those with a family history of RA have a 
3- to 9-fold increased risk of developing the disease.98,99 
Environmental factors like smoking, silica exposure, and 
infections are also involved in the development of RA by 
disrupting immune tolerance to post-translationally mod-
ified proteins.100,101 Dendritic cells (DCs) subsequently 

present these proteins to T-cells, which then activate B-
cells to undergo plasma cell differentiation and thus se-
crete autoantibodies.102,103 These autoantibodies form 
immune complexes to activate immune cells, which fur-
ther attract other inflammatory cells into the joints, re-
sulting in local damage. Additionally, DCs promote the 
differentiation of Th17 cells and inhibit the differentiation 
of Treg cells, shifting the balance of T cells toward inflam-
mation. Subsequently, activated T cells stimulate effector 
cells and their effector molecules, including macrophages, 
fibroblasts, osteoclasts, and chondrocytes, leading to car-
tilage and bone destruction.92 Furthermore, the connec-
tion between dietary risk factors and the pathogenesis of 
RA is still being explored. Increasing evidence suggests 
that a healthy diet can prevent the development of RA.104 
Research indicates that the influence of dietary factors 
may be mediated by the gut microbiota, intestinal per-
meability, or local immune system.105 Recent epidemio-
logical studies also suggest a link between gastrointestinal 
and urinary tract infections and a reduced risk of RA, in-
dicating that disruption of gut microbiota may play a role 
in this disease.106 Unfavorable alterations in the composi-
tion of the gut microbiota also referred to as dysbiosis, can 
impact the autoimmune response and disease outcomes 
in RA.107–109 For instance, these alterations can promote 
the growth of potential pathogenic microorganisms and a 
reduction in the beneficial bacteria.110,111

6.1  |  Gut microbiota changes and RA

Data from some arthritis animal models suggest gut 
microbiota plays a critical role in the development of 
the disease.112 In a preclinical model in RA mice, a sig-
nificant enrichment of Prevotellaceae, Lachnospiraceae, 
Ruminococcaceae, and Bacteroidaceae, particularly 
Prevotella copri, has been observed.38,113–115 In RA rat 
models, an increase in Prevotella abundance and a de-
crease in the relative abundance of Lactobacillus homi-
nis, Lactobacillus reuteri, and Lactobacillus vaginalis have 
been found.116,117

Most bacteria in the human gut belong to the 
Firmicutes and Bacteroidetes phylum. Bacteroides and 
Prevotella genera, as dominant members of Bacteroidetes, 
play a pivotal role in maintaining the balance of the gut 
microbiota. Prevotellaceae is a major bacterial family 
linked to dysbiosis. The abundance of Prevotella is con-
sistently increased in RA patients, both before and after 
clinical diagnosis.113,118,119 It has been found that in new-
onset untreated RA patients, the increase in Prevotella 
abundance is associated with a decrease in Bacteroides 
and the loss of beneficial microorganisms.30 Apart from 
Prevotella, preliminary evidence suggests that dysbiosis 
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of other microorganisms is also linked to the onset of RA. 
Chen et al. confirmed that RA patients had a higher abun-
dance of Collinsella and Eggerthella compared to first-
degree relatives of patients with RA and healthy controls, 
accompanied by an overall decrease in gut diversity.120 
Muñiz Pedrogo et al. found there was an increase in the 
numbers of Clostridiaceae and Epsilonproteobacteria 
in RA patients.121 Furthermore, Zhang et  al. observed 
an increase in Lactobacillus salivarius and a decrease 
in Haemophilus species in the gut of Chinese pa-
tients with RA108. Meanwhile, a reduced abundance of 
Faecalibacterium prausnitzii has been demonstrated to 
help maintain gut barrier function, modulate the Th17/
Treg balance, and exhibit significant anti-inflammatory 
effects.122 In addition, other studies have shown in-
creased abundance of Klebsiella, Enterococcaceae, 
Escherichia-shigella, Comamonadaceae, Moraxellaceae, 
Akkermansia, Eisenbergiella, Streptococcus, Lactobacillus, 
and Flavobacterium in RA patients, while the abundance 
of genera Bacteroides fragilis, Fusicatenibacter, Megamon, 
Bifidobacterium, Clostridium, Sarcina, and Enterococcus 
was reduced.123–129

Besides, an elevated abundance of Ascomycota and 
a reduced abundance of Basidiomycota have been ob-
served in synovial fluid samples from RA patients at the 
phylum level.130 The fecal samples from Chinese RA pa-
tients demonstrated an increased abundance of Wallemia 
and Candida species and a decreased abundance of 
Scedosporium, Pholiota, and Trichosporon.131

6.2  |  Relationship between gut 
microbiota and RA by MR

Studies have indicated that changes in gut microbiota are 
associated with RA.118,132 However, due to potential con-
founding factors and other limitations, it remains difficult 
to assess a causal association between the two through 
case–control studies. Therefore, the existence of a causal 
relationship between them remains uncertain.

Xu et al. extracted summary GWAS data for RA, in-
cluding 14,361 European ancestry RA cases and 43,923 
controls from 18 studies, and identified 17 independent 
SNPs linked to 12 genera of RA8. These MR studies re-
vealed no causal relationship between these gut micro-
biota taxa and RA. Similarly, an MR study by Inamo 
included a total of 19,234 RA cases and 61,565 controls 
from both Asian and European populations. This study 
obtained 26 SNPs associated with reduced bacterial taxa 
from gut microbiota GWAS. The results showed that 
association p values from three methods, inverse vari-
ance weighting (IVW), weighted median (WM), and 
MR-Egger were all non-significant (all p > 0.05), with 

no evidence of heterogeneity (heterogeneity p > 0.166), 
suggesting null causal relationship between gut micro-
biota and RA risk.133

However, Lee conducted two-sample MR analyses 
using the same data as Inamo's MR analysis and demon-
strated a significant correlation between gut microbiota 
and the risk of RA. A total of 32 SNPs were selected. The 
results showed that the MR estimates determined by IVW 
and MR-Egger regression analyses supported a causal 
relationship between the gut microbiota and RA (IVW: 
β = −0.024, p = 0.0006; MR-Egger: β = −0.027, p = 0.005), 
while the WM approach yielded no evidence of a causal 
relationship (β = −0.005, p = 0.144).134 Of note, Inamo 
only extracted SNPs related to reduced bacterial taxa in 
the gut microbiota as IVs, which accounts for the differ-
ent SNPs set in their studies. On the other hand, although 
Lee found a significant association through IVW and MR-
Egger analyses, the β coefficient was negative. If dysbiosis 
had a causal effect on the occurrence of RA, the β coeffi-
cient might be expected to be positive.135

Overall, the results of MR analyses may support a re-
lationship between gut microbiota and RA, but further 
research is needed to investigate the extent to which gut 
microbiota influences the development of RA. In addi-
tion, longitudinal studies are needed to demonstrate that 
specific microbial dysbiosis occurs prior to the develop-
ment of RA, and relevant in vivo studies and microbiome-
centered intervention trials are needed to further validate 
this view.135,136

7   |   CONCLUSION

We have reviewed the possible involvement of gut micro-
biota in causing AID. The composition of gut microbiota 
is altered in patients with AID, which suggests it could be 
used as a biomarker for diagnosis, prevention, and treat-
ment of these diseases.

MR analysis results suggest that gut microbiota, specif-
ically microbes such as Bifidobacterium, Faecalibacterium, 
and Ruminococcus, may have a causal relationship with 
AID. Of note, the feasibility of MR studies depends on the 
availability of robust genetic variations in the diseases. We 
thus need more suitable GWAS datasets that reflect a rel-
evant measure of dysbiosis in AID. By conducting more 
relevant MR studies, we can improve our understanding 
of the role of gut microbiota in AID and provide better 
guidance to patients. Besides, we should not be limited to 
changes in individual bacteria but the bacterial networks 
based on functionality, metabolites, and how these net-
works affect the diseases.

In summary, we have gained a clearer understand-
ing of the relationship between gut microbiota and AID. 
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Future research can use diverse population samples, ad-
vanced molecular biology techniques, and animal models 
to explore gut microbiota-related interventions and thera-
peutics for AID.
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