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N-GlyDE: a two-stage N-linked
glycosylation site prediction
Incorporating gapped dipeptides
and pattern-based encoding
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N-linked glycosylation is one of the predominant post-translational modifications involved in a number
of biological functions. Since experimental characterization of glycosites is challenging, glycosite
prediction is crucial. Several predictors have been made available and report high performance.

Most of them evaluate their performance at every asparagine in protein sequences, not confined to
asparagine in the N-X-S/T sequon. In this paper, we present N-GlyDE, a two-stage prediction tool
trained on rigorously-constructed non-redundant datasets to predict N-linked glycosites in the human
proteome. The first stage uses a protein similarity voting algorithm trained on both glycoproteins and
non-glycoproteins to predict a score for a protein to improve glycosite prediction. The second stage
uses a support vector machine to predict N-linked glycosites by utilizing features of gapped dipeptides,
pattern-based predicted surface accessibility, and predicted secondary structure. N-GlyDE's final
predictions are derived from a weight adjustment of the second-stage prediction results based on the
first-stage prediction score. Evaluated on N-X-S/T sequons of an independent dataset comprised of 53
glycoproteins and 33 non-glycoproteins, N-GlyDE achieves an accuracy and MCC of 0.740 and 0.499,
respectively, outperforming the compared tools. The N-GlyDE web server is available at http://bioapp.
iis.sinica.edu.tw/N-GlyDE/.

Protein glycosylation is a highly complex post-translational modification (PTM) that influences a variety of bio-
logical processes as protein folding, signaling, trafficking, cell-cell interactions, and immune response'->. In mar-
keted therapeutic proteins, more than one-third of approved biopharmaceuticals belong to glycoproteins*. More
than 50% of all polypeptides are covalently modified by the addition of structurally diverse oligosaccharides to
specific functional groups®. Based on the nature of the chemical linkage between the specific acceptor amino
acid and the glycan, glycosylation can be classified into four major categories: N-linked and O-linked glycosyla-
tion, C-mannosylation, and glycosylphosphatidylinositol (GPI) anchors®. Among these, N-linked glycosylation
is the most abundant type. Therefore, in this paper we particularly study N-linked glycosylation on the human
proteome.

In N-linked glycosylation, the glycan is attached to the amide nitrogen of asparagine (N). More specifically,
N-linked glycosylation predominantly occurs in N-X-S/T (S: serine, T: threonine) sequons, and in some rare
cases N-X-C (C: cysteine), where X can be any amino acid except proline’. Though the presence of a sequon is
necessary, it alone is not a sufficient criterion for glycosylation as one-third of the asparagine in the sequons are
not found to be glycosylated®. Identifying the substrates and their corresponding glycosylation sites is essential
to understand the mechanism of N-linked glycosylation”!?. However, experimental characterization of N-linked
glycosites in glycoproteins is challenging because it is technically demanding, expensive, and time-consuming'’.
Therefore, there is a pressing need to develop methods to predict glycan occupancy at the N-X-S/T sequons of
proteins.
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There are two types of prediction methods, depending on the types of features used in machine learning,
namely, sequence-based predictors which use protein sequence information alone, and structure-based predictors
which use experimentally solved structure information in addition to sequence information. Currently, several
sequence-based predictors have been made available. For example, NetNGlyc uses neural networks for predic-
tion'. EnsembleGly" uses an ensemble of support vector machine (SVM) classifiers developed on 254 N-linked
glycosites and 1469 non-N-linked glycosites. GPP (Glycosylation Prediction Program)'* uses the random for-
est algorithm developed on 261 N-linked glycosites and 3247 non-N-linked glycosites for prediction. Both
EnsembleGly and GPP use a relatively smaller dataset of annotated glycoproteins for model development. More
recently, GlycoEP'® uses SVMs for prediction, in which the authors extract experimentally-determined eukaryotic
glycoproteins from Swiss-Prot and obtain 1797 N-linked glycoproteins to develop the predictor on two datasets,
standard and advanced, having different levels of redundancy reduction in protein sequences. GlycoMine'® uses
the random forest approach, in which 416 experimentally verified glycosites in human proteins are considered
positive sites and asparagines in the sequons from proteins other than experimentally-validated glycoproteins
are considered negative sites. SPRINT-Gly'” uses a deep neural network approach on 2369 human proteins and
2096 mouse proteins for N-linked glycosite prediction. In these sequence-based predictors, various features are
used, including amino acid composition, AAIndex, position-specific scoring matrix (PSSM), predicted secondary
structure, predicted surface accessibility, and predicted disordered region. Fewer structure-based predictors have
been made available due to the limited number of experimentally solved structures. For example, NGlycPred'®
uses random forests for prediction, in which structural, sequence, and pattern properties are utilized for model
development. GlycoMines™<*1? also uses random forests for model development with an additional two-stage
strategy to select features among sequence- and structure-based features.

Since the number of solved structures deposited in Protein Data Bank? is still limited and since query pro-
teins may not have solved structures, we are interested in developing a sequence-based prediction method.
Although the above-mentioned sequence-based predictors all report high accuracy, their performance, except
that of NetNGlyc, were evaluated on each N in the protein, which is frequently not part of the N-X-S/T sequon.
Performance evaluation without being confined to the N-X-S/T sequon may result in performance overestima-
tion, and a naive predictor that predicts each N in the N-X-S/T sequon as a glycosylation site achieves comparable
performance. Furthermore, we also observe that the definitions of positive and negative cases in the datasets
for machine learning and testing are also crucial for performance evaluation. Clearly, experimentally validated
sequons are considered positive cases. However, for an N-X-S/T sequon in experimentally validated glycoproteins
annotated as glycosite by sequence analysis in UniProt*!, we cannot be certain about its experiment evidence. It
may be or may not be a positive case, and thus should be excluded from performance evaluation.

Therefore, in this paper we propose N-GlyDE, a two-stage prediction method that replaces direct glycosite
prediction for use in N-linked glycosite prediction on human proteins, as therapeutics based on glycoproteins
is gaining more attention. The first stage uses a protein similarity voting algorithm based on both glycoproteins
and non-glycoproteins to provide a prediction score for adjusting glycosite prediction results. The second stage
uses an SVM trained on glycoproteins only to predict for each N-X-S/T sequon in the query protein whether it
is a glycosylation site. N-GlyDE then integrates the results of the first-stage prediction for weight adjustment of
the second-stage prediction results to yield the final prediction for each sequon. As features the SVM model uses
gapped dipeptides (GD), solvent accessibility (SA), and secondary structure (SS). Notably, the latter two types
of features are encoded using a pattern-based approach to reduce the feature dimensions, as the training dataset
contains only of a limited number of glycoproteins. The performance of N-GlyDE has been evaluated on an inde-
pendent dataset in comparison with existing tools, including GlycoMine, GlycoEP, and NetNGlyc.

Results and Discussion

Overview of N-GlyDE. To predict N-linked glycosites, we propose N-GlyDE, a two-stage prediction
method.. In the first stage, we describe an algorithm that generates a score for each protein that is integrated with
the second-stage results to improve direct (one-stage) glycosite prediction. The second stage uses SVM to predict
the possibility of each N-X-S/T sequon in the query protein to be glycosylated. The output of the second-stage
predictor is weighted by the score from the first-stage predictor through a heuristic approach based on score
thresholds to obtain the final prediction output. The overall framework of N-GlyDE is illustrated in Fig. 1.

Rationalization of score thresholds for weight adjustment to obtain final prediction and
cross-validation performance of SVM prediction. Ten-fold cross validation was performed on both
first- and second-stage datasets (Supplementary File 1: Worksheets W1 and W2) for rationalization of score
thresholds for weight adjustment and for performance evaluation of SVM prediction, respectively. We obtained
the prediction score of each protein in the entire dataset (6195 proteins) of glycoproteins and non-glycoproteins
based on the cross-validated first-stage prediction (see the “Methods” section). Prediction scores were divided
into five intervals; the complete set of proteins were grouped by prediction scores accordingly. The percentage
of N-linked glycoproteins with prediction score at each interval, denoted as p,, defined as the number of gly-
coproteins divided by the total number of proteins with prediction score at this interval, is shown to reveal a
positive correlation with prediction score, whereas the percentage of non-N-linked glycoproteins (i.e., 1 - p;) and
prediction score reveals a negative correlation, as shown in Fig. 2. It is also observed that 80.7% (309 out of 383)
proteins above the prediction score of 0.8 are N-linked glycoproteins and 97.2% (4511 out of 4641) proteins below
the prediction score of 0.4 are non-N-linked glycoproteins. The scores of 0.4 and 0.8 are thus used as thresholds
for weight adjustment of second-stage glycosite prediction results to determine the final prediction output on the
independent dataset.
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Figure 1. Schematic framework of N-GlyDE.
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Figure 2. N-GlyDE first-stage prediction on 6195 proteins. The green and red bars indicate the percentage of
N-linked glycoproteins and non-N-linked glycoproteins predicted at each interval. The blue line represents the
total number of proteins observed across each interval.

Based on ten-fold cross validation, the second-stage prediction (see the “Methods” section) on the 3080
sequons in the second-stage dataset achieved an MCC (Matthews correlation coefficient), accuracy, precision,
sensitivity, and specificity (see the “Methods” section) of 0.413, 0.733, 0.811, 0.781, and 0.639, respectively.

Performance evaluation and comparison with existing predictors on the independent dataset.
Using N-GlyDE’s second-stage prediction alone on the independent dataset (Supplementary File 1:
Worksheet W3) yielded an MCC, accuracy, precision, sensitivity, and specificity of 0.353, 0.655, 0.526, 0.784, and
0.578, respectively. In particular, the second stage of N-GlyDE predicted 131 true positives (TPs) and 36 false
negatives (FNs) of 167 glycosites, and 162 true negatives (TNs) and 118 false positives (FPs) of 280 non-glycosites.
In contrast, using N-GlyDE, i.e., the integration of two stages (see the “Methods” section), led to an MCC, accu-
racy, precision, sensitivity, and specificity of 0.499, 0.740, 0.613, 0.826, and 0.689, respectively, an improvement of
14.6%, 8.5%, 8.7%, 4.2%, and 11.1% over those of second-stage prediction alone. This improvement is attributed
to the integration of the two stages by weight adjustment, rendering seven previous FNs to TPs and 31 previous
FPs to TNs, as shown in Supplementary File 2: Fig. S1. The results show that integrating the result of the first stage
for weight adjustment of glycosite prediction yields better prediction.

Next, we further compared the performance of N-GlyDE with the publicly-available predictors NetNGlyc,
GlycoMine, and GlycoEP on the independent dataset. In particular for GlycoEP, all of the available four models of
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Predictors Accuracy Precision Sensitivity Specificity MCC
N-GlyDE 0.740 0.613 0.826 0.689 0.499
GlycoMine 0.725 0.616 0.700 0.739 0.430
NetNGlyc 0.572 0.460 0.844 0.411 0.265
GlycoEP_Std_PPP 0.574 0.437 0.512 0.610 0.119

Table 1. Prediction performance of different predictors on the independent dataset.
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Figure 3. ROC curves of N-GlyDE, GlycoMine, NetNGlyc, and GlycoEP_Std_PPP on the independent dataset.
For each predictor, the area under the ROC curve is calculated.

the standard predictor and two models of the advanced predictor were tested. Among these six GlycoEP models,
the Std_PPP model, which uses the PSSM profile of patterns seen in the standard predictor, achieved the best
MCG; its performance is reported for comparison. The performance of these predictors is shown in Table 1.
N-GlyDE achieves the highest accuracy and MCC, while GlycoMine achieves the highest precision and specific-
ity; NetNGlyc achieves the best sensitivity. We also note that the MCC value of all compared methods, including
N-GIyDE, is relatively low in comparison to those of other tools reported in the literature because of the funda-
mental difference in the assessment of N-linked glycosylation sites. In this study, the performance of glycosite
prediction is evaluated on the N-X-S/T motif, whereas most existing predictors evaluate the performance on
every asparagine, not necessarily in the motif. Asparagine occurring outside an N-X-S/T motif usually does not
contribute to N-linked glycosylation. A large number of asparagine outside the N-X-S/T motif can be easily
predicted as non-glycosites and regarded as true negatives, thereby rendering a higher MCC. The ROC (receiver
operating characteristic) curves of these predictors are shown in Fig. 3; N-GlyDE has the highest area under the
curve (AUC). In summary, N-GlyDE outperforms the other three methods in MCC and AUC and achieves the
second best precision, sensitivity, and specificity.

Gapped dipeptides as useful features. N-GlyDE’s second-stage predictor, i.e., an SVM glycosite pre-
dictor, generates predictions using three types of features: gapped dipeptides (GD), surface accessibility (SA),
and secondary structure (SS) (see the “Methods” section). We evaluated the contribution of different features by
comparing the MCC of the predictor on the second-stage dataset. The MCC when using different feature sets, i.e.,
SA +SS, GD alone, GD +SS, GD + SA, and GD + SA + S8, are 0.200, 0.360 0.376, 0.378, and 0.413, respectively.
The ROC curves and AUC when using the above feature sets are shown in Supplementary File 2: Fig. S2. Notably,
using GD alone as features yields an MCC of 0.360, better than using both SA and SS as features. Moreover, using
GD + SS or GD + SA as features improves the MCC of using GD alone only slightly, by at most 0.018. Using
GD + SA +SS as features achieves a better MCC than using GD alone by 0.053. Similar to MCC, AUC reveals
the same trend among different feature sets; using GD alone as features yields a better AUC than using SA + SS.
The MCC and AUC results show that gapped dipeptides are crucial and contribute the largest improvement on
prediction performance in comparison with other features.

We further examined the gapped dipeptides with the top and bottom 10 GDR (gapped dipeptide ratio) (see
the “Methods” section) derived from 832 glycoproteins of the second-stage dataset, which are considered dis-
criminative and specifically positive-oriented gapped dipeptides and negative-oriented gapped dipeptides, as
listed in Table 2. Frequent occurrences of amino acids such as tryptophan (W) and tyrosine (Y) (6 out of 10) are
exclusively observed only in positive-oriented gapped dipeptides, as shown in Table 2. Both of these amino acids
are nonpolar in nature and have an aromatic ring as a part of their side chain. The presence of a hydroxyl group on
the phenyl ring in tyrosine and an indole ring with nitrogen in tryptophan engage these amino acids in hydrogen
bond formation?*?. Free N-glycans of both the high-mannose and complex types having a binding affinity for
aromatic amino acid residues were evident from the work of Yamaguchi et al.?*. Based on our observation, we
suggest that the presence of amino acids W and Y neighboring the sequon contributes to N-linked glycosylation.
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Positive-oriented | Top 10 Negative-oriented | Bottom 10
gapped dipeptides | GDR gapped dipeptides | GDR
W5N 2.401 N2p 0.064
N2M 2.198 C4N 0.542
WIIN 1.96 N4K 0.569
Y7N 1.96 K1IN 0.574
NOY 1.941 N7M 0.589
LON 1.923 NON 0.595
YON 1.884 M9N 0.612
NI10K 1.794 N8P 0.618
WON 1.794 K6N 0.63
H6N 1.714 NOK 0.643

Table 2. Discriminative gapped dipeptides with high and low GDR. Underlined and boldface asparagine
corresponds to the sequon and is located at the center of a sequence window.
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Figure 4. N-GlyDE prediction results of human VEGFR2, where sites with a prediction score above 0.6 (shown
by the dotted line) are predicted as glycosites. Green bars represent the three glycosites with experimental
evidence in UniProt. Glycosites annotated by sequence analysis in UniProt were recently validated by Chandler
et al’s mass spectrometry (MS) experiment on extracellular domain of murine VEGFR2, which shares 86%
sequence similarity with human VEGFR2. Blue bars represent the MS-validated glycosites; the brown bar
(N631) represents sites undetected in the MS experiment; and the orange bar (N66) represents the sequon only
in human, not in murine. Red bars represent the non-glycosites, which was not studied by Chandler et al. The
number following ‘N’ represents the asparagine position of the sequon in the sequence.

Case studies. We performed two case studies on proteins in the independent dataset. First, the vascular
endothelial growth factor receptor 2 (VEGFR2_HUMAN, UniProt ID: P35968), a protein of the receptor-type
tyrosine kinase (RTK) family, was investigated to demonstrate the competence of N-GlyDE. VEGFR2 plays a
crucial role in vascular endothelial cell development by regulating its function, and is also important for regu-
lating angiogenesis and lymphangiogenesis*>?. It contains 21 N-X-S/T sequons, where three N at positions 143,
245, and 318 are experimentally validated glycosites””?$, 15N are annotated in UniProt as glycosites by sequence
analysis, and three N at positions 923, 1256, and 1300 so far have no evidence to undergo glycosylation. Note
that only six sequons, i.e., three glycosites and three non-glycosites, were included for evaluating the perfor-
mance on the independent dataset. The predicted results of the 21 sequons in VEGFR2 by N-GlyDE are shown
in Fig. 4. N-GlyDE correctly predicts the three validated glycosites and two (at positions 1256 and 1300) out of
three non-glycosites, achieving an accuracy of 83.3% (=5/6). In addition, N-GlyDE predicts the 15 sequons with
evidence at the sequence analysis level as positives. To evaluate the accuracy of N-GlyDE’s prediction on these
15 sequons with sequence analysis evidence, we note a recent work by Chandler et al.?® that uses tandem mass
spectrometry to study site-specific glycosylation of extracellular domains in murine VEGFR2, which shares 86%
sequence identity with human VEGFR?2, suggesting that the outcome of murine VEGFR2 is applicable to human
VEGEFR2. Extracellular domains of murine VEGFR2 possess 17 sequons, whereas human VEGFR2 possesses 18
sequons. The additional sequon in the human VEGFR?2 is found at position 66, which has glycosylation annota-
tion by sequence analysis, and is excluded from this case study. In Chandler et al’s study, 13 out of the 14 sequons
with sequence analysis evidence were confirmed as glycosites except for the sequon at position 631 of the human
VEGEFR?2, as the corresponding peptide is undetected in the mass spectrometry experiment. N-GlyDE correctly
predicts these 13 glycosites and achieves an accuracy of 94.7% (=18/19). Finally, regarding the asparagine at posi-
tion 923 that is not included in Chandler et al’s study, although it is considered a non-glycosite according to the
annotation in UniProt, it is predicted as a glycosite by N-GlyDE. However, whether it will be glycosylated awaits
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experimental validation. Supplementary File 2: Table S1 lists prediction results of N-GlyDE for all the sequons in
VEGFR?2 along with the UniProt evidences and observations from Chandler et al’s work.

Second, to demonstrate the efficacy of gapped dipeptides for glycosite prediction, fibronectin (FN, UniProt
ID: P02751) was investigated. It is a large glycoprotein involved in diverse biological functions such as nerve
regeneration, embryogenesis, and many adhesive functions®. It contains ten N-X-S/T sequons of which seven N
are experimentally validated glycosites and three N at positions 1236, 1417, and 1813 so far have no evidence to
undergo glycosylation as annotated in UniProt. N-GlyDE accurately predicts six out of seven validated glycosites
as positives and all of the three non-glycosites as negatives, yielding an accuracy of 90%. Notably, five of the six
true-positive glycosites at positions 430, 542, 877, 1244, and 2108 exhibit occurrences of some positive-oriented
gapped dipeptides such as NOY, H6N, LON, and YON as shown in Supplementary File 2: Table S2. Furthermore,
all of the three true negative sequons display occurrences of some negative-oriented gapped dipeptides such
as N2P as shown in Supplementary File 2: Table S2. The results show the efficacy of positive-oriented and
negative-oriented gapped dipeptides. Supplementary File 2: Table S2 lists the highly significant positive-oriented
and negative-oriented gapped dipeptides observed in these sequons along with UniProt evidences and the
N-GlyDE prediction scores.

Conclusion

In this study, we develop N-GIlyDE, a two-stage sequence-based prediction model trained on rigorous
non-redundant glycoproteins and non-glycoproteins to predict N-linked glycosylation sites in human proteins.
The first stage provides a prediction score for every protein based on which the glycosite prediction score of the
second stage is adjusted. Performance evaluation was conducted on N-X-S/T sequons of an independent dataset,
comprised of 53 glycoproteins and 33 non-glycoproteins. Only experimentally validated glycosites are considered
positives. Asparagines in the sequon of a glycoprotein without any annotation and asparagines of all N-X-S/T
sequons in non-glycoproteins are regarded as negatives. Compared with the GlycoMine, NetNGlyc, and GlycoEP
predictors, N-GlyDE outperforms them in terms of MCC by 6.9%, 23.4%, and 38%, respectively. Out of the three
types of features used in N-GlyDE’s SVM predictor, gapped dipeptides turn out to be more discriminative than
secondary structure and surface accessibility features. Frequent occurrences of amino acids with aromatic side
chains such as tyrosine and tryptophan seem to positively correlate the attachment of N-glycan to the asparagine
of the sequon. In the future, predicted structural features, e.g., disordered regions, and physicochemical property
features can be considered to further improve the predictor. When more glycoproteins are experimentally vali-
dated, deep learning can be used for prediction.

Methods

Datasets. Human proteins in UniProt (ver. 201608) are used as our source. To compile the positive dataset,
i.e., experimentally validated N-linked glycoproteins, we searched for “glycosylation” in the PTM field and added
a filter using the keyword “N-linked”. In addition, all the proteins must be “reviewed” and from “Homo sapiens”
and have evidence as “experimental assertion”. A similar search strategy was used to select the negative cases, i.e.,
non-N-linked glycoproteins, by setting the filter to exclude N-linked glycoproteins in the PTM field with evidence
of any assertion. As a result, we obtained 1068 glycoproteins and 11767 non-glycoproteins. We used an in-house
script to remove glycoproteins with only a single experimentally validated sequon having proline at the center
or any amino acid apart from serine or threonine at the third position. Furthermore, we also confirmed experi-
mentally validated N-linked glycosites by checking the reported experiments performed for that position in the
cited literature, in addition to their evidence codes in UniProt. After this rigorous procedure, 1011 glycoproteins
remained. In order to construct non-redundant datasets, we used CD-HIT?! to remove protein sequences with
a sequence similarity of over 30% in both positive and negative datasets, yielding 682 glycoproteins and 5599
non-glycoproteins, a total of 6281 non-redundant proteins.

For glycosite prediction, we considered only the experimentally validated sequons as positive cases. Sequons
having evidence such as ‘Probable; ‘Potential; or ‘By sequence similarity’ were excluded from training and perfor-
mance evaluation. Both glycoproteins and non-glycoproteins contributed for non-glycosites, i.e., negative cases.
Because currently no technology is available to exactly identify which asparagine in the protein sequence does not
undergo N-linked glycosylation, the selection of non-glycosylation sites (from N-linked glycoproteins) is difficult;
thus we consider sequons without any evidence of undergoing N-linked glycosylation so far in glycoproteins as
negative cases, which were used in the second-stage dataset. All the sequons in non-glycoproteins were regarded
as negatives, which were combined with negative cases from glycoproteins for performance evaluation on the
independent dataset.

Independent dataset. Since query proteins can be glycoproteins or non-glycoproteins, we developed an
independent dataset containing both types of proteins. Among these 6281 non-redundant glycoproteins and
non-glycoproteins, we randomly selected 86 proteins, consisting of 53 glycoproteins and 33 non-glycoproteins,
as the independent dataset, where non-glycoproteins were chosen from the nucleus, cytosol, and mitochondrion
since proteins from these subcellular localizations are known not to undergo N-linked glycosylation®*. Selection
of non-glycoproteins was restricted to these three subcellular localizations to ensure that the sequons from these
proteins do not undergo N-linked glycosylation and remain true negatives. The 53 glycoproteins contained 167
confirmed glycosites and 64 non-glycosites, and their 112 sequons having evidence of ‘Probable, ‘Potential; or ‘By
sequence similarity’ were omitted. The 33 non-glycoproteins contained 216 non-glycosylated sequons. In other
words, 447 N-X-S/T sequons, i.e., 167 glycosites and 280 non-glycosites, in the independent dataset were used for
performance evaluation.
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First-stage dataset. Excluding the independent dataset, the remaining 629 glycoproteins and 5566
non-glycoproteins, a total of 6195 proteins collected across various subcellular localizations, were used in the
first-stage training, which yields a prediction score for every protein.

Second-stage dataset.  For glycosite prediction, we used N-X-S/T sequons in the glycoproteins to train the pre-
dictor. The 629 non-redundant glycoproteins with at most 30% sequence identity contained 1547 glycosylated
sequons (glycosites) and 828 non-glycosylated sequons (non-glycosites), a total of 2375 sequons. To better
develop our features and train the SVM model, we enlarged the second-stage dataset by relaxing the sequence
identity threshold to 60% and obtained 832 glycoproteins, which contained 3080 sequons, including 2050 glyco-
sylated sequons and 1030 non-glycosylated sequons. Although the redundancy reduction threshold was relaxed
to 60%, we also used CD-HIT to ensure that the sequence identity between independent dataset and second-stage
dataset remains at most 30%.

N-GlyDE method. As described below, N-GlyDE is a two-stage method to predict N-linked glycosites in
proteins.

First stage of N-GlyDE. Conventional sequence similarity search tools such as PSI-BLAST? can be used to
easily determine whether a protein is an N-linked glycoprotein through a set of well-aligned sequence partners
from existing protein databases. However, the prediction problem becomes challenging when the search is lim-
ited to a non-redundant protein sequence dataset and the sequence homology is not easily obtained. We propose
a protein similarity voting algorithm to solve the problem using HHblits**, a homologous sequence detection
method based on iterative HMM-HMM (hidden Markov model) comparison. Similar to PSI-BLAST, HHblits
iteratively searches for homologies in a protein database by performing profile-profile alignments, which is imple-
mented as a sequence-to-profile comparison by converting the vector of 20 amino acid probabilities into an
alphabet, representing a typical profile column. Thus HHblits is faster than PSI-BLAST owing to the discretized
design of HMM and is reported to yield 50-100% higher sensitivity in finding distant homologs®. Thus, we use
HHblits to find homologs for each protein sequence.

Given a protein P from the training set, HHblits is used to search against its built-in uniprot20_2016_02
human proteins to identify top-ranked proteins (TRP). Proteins in TRP share pairwise sequence similarities of
less than 20%, and each is reported with a probability denoting its similarity to protein P. All the proteins in TRP
with probabilities below 0.5 are removed, and the remaining proteins form a set of similar proteins with respect
to protein P, denoted as S(P). HHblits search is performed iteratively for each of the proteins in the first-stage
training set. Given a query protein Q from the test set, HHblits is again used to search against the built-in uni-
prot20_2016_02 to construct S(Q) as described above. Then S(Q) is compared with each S(P) for all proteins
P in the training set. If S(Q) and S(P) have at least k (k is set to 5 by default) similar proteins in common, i.e.,
[S(Q) NS(P)| > k, protein P is regarded as a template protein for protein Q. Subsequently, a template protein set
for protein Q, denoted as TPS, is obtained that consists of both glycoproteins and non-glycoproteins. For protein
Q, voting score V; is calculated as ¥;|S(Q) N S(P;)|%, where each P is a glycoprotein and P; € TPS; similarly, voting
score Vg is calculated as Zj|S(Q) N S(Pj)|2, where each P; is a non-glycoprotein and P; € TPS. The score of the first
stage of N-GlyDE for protein Q is defined as V;/(V;+ Vi) and is further used for integration.

Second stage of N-GlyDE. The second stage of N-GlyDE uses SVM to predict for each N-X-S/T sequon
whether the asparagine in the sequon is glycosylated. An I-mer of the protein sequence with the asparagine
located at the center is used to derive its features. To determine I, we conducted a preliminary study on the
second-stage dataset using only gapped dipeptides as features with [ ranging from 21 to 29. We selected /=25
for our prediction based on the best MCC as shown in Supplementary File 2: Table S3. For the asparagine (in
N-X-S/T sequon) within half-length of either terminus, the dummy amino acid X’ was used to fill up the empty
positions. As described below, all of the 3080 sequon-containing /-mers in the second-stage dataset used gapped
dipeptides, surface accessibility, and secondary structure as input features.

Gapped dipeptide features. As asparagine of the sequon is at the center of a 25-mer sequence, we con-
sider gapped dipeptides AkN and NkA of both directions, where A represents an amino acid, having a gap of k
(0= k= 11) from the asparagine on the N- and C- termini, respectively, as shown in Fig. 5. Both N1T and N1S
are ignored because they lack the power to discriminate between glycosylated sequons and non-glycosylated
sequons. This yields 23 gapped dipeptides from each I-mer. From the entire 3080 I-mers in the dataset, we
obtain 460 gapped dipeptides and count the number of occurrences of each gapped dipeptide in glycosites and
non-glycosites. Then we define the gapped dipeptide ratio for each gapped dipeptide as the odds ratio calculated
by the percentage of its occurrences in glycosites divided by the percentage of its occurrences in non-glycosites.
Normalization of GDRs for a specific gap k in the entire 3080 /-mers is calculated as (GDR - the minimum GDR)
divided by (the maximum GDR - the minimum GDR). Thus, for each 25-mer, the normalized GDR ranging from
0 to 1 is encoded as an input feature in SVM for N-linked glycosite prediction.

Pattern-based surface accessibility (SA) and secondary structure (SS) features. Secondary
structure is used as a feature, since it is reported that alpha helices tend to rarely N-linked glycosylate than coils
and sheets®”. Surface accessibility is employed as another feature because N-linked glycosylation tends to occur at
extracellular regions of proteins with the side chain of asparagine in the sequon exposed to the surface. Given a
protein sequence, NetSurfP (ver. 1.0)* is used to predict surface accessibility, E (exposed) or B (buried), and sec-
ondary structure, H (helix), E (beta sheet) or C (coil), for each amino acid in the protein. Each sequon-containing
I-mer is represented by the corresponding predicted surface accessibility and secondary structure, respectively.
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Figure 5. Illustrations of gapped dipeptides and sequence windows with lengths 3 <w <11 used to derive
secondary structure and surface accessibility features.

Instead of directly using the predicted SA and SS as features, we propose using a pattern-based approach to find
significant patterns to encode these two types of features for dimension reduction as described below.

To generate patterns, each sequon-containing /-mer is divided into three regions: N-terminal, sequon, and
C-terminal regions. For the sequon, a sequence window of fixed length three is used to obtain the predicted SA
and SS patterns. A sequence window of length w, 3 <w <11, is used to partition the predicted SA and SS in the
corresponding N-terminal (starting from positions 1-10 and ending at position 12 for /= 25) and C-terminal
regions (starting from position 16 and ending at positions 18-25 for /=25), respectively, into patterns of length w,
as shown in Fig. 5. Patterns with occurrences below 1% of the 3080 /-mers are considered less prominent patterns
and grouped together as a single pattern. To identify useful patterns of appropriate length on N-terminal and
C-terminal regions, we calculate the average pattern deviation of all patterns with length w, denoted as APD,, as
follows. For each pattern i of length w, let e; and n; denote the number of occurrences of the pattern in glycosites
and non-glycosites, respectively; a background cut-off threshold (z) is determined as the number of glycosites
divided by the number of non-glycosites. Then APD,, is defined as

_ Sillle/n) — 21| x (e; + ny)
>ile +n) (1)

Among APD,, of various pattern length w, the length w* yielding the maximum APD,, is selected to encode the
corresponding SA and SS features for N-terminal and C-terminal regions. In the case of surface accessibility,
a pattern length of six yields the highest APD,, for both N- and C-terminal regions; all patterns of length six
are used to encode the feature. For the secondary structure feature, pattern lengths of six and nine produce
the maximum APD,, for N-terminal and C-terminal regions, respectively. For each I-mer, SA and SS features
for the three regions are encoded in the following order: N-terminal, sequon, and C-terminal regions. Surface
accessibility results in 79 features, i.e., 36, 8, and 35 patterns for N-terminal, sequon, and C-terminal regions,
respectively. Likewise, secondary structure yields 54 features, i.e., 18, 12, and 24 patterns for N-terminal, sequon,
and C-terminal regions, respectively. The SA and SS features are encoded by two binary vectors of length 79 and
54, respectively, where the value of ‘1’ indicates a matched pattern and ‘0’ indicates an unmatched pattern. Search
space is dramatically reduced when using pattern-based encoding rather than conventional feature encoding.

APD,

w

SVM model training. We use the LIBSVM?>® package to train our SVM models. LIBSVM provides kernel
options such as polynomial, Gaussian radial basis function (RBF), and sigmoid. Among these, we choose the
most commonly used RBF as the kernel function. Furthermore, according to a study comparing kernel func-
tions”, the RBF kernel with an appropriate regularization (i.e., the penalty parameter C in the RBF kernel) deter-
mined during training yields an optimal predictor that minimizes the approximation errors of the classifier. For
each sequon, the input features for training include 23 features from gapped dipeptides, 79 SA patterns encoded

SCIENTIFIC REPORTS |

(2019) 9:15975 | https://doi.org/10.1038/s41598-019-52341-z


https://doi.org/10.1038/s41598-019-52341-z

www.nature.com/scientificreports/

as a binary vector, and 54 SS patterns encoded as a binary vector, a total of 156 features. Ten-fold cross validation
is used to optimize the parameters in the RBF kernel function using a grid search. Parameters C, ranging from
275,273, ..., 215 and the kernel width parameter (v) ranging from 271, 2713, ..., 23, are optimized and selected
from training based on the highest accuracy achieved in the grid search. With the optimized Cand v parameters,
the corresponding SVM model is used to predict the test set and report a glycosite probability score. The score
threshold to determine a positive prediction, chosen from a range of 0.25 to 0.75, is selected based on the maxi-
mum MCC obtained from each training set. The prediction performance of each test fold is estimated based on
the corresponding C, , and score thresholds from the training folds. The model that yields the highest MCC on
the test fold is used to predict the independent dataset.

Integration of two stages for final prediction. To integrate the two stages of N-GlyDE, the prediction
score of the first stage is used as a measure to adjust the prediction score of the second stage. We consider two
prediction score thresholds of the first-stage prediction for weight adjustment. Specifically, if the prediction score
of the first stage for the query protein is below 0.4, the prediction scores of the second stage for all the sequons in
the protein are reduced by 20%. If the prediction scores of the first stage for the query protein are above 0.8, the
prediction scores for all the sequons of the second stage are increased by 10%. Otherwise, the prediction scores
for the sequons of the second stage remained unchanged. If a sequon has a final prediction score above 0.6, the
sequon is predicted as a glycosylation site.

Performance evaluation measures. For performance comparison, we evaluated the prediction results of
the N-X-S/T sequons on accuracy, precision, sensitivity, specificity and MCC, defined as

TP + TN
Accuracy =
TP + TN + FP + FN (2)
.. TP
Precision = ——
TP + FP (3)
e TP
Sensitivity = ————
TP + FN (4)
TN
Specificity = ———
ety = N P 5)
MCC — TP x TN — FP x FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN) 6)

Furthermore, the receiver operating characteristic curve was constructed by selecting 1000 cut-oft values between
0 and 1; the area under the curve was also reported to evaluate the performance.

Data availability
N-GlyDE is available as a web server at http://bioapp.iis.sinica.edu.tw/N-GlyDE/. All datasets involved in this
study are available in Supplementary File 1.
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