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ABSTRACT For their food source, Trachymyrmex septentrionalis ants raise symbiotic
fungus gardens that contain bacteria whose functions are poorly understood. Here,
we report the genome sequences of eight bacteria isolated from these fungus gar-
dens to better describe the ecology of these strains and their potential to produce
secondary metabolites in this niche.

Fungus-growing ants (tribe Attini) form symbioses with a cultivar fungus belonging
to the genus Leucoagaricus, which they grow in underground fungus gardens as

their essential food source (1). Other bacteria also inhabit these fungus gardens and
provide nutrients to the cultivar fungus, at least in some cases (2–5). These bacteria
have the genetic potential to produce secondary metabolites that may mediate inter-
specific interactions in fungus gardens, although this remains poorly understood (6).

Trachymyrmex septentrionalis is the northernmost fungus-growing ant and occurs
throughout the eastern United States (7). Its colonies are relatively small (�1,000
ants/colony) and subsist largely on caterpillar frass, oak catkins, and some fresh plant
material (8). The T. septentrionalis fungus garden microbiome remains poorly charac-
terized (9). We therefore isolated several bacteria from T. septentrionalis fungus gardens
and sequenced their genomes to better understand their potential functions within this
symbiotic niche.

T. septentrionalis fungus gardens were collected in Florida, New Jersey, and North
Carolina following established protocols (10). Fungus garden fragments were resus-
pended in phosphate-buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and
1.8 mM KH2PO4), and bacteria were isolated on tryptic soy agar (Difco; adjusted to pH
6) using the spread plate technique. Genomic DNA was extracted from each isolate, and
their 16S rRNA genes were PCR amplified as described previously (11). PCR amplicons
were Sanger sequenced at the University of Connecticut DNA Biotechnology Center,
and the resulting sequences were compared to the NCBI nonredundant database (12)
to identify each strain.

Genomes from eight T. septentrionalis fungus garden bacteria were sequenced at
the Department of Energy Joint Genome Institute (JGI). Pacific Biosciences (PacBio)
SMRTbell libraries were constructed following the manufacturer’s protocol and se-
quenced using a PacBio RS instrument. The resulting reads were assembled using
the HGAP pipeline version 2.3.0_p5. Genes were predicted using Prodigal (13) and
GenePRIMP (14) and annotated using the UniProt (15), TIGRFAMs (16), Pfam (17),
KEGG (18), COG (19), InterPro (20), and IMG nonredundant (21) databases. Noncod-
ing RNAs were annotated using tRNAScanSE (22), INFERNAL (23), and the IMG’s
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rRNA gene models (15). Additional gene prediction and annotation were performed
using the IMG’s ER platform (24).

The sequenced bacteria belong to the genera Bacillus, Burkholderia, Pantoea, and
Serratia and poorly resolved taxa within the families Enterobacteriaceae and Micrococ-
caceae (Table 1). The genome of Serratia sp. JKS000199 was assembled into a single
contig and is therefore complete. All other genomes were assembled into 2 to 6 contigs
and are therefore high-quality drafts. These bacteria likely include both persistent and
transient colonists of T. septentrionalis fungus gardens. The genome sequences of these
strains will inform future studies of their ecology in T. septentrionalis symbiosis and
how secondary metabolites might mediate interspecific interactions within this
niche.

Data availability. The whole-genome shotgun projects for strains JKS000199,
JKS000233, JKS000234, JKS000250, JKS000296, JKS000303, JKS001846, and JKS001869
have been deposited in DDBJ/EMBL/GenBank under the accession numbers listed in
Table 1.
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