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Hydrogen sulfide (H2S) is a toxic gas that has been recognized as an important

mediator of many physiological processes, such as neurodegeneration, regulation of

inflammation, blood pressure, and metabolism. In the human colon, H2S is produced by

both endogenous enzymes and sulfate-reducing bacteria (SRB). H2S is involved in the

physiological and pathophysiological conditions of the colon, such as inflammatory bowel

disease (IBD) and colorectal cancer (CRC), whichmakes the pharmacological modulation

of H2S production andmetabolism a potential chemical target for the treatment of colonic

diseases. However, the exact mechanisms and pathways by which H2S-mediates normal

physiological function and disease in the colon are not fully understood. Besides, the

production and release of H2S are modulated by both endogenous and exogenous

factors. This review will discuss the production and storage of H2S, its biological roles

and the emerging importance in physiology and pathology of IBD and CRC.

Keywords: hydrogen sulfide, sulfate-reducing bacteria, pathophysiological roles, colonic diseases, chemical

target

INTRODUCTION

Hydrogen sulfide (H2S) is a pungent gas that smells like rotten eggs, and has been identified as the
third gaseous transmitter, following nitric oxide (NO) and carbon monoxide (CO; Gallego et al.,
2008). Since the discovery of its synthesis in mammalian and human tissues, it has attracted much
interest as an endogenous mediator in recent years (Whiteman et al., 2011). Over the last decade,
H2S has been recognized to have various biological effects in human health and diseases, such as
in the nervous system, the cardiovascular system, and the immune system (Kimura, 2011; Wang
et al., 2012). Recently, studies involving the physiological and pathophysiological effects of H2S in
the gastrointestinal tract (GI tract) have attracted much attention. Multiple studies also imply the
important role of H2S in colonic diseases, including inflammatory bowel disease (IBD; Wallace
et al., 2009; Hirata et al., 2011) and colorectal cancer (CRC) (Cai et al., 2010; Cao et al., 2010;
Kimura, 2011). In the present review, we will discuss the endogenous and exogenous production of
H2S, and its biological and pathological roles in IBD and CRC.

ENDOGENOUS PRODUCTION AND BIOLOGICAL ROLES OF H2S

The concentration of H2S ranges from 0.2 to 1 mmol/L in the colon of mice and may reach 3.4
mmol/L in human stools (Rose et al., 2005). Under normal conditions, approximately 70% of H2S
is produced from cysteine and the other 30% from homocysteine (Chiku et al., 2009). There are
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three principal enzymes involved in the endogenous production
of H2S: cystathionine β-synthase (CBS), cystathionine γ-lyase
(CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). They
are expressed in many organs, including the liver, kidney, ileum,
and brain (Kimura, 2011). CBS and CSE have been investigated
widely, and both use vitamin B6 as a cofactor to catalyze the
production of H2S (Chiku et al., 2009). The catalytic effect
of CBS changes with the extent of allosteric activation of
S-adenosylmethionine (Singh et al., 2009), and the activity of
CSE is enhanced by sodium nitroprusside (SNP; Chiku et al.,
2009). A study also shows that CSE is regulated by calcium
calmodulin, although the requirement for Ca2+ concentrations
is quite high (1 mM; Yang et al., 2008). The role of 3-MST along
with cysteine aminotransferase (CAT), which can efficiently
produces H2S from cysteine and a-ketoglutarate (Kimura, 2011),
in regulating endogenous H2S levels has recently been examined
in specific types of cells and tissues (Shibuya et al., 2009b; Wang,
2012).

H2S may function as a signal molecule immediately after
released from the enzyme; it can also be stored as bound
sulfane sulfur, which may in turn release H2S (Whiteman et al.,
2011). At physiological pH, nearly two-thirds of H2S exists as
the hydrosulfide anion (HS−), which is a powerful nucleophile
(Bouillaud and Blachier, 2011).

Endogenous H2S performs vital roles in many physiological
processes, including vasorelaxation, angiogenesis, cellular energy
production, neuromodulation, cytoprotection, and pathological
processes (Figure 1; Kimura et al., 2010; Coletta et al., 2012),
and it is now considered as a signaling modulator or a

FIGURE 1 | Biological Roles of H2S in the human. CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; 3-MST, 3-mercaptopyruvate sulfurtransferase;

SRB, sulfate-reducing bacteria; LTP, long-term potentiation.

messenger molecule (Farrugia and Szurszewski, 2014). H2S was
initially considered as a neuromodulator that aids the induction
of hippocampal long-term potentiation (LTP) by enhancing
NMDA-induced currents in neurons (Abe and Kimura, 1996;
Nagai et al., 2004). H2S may also mediate the reciprocal
interactions between glial calcium waves and neuronal activity,
which has not been fully investigated (Kimura, 2011). Prior
studies also showed that transient receptor potential (TRP)
channels might be involved in the effects of H2S (Patacchini et al.,
2005; Gratzke et al., 2009).

H2S also functions as signal molecule in smooth muscle
relaxation. Although NO performs most of the vessel-relaxing
work in large vessels, H2S may be responsible for similar actions
in smaller blood vessels (Wang, 2009). The mechanisms of
H2S-mediated vasodilation may involve the activation of KATP

channels or other channels, the inhibition of phosphodiesterases
and synergy with NO (Wang, 2012).

The important pro-angiogenic role of H2S has also been
recognized (Coletta et al., 2012). Angiogenesis is a complex
biological process involved in endothelial cell proliferation,
migration, and formation of capillary structures (Roudsari and
West, 2015). Pupo et al. showed that endogenous H2S is involved
in the angiogenic effects of vascular endothelial growth factor
(VEGF), a key growth factor and tumor-derived angiogenic
hormone (Pupo et al., 2011). Other studies showed that H2S
exerts its effects via multiple mechanisms including activation
of VEGFR2, stimulation of potassium channels and increase of
cellular glutathione (GSH) levels (Cai et al., 2010; Cao et al., 2010;
Kimura et al., 2010; Tao et al., 2013).
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In addition to serving as a signal molecule, H2S also
participates in concentration-dependent modulation of
mitochondrial function and cellular bioenergetics. In various
cell types (including intestinal epithelial cells and hepatocytes),
low concentrations of H2S act as mitochondrial electron donors,
which results in the stimulation of bioenergy (Szabo et al., 2014).
They increase the levels of glutathione and redistribute it to
the mitochondria. In addition, they can promote the catalytic
activity of the glycolytic enzyme GAPDH (Mustafa et al., 2009).
Endogenous H2S may also serve as a bioenergetic stimulator
(Modis et al., 2013a,c). H2S produced by 3-MST along with
CAT can scavenge reactive oxygen species in mitochondria
and protect cells from oxidative stress (Kimura et al., 2010).
Modis et al. demonstrated that H2S donors could stimulate
mitochondrial electron transport and ATP generation in various
cell lines in vitro (Modis et al., 2013b).

However, when the concentrations of this molecule are
relatively high, the stimulatory effect of H2S is superseded by
an inhibitory effect (Szabo et al., 2014), and high concentration
of H2S may become a broad-spectrum poison to the nervous
system, respiratory system and cardiovascular system (Wang,
2012). The concentration of H2S produced naturally in the
human body is much lower than the toxic levels, which may be
necessary for cell survival (Kimura, 2011).

The complexities of H2S biology may be related to its
pharmacology. It is a diffusible gas and has a bell-shaped or
biphasic dose-response curve, whereby lower concentrations of
H2S show quite different (often, opposing) effects compared
with higher concentrations (Szabo et al., 2013). Lower levels of
H2S exert multiple physiological, cytoprotective, antioxidant and,
anti-inflammatory functions. At higher local levels, however, H2S
can become prooxidant, cytostatic, and cytotoxic (Baskar and
Bian, 2011). However, these studies are limited by the lack of
enzyme-specific inhibitors to target H2S biosynthesis, which may
be related to the above-mentioned controversial observations
(Whiteman et al., 2011).

BIOLOGICAL ROLES OF H2S IN THE GI
TRACT

Emerging evidence indicate that endogenous H2S can be
produced and released by colonic tissue (Linden et al., 2008; Cao
et al., 2010). In the GI tract H2S is mainly produced by CBS
and CSE. CSE seems to be the main H2S-generating enzyme
in the stomach, while CBS is the major enzyme in the colon
(Wallace et al., 2009).The functions of H2S in the GI tract
have also received much attention in recent years. It can relax
ileal smooth muscle, increase colonic secretion (Gallego et al.,
2008; Matsunami et al., 2009), and protect the intestines from
ischemia–reperfusion injury in rats (Liu et al., 2009). However,
high levels of H2S may also cause diseases, such as IBD and CRC.

ROLES OF EXOGENOUS H2S DONORS

There are multiple reports related to exogenous H2S donors
in tumor cells that either promote or inhibit cell proliferation

at different concentrations (Baskar and Bian, 2011; Wu
et al., 2012). Previous studies have attempted to use various
molecules to produce H2S (Kashfi and Olson, 2013), such as
NSAIDs (Chattopadhyay et al., 2013; Kashfi, 2014), GYY4137
[morpholin-4-ium 4 methoxyphenyl (morpholino)] (Ning
et al., 2014), S-propargyl-cysteine (Ma et al., 2011), Sodium
hydrosulfide (NaHS) (Cai et al., 2010), Na2S (Hirata et al., 2011).
The pros and cons of these molecules are summarized in a review
article by Hellmich et al. (2015). Among them NaHS is most
widely used to study the physiological functions of H2S. NaHS
is a fast-release H2S donor, which immediately dissociates and
forms the hydrosulfide anion (HS−) in the liquid culture, and
reacts with H+ to form H2S.

Many studies have reported duplex effects of H2S on
cell proliferation/cell death in various transformed and non-
transformed cell lines in vitro (Leschelle et al., 2005; Cai et al.,
2010; Murata et al., 2014). Baskar et al. have summarized most of
these reports in a review article (Baskar and Bian, 2011). Note that
the effects of H2S donors are bi-phasic, just like endogenously
produced H2S. Cai et al. reported a concentration-dependent
stimulation of cell growth by NaHS at doses between 10 and
50 µM, a plateauing of the effect at 200 µM, and an inhibition
of proliferation at 1000 µM in HCT116 and SW480 cells (Cai
et al., 2010). Hellmich et al. also demonstrated that the nature
of the cellular response (stimulation or inhibition of growth) is
determined by the rate of H2S production (fast- vs. slow-release
H2S donors) as well as by the concentration of donor relative to
the basal level of endogenous enzyme-dependent H2S production
(Hellmich et al., 2015). It should be considered that H2S donors
with different release rates might induce quantitative, as well as
qualitative, variance in cellular responses (Whiteman et al., 2010;
Baskar and Bian, 2011).

Thus, the bell-shaped properties of H2S provide a useful
framework to reconcile some of the controversies regarding H2S
functions. However, the complexities of the temporal relationship
between H2S donation and its effects remain to be further
explored.

BACTERIA ASSOCIATED WITH
HYDROGEN SULFIDE METABOLISM

H2S was one of the earliest products of bacterial decomposition
to be recognized (Shatalin et al., 2011). Sulfur reduction and
oxidation are handled by two different groups of bacteria. The
former comprise the sulfate-reducing bacteria (SRB) and sulfur-
reducing bacteria, while the latter includes sulfur-oxidizing
bacteria and sulfide-oxidizing bacteria (Wang, 2012). They both
contribute to a balanced H2S level in a given environment.
Among them, SRB belong to the most ancient forms of bacteria
and utilize a wide range of substrates, including hydrogen,
short-chain fatty acids, alcohols and amino acids to reduce
sulfur and sulfur-containing compounds to H2S (Scanlan et al.,
2009).

SRB are Gram-negative, non-spore-forming, obligate
anaerobes. SRB are considered to be strictly anaerobic
microorganisms, but they are also found in anoxic habitats
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depleted of sulfate, such as the GI tract (Rey et al., 2013).
Although Hansen et al. demonstrated the lack of SRB in human
gut microbiota (Hansen et al., 2011), other studies using different
analytic approaches have identified SRB in the fecal microbiota
of healthy adults and the distal gut mucosa (Stewart et al., 2006;
Rey et al., 2013). The number of healthy individuals harboring
SRB ranged from 24 to 100% (Loubinoux et al., 2002). The most
frequently detected SRB from animal and human feces that are
relevant to bowel colonization are flagellate Vibrio bacteria and
Desulfovibrio (Scanlan et al., 2009).

For bacterial-derived H2S, little is known about the metabolic
pathways involving host cellular processes. Huycke et al. showed
that H2S produced by SRB in the GI tract is potentially
genotoxic to the gut epithelium (Huycke and Gaskins, 2004).
However, Konstantin et al. demonstrated that H2S produced
by SRB acts as a cytoprotectant molecule against oxidative
stress and antimicrobials by suppressing the DNA-damaging
Fenton reaction and stimulating the major antioxidant enzymes
catalase and superoxide dismutase (SOD) (Shatalin et al., 2011).
Moreover, Devkota et al. found that SRB are positively associated
with inflammation (Devkota et al., 2012): both pro- and anti-
inflammatory signaling is attributed to H2S (Pitcher et al., 2000;
Wallace et al., 2009). In conclusion, bacterial-derived H2S may
have important roles in the GI tract, but the conclusions remain
to be further explored.

ROLES OF H2S IN THE
PATHOPHYSIOLOGY OF IBD AND CRC

IBD
The incidence of IBD and other immune-related human
disorders have increased considerably over the past 50

years, matching the changes in human diet and lifestyle.
The pathological roles of colonic luminal H2S and/or SRB in IBD
have attracted much attention recently (Roediger et al., 1997;
Wallace et al., 2009; Hirata et al., 2011). However, the viewpoint
that H2S contributes to the pathogenesis of IBD remains
controversial (Table 1). It has been reported previously that high
levels of H2S produced by bacteria could contribute to ulcerative
colitis (UC) by damaging oxidation of n-butyrate, leading to
impaired barrier function (Levitt et al., 2002). However, several
studies have challenged the idea for the lack of compelling
evidence that H2S causes damage to colonic epithelial cells,
and have demonstrated that H2S can act as a metabolic fuel for
colonocytes (Goubern et al., 2007; Picton et al., 2007). Wallace
et al. reported significant accumulation of H2S after induction of
colitis in rats and inhibition of H2S synthesis exacerbates colitis,
suggesting that H2S contributes to the resolution of experimental
colitis (Wallace et al., 2009). Recently, Hirata et al. also confirmed
that endogenous H2S acted as an anti-inflammatory molecule
by preventing neutrophil accumulation and via its anti-oxidant
ability, suggesting cytoprotective effects of H2S (Hirata et al.,
2011).

Although the functions of endogenous and exogenous H2S
in IBD remains controversial, many prior studies have shown
multiple effects of H2S. It can downregulate the expression of
several pro-inflammatory cytokines and enzymes, such as TNF-α,
IFN-γ and iNOS (Li et al., 2007; Wallace et al., 2007a); suppress
the activation of NF-κB (Oh et al., 2006); act as an antioxidant
(Hirata et al., 2011); and promote ulcer healing in rats (Wallace
et al., 2007b). The colonic mucosa is endowed with an efficient
H2S-detoxifying mechanism, oxidizing more than 300 µmol of
H2S daily in the rat colon (Suarez et al., 1998). When the barrier
breaks down, such as in severe colitis, a large amount of H2S may
access the muscle layers and inhibit motility.

TABLE 1 | Roles of H2S in the pathophysiology of IBD and CRC.

Diseases Effects of H2S Possible pathogenesis/Epidemiologic study References

IBD Pro-inflammatory effects Impaired oxidation of n-butyrate Levitt et al., 2002

Patients with UC had excessive SRB colonization or H2S in feces Pitcher et al., 2000; Rowan et al., 2009

Anti-infammatory effects Suppression of the activation of NF-kB Oh et al., 2006

Promotion of ucler healing in rats Wallace et al., 2007b

Downregulation of TNF-α,IFN-γ and iNOS epression Li et al., 2007; Wallace et al., 2007a

Contribution to the resolution of experimental colitis Wallace et al., 2009

Acting as an antioxidant Hirata et al., 2011

Preventation of neutrophil accumulation and viaits anti-oxidant

ability

Hirata et al., 2011

No effects No difference in SRB between patients with IBD and controls Fite et al., 2004; Picton et al., 2007

CRC Carcinogenic factor Decrease of suifide-detoxifying enzymes Ramasamy et al., 2006

Genomic DNA damage Attene-Ramos et al., 2007

Stimulation of the growth and migration Cai et al., 2010; Szabo et al., 2013; Modis et al., 2014

Inhibition of cell apoptosis Sen et al., 2012

Stimulation of tumor angiogenesis and peritumoral vasodilation Szabo et al., 2013

Cancer suppressive factor Reduction of cell viability Cao et al., 2010

Inhibition of proliferation and promotion of protective autophagy Wu et al., 2012
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In addition, the contribution of bacteria-derived H2S in colitis
remains unclear. An epidemiologic study revealed that patients
suffering from UC had either excessive SRB colonization or
excessive H2S in their feces (Pitcher et al., 2000; Rowan et al.,
2009). Kleessen et al. reported variable counts of SRB from
colonic mucosal specimens in patients with UC, Crohn’s disease
(CD) and healthy controls (Kleessen et al., 2002). However,
Picton et al. found no evidence of defective enzymic detoxication
of sulfide in patients with UC or CD (Picton et al., 2007). Fite et al.
also confirmed that there is no disease-related difference in SRB
carriage between patients with UC and controls by rectal biopsies
(Fite et al., 2004).

In summary, endogenously and exogenously produced H2S in
the GI tract might contribute to colitis and IBD, but there is no
complete mechanistic model that explains the relationship.

CRC
CRC is the second leading cause of death from cancer and the
fourth most common cancer in men and women worldwide.
H2S is also implicated in CRC (Huycke and Gaskins, 2004;
Cai et al., 2010; Cao et al., 2010; Hellmich and Szabo, 2015).
Although the basal expression of H2S-synthesizing enzymes in
human colon tissue is relatively low (Whiteman et al., 2011),
Szabo et al. observed the selective upregulation of CBS in the
colon cancer tissue compared to normal mucosa tissue (Szabo
et al., 2013). The expression of CBS is also upregulated in certain
colon adenocarcinoma-derived cell lines (HCT-116, HT-29, and
LoVo) compared with the colonic epithelial cell line. (Szabo and
Hellmich, 2013) Genomic DNA damage is observed in colon
cells after H2S exposure (Attene-Ramos et al., 2007). In addition,
sulfide-detoxifying enzymes in the human colon are decreased in
cancer tissues (Ramasamy et al., 2006).

Recently, several studies suggested that H2S regulated cell
growth or death in a multitude of settings (Cai et al., 2010;
Cao et al., 2010; Medani et al., 2011; Szabo et al., 2013).
Cai et al. demonstrated that H2S promoted colon cancer
cell proliferation, as mentioned previously (Cai et al., 2010).
However, Cao et al. demonstrated that H2S is endogenously
produced in colonic tissues and that exogenously applied
H2S at physiologically concentrations reduced cell viability
(Cao et al., 2010). Another study showed that H2S could
inhibit proliferation and promote protective autophagy in colon
epithelial cells by the activation of the AMPK/ mTOR cascade
(Wu et al., 2012). Previous studies have shown cell type-specific
activation of MAPK by H2S, which determines the fates of
cells (Cho et al., 2006; Shibuya et al., 2009a; Cao et al., 2010).
These controversies may relate to the bell-shaped dose-response
curve of H2S.

For tumor-produced CBS-derived H2S in CRC, Szabo et al.
defined this gas as a combined autocrine and paracrine-signaling
molecule (Szabo andHellmich, 2013). As an autocrine factor, H2S
stimulates the proliferation andmigration of CRC cells (Cai et al.,
2010; Szabo and Hellmich, 2013; Szabo et al., 2013; Modis et al.,
2014). However, at higher concentrations or longer exposures to
S-adenosyl-L-methionine (SAM), the inhibitory effects become
more prominent because of cytotoxicity. Recently, Sen et al.

found that the sulfhydration of nuclear factor kappa B (NF-
kB) by H2S could inhibit cell apoptosis (Sen et al., 2012). The
mechanisms of the proliferative and pro-migratory effects might
be the stimulation of the Akt/PI3K signaling pathway, decrease
of p21 gene expression and interaction with NO (Cai et al.,
2010).

As a paracrine factor, H2S might diffuse out from the
tumor cell to stimulate tumor angiogenesis and peritumoral
vasodilation. Szabo et al. reported that treatment of nude
mice with a CBS inhibitor could attenuate the growth of
patient-derived colon cancer xenografts and reduce peritumoral
blood flow (Szabo et al., 2013). This study also confirmed the
stimulatory role of H2S on the activity of GAPDH, indicating that
H2S can affect both oxidative and glycolytic metabolism in tumor
cells. Another independent study also confirmed the autocrine
and paracrine functions of colon cancer-derived H2S (Yamagishi
et al., 2012). Yamagishi et al. detected significant amounts of H2S
inside colon cancer tissue.

Subsequent studies in nude mice bearing xenografts of either
HCT116 or patient-derived tumor tissue (PDTX) extended the
findings into in vivo models. Inhibition of CBS significantly
reduced the growth rate of the tumor xenografts, which might
be related to intratumoral mechanisms or paracrine mechanisms
in the tumor microenvironment (Hellmich and Szabo, 2015).
In addition, CSE can stimulate colon cancer cell proliferation,
migration in vitro and tumor xenografts growth in vivo,
however, the roles of CSE/H2S in colon cancer remain uncertain.
Another study demonstrated that the canonicalWnt pathway can
upregulate CSE expression (Fan et al., 2014).

Thus, H2Smay exhibit both protective and pathological effects
in the GI tract given its biphasic pharmacological characters.
However, the prior studies demonstrated controversial effects of
H2S and the mechanisms remain unknown.

THE THERAPEUTIC POTENTIAL OF H2S IN
COLONIC DISEASES

Although limited in terms of quantity and mechanistic models,
there is reasonable evidence suggesting that H2S is important
for the occurrence and development of colonic diseases.
The intriguing discovery that H2S governs specific protective
responses against oxidative stress and antibiotics also suggested
the potential therapeutic implications (Shatalin et al., 2011).
We can hypothesize that H2S inhibition might be potentially
applicable to inhibition of tumor blood supply and/or the
hyperproliferative response in CRC. Given the particular
pharmacological character of H2S, both stimulation and
inhibition of H2S might have potential therapeutic applications
(Szabo and Papapetropoulos, 2011).

In addition, it is noted that exposure to a relatively low level
of H2S over a relatively long time period selectively inhibits
cancer cell proliferation. Therefore, slow-releasing H2S donors
and H2S-releasing hybrid drugs could be designed and developed
as novel anticancer drugs (Wu et al., 2015). However, these
possibilities are merely hypothetical at present, and the lack of
wholly enzyme- and tissue-specific inhibitors of H2S has meant
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that controversial or contradictory conclusions have been made
in previous studies.

In conclusion, H2S might play vital roles in the development
of colonic diseases, and further investigations are needed to
determine the proper dose range and time frame of H2S in
IBD and CRC, thereby achieving optimal anti-inflammation and
anti-cancer effects.
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