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Mechanistic physiological modeling is a scientific method that combines available data with scientific knowledge and
engineering approaches to facilitate better understanding of biological systems, improve decision-making, reduce risk, and
increase efficiency in drug discovery and development. It is a type of quantitative systems pharmacology (QSP) approach that
places drug-specific properties in the context of disease biology. This tutorial provides a broadly applicable model
qualification method (MQM) to ensure that mechanistic physiological models are fit for their intended purposes.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 43–53; doi:10.1002/psp4.12056; published online 26 January 2016.

The use of modeling in drug discovery and development

has received both industry and regulatory support in recent

years.1–14 Some methods, such as pharmacokinetic (PK),

population PK, and pharmacodynamic modeling, are now

used routinely. Newer approaches, such as physiologically

based PK, systems biology, and QSP, are being used effec-

tively in a number of organizations, but are still in the early

stages of broad market adoption.4,15,16

QSP is an umbrella term for modeling approaches that

integrate a mathematical representation of the biological

system with pharmacological information about a drug of

interest in order to facilitate improved understanding of

human drug response. As summarized in an National Insti-

tutes of Health QSP White Paper, QSP is intended to help

identify and validate targets, reveal possible biomarkers,

support drug design, inform dose and regimen selection,

and help identify (non-)responders proactively.10

Mechanistic physiological modeling is a QSP approach in

which the mathematical representation of the biological sys-

tem comprises known and hypothesized dynamic relation-

ships between biological components that give rise to

systems-level (e.g., clinical) behaviors. One or more drugs’

effect(s) are then represented mechanistically in the context

of the biological system. This approach facilitates improved

understanding of the relationships between biological com-

ponents (e.g., organs, cells, mediators, signaling pathways),

the effect(s) of the intervention(s) (e.g., receptor agonism,

transport inhibition), and outcomes of interest (e.g., plasma

glucose levels, tumor size, markers of inflammation). Engi-

neering principles are applied to translate biology into

graphical and mathematical expressions. This translation

process relies on both engineering and life science exper-

tise. In terms of complexity, such models typically contain

more mechanistic biological detail than mechanistic or

semimechanistic PK/pharmacodynamic models (see refs.

17 and 18 for examples) but less pathway-level detail than

systems biology models (e.g., see refs. 19 and 20). The

biological entities modeled in mechanistic physiological

modeling often span across scales, from molecules to path-

ways to organs or whole organisms.21–23 Most commonly,

the models are systems of ordinary differential equations,

which are well-suited for representing systems with dynamic

interactions between components.23–25 Unlike many other

modeling approaches, mechanistic physiological modeling

does not rely on any single type of data to infer model struc-

ture and parameterization. Rather, it is a scientific method

that combines relevant available data with scientific knowl-

edge and engineering approaches to construct plausible rep-

resentations of biology in order to better understand the

biological system. These attributes make it a natural fit for

drug discovery and development, in which improved under-

standing of how modulation of a target affects clinical out-

comes can greatly improve decision-making.
Pathophysiology and drug action are complex, and drug

development typically requires making decisions under con-

ditions of uncertainty, using implicit and explicit assump-

tions about the role of a drug or target in the disease

process. Typical questions facing drug developers include:

• Will the target pathway show sufficient efficacy to be competitive?
• What is the likely human clinical efficacy taking into account sys-

temic feedbacks and compensatory mechanisms?
• How much of a risk does biological uncertainty pose?
• What aspects of biology must be clarified before moving forward

and what are the most informative experiments?
• Could patients with a range of disease severities benefit from this

drug?
• Are there more and less responsive patient subsets and, if so, how

can they be identified?
• Which compound properties should be optimized?
• Might combination therapy be more promising than monotherapy?

Decisions about the next steps in drug development are

typically made with limited or no clinical data and no clear

answers to all of these questions. Further, the typical drug

development process is not designed to answer all of the
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questions. Relevant pieces of information to help answer
the questions may already exist, but often have not been
connected formally. For example, to understand how an
insulin secretagogue will affect plasma glucose concentra-
tions, researchers must consider its PK properties, its
concentration-dependent effect on insulin secretion and
possibly other pathways, the role of insulin in regulating glu-
cose, and feedbacks that could amplify or dampen
response.24–26 Mechanistic physiological models, such as
the example of a type 2 Diabetes PhysioPD Research Plat-
form developed by Rosa & Co (Figure 1), have been used
to integrate relevant existing information in order to address
these types of questions explicitly.

The evidence informing the model representation may
include in vitro assay results, preclinical animal data, PK
data, clinical data for the compound of interest or for drugs
with related mechanisms of action, as well as the larger
body of work establishing hypotheses of disease patho-
physiology. This information already informs the mental
models in scientists’ heads, but human brains are not
equipped to fully integrate and utilize all of the informa-
tion.27–31 Mechanistic physiological modeling makes this
integration task explicit, consistent, and testable, making
use of relevant available data to optimize decisions through-
out the drug development process. As more data become

available, the model continues to evolve to help anticipate
the next development step with the most complete under-
standing possible, very much in keeping with a learn and
confirm approach.32 The goal of this type of modeling is to
empower scientific dialog, not to replace it.

Mechanistic physiological modeling has been utilized since
well before the term QSP came into general use. For exam-
ple, in a 2005 publication, Rullmann et al.33 demonstrated
the use of a mechanistic rheumatoid arthritis model for the
identification and prioritization of novel targets based on
improved mechanistic understanding of disease dynamics
and prediction of likely clinical efficacy. In 2007, Gadkar
et al.34 demonstrated the use of a type 1 diabetes model for
explaining apparently contradictory data and using novel
insights to design optimal protocols. At this date, there is a
record of publications and conference presentations in a
wide variety of therapeutic areas, including type 2 diabe-
tes,21,35–40 type 1 diabetes.34,41,42 rheumatoid arthritis,33,43–45

skin diseases and sensitization,46–49 liver toxicity,50–54

asthma,55,56 bone remodeling,57 cardiovascular dis-
ease,44,58,59 and oncology/immuno-oncology.60–62 Published
applications of mechanistic physiological models include
clarification of biological mechanisms and hypothesis
exploration,40,41,46,48,50,52,54,55,57–59,61 target identification
and evaluation,33,48,49,58,63 compound evaluation or

Figure 1 A portion of a graphical representation (PhysioMap) of a type 2 Diabetes PhysioPD Research Platform developed by Rosa &
Co using JDesigner software.86 Major biological processes are represented graphically as subsystems or modules (e.g., glucose
metabolism, insulin and glucagon, incretins, etc.). They are linked mathematically by the use of an aliasing function that allows display
of the same node in multiple places on the diagram. The detailed section represents key regulated processes in glucose metabolism.
For example, glycogenolysis (the reaction arrow going from liver glycogen [“Glycogen_Liver”] to glucose 6 phosphate
[“G6P_Periportal”]) is regulated by glucose (“Conc_Glucose”) and glucagon concentrations (“Conc_Glucagon”). The graphical layout
facilitates communication and review of the model by research team members with biological content knowledge.
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optimization,39,45 preclinical to clinical translation,45,51,59

experimental design and protocol optimiza-
tion,34,38,42,53,60,62,64 patient stratification,45,62,64,65 and
biomarker identification.43,46

Most of these examples illustrate uses of mechanistic
physiological modeling to inform internal drug development
decisions. Notably, a well-established QSP model of bone
and calcium homeostasis was also recently utilized by the
US Food and Drug Administration to inform a regulatory
decision.66

THE NEED FOR A MODEL QUALIFICATION METHOD

Despite a number of successful applications and increased
investment and support for the use of modeling in pharma-
ceutical companies,1–3,5,12–14,16,21,23–25,33,41,66 many deci-
sions made in pharmaceutical discovery and development
today still do not fully benefit from systematic and targeted
application of biological modeling and simulation. One pos-
sible reason for the relative underutilization of QSP
approaches, such as mechanistic physiological modeling, is
that the field is lacking a standard model qualification
approach that would give decision-makers confidence in
assessing model quality and acting on model-informed
insights. Such a qualification approach could also help
establish a reasonable standard for reviewing models for
publication. Finally, one of the necessary conditions for
using a QSP effectively is an organizational structure and
culture that enables cross-functional communication. A
standard qualification approach would facilitate communica-
tion between modelers and other members of cross-
functional teams whose scientific expertise is essential for
model development and qualification, but who may be
unsure how to assess model quality.

The purpose of model qualification is to ensure that a model
is fit for the purpose for which it is intended. Before determining
how to qualify mechanistic physiological models, it is therefore

important to understand that the ultimate purpose of these
models is to support decision-making in drug discovery and
development. Decisions in drug discovery and development
usually have to be made with incomplete data, especially in
early development. A well-qualified mechanistic physiological
model should make optimal use of incomplete but informative
data and knowledge to de-risk the next steps in development.
It is a common misconception that the goal of this type of mod-
eling is limited to prediction of outcomes. Indeed, precise pre-
diction is not always possible, but mechanistic modeling can
still be used to clarify biological connections, explore the
impact of different hypotheses, identify the factors most likely
to affect outcomes, and suggest experiments to reduce mate-
rial uncertainties. For example, a mechanistic physiological
model can be used to explore best-case and worst-case sce-
narios and identify what would predispose a patient toward
one or the other scenario. Important goals of mechanistic
physiological modeling therefore include generation of new
biological insights and testable hypotheses.24,28,29,68 A qualifi-
cation approach to determine if such a model is “fit for
purpose” must be designed with these purposes in mind. Early
attempts at establishing model “validation”27,69 have missed
this important point by focusing exclusively on predictive ability.
This type of validation approach is neither necessary nor suffi-
cient for these types of models. More recent publications have
acknowledged that there are qualitative differences between
QSP models and other modeling approaches that necessitate
a fresh perspective on model qualification.4,17,70,71

If traditional validation approaches cannot ensure that a
mechanistic physiological model effectively serves the functions
outlined above, then what approach is appropriate? We intro-
duce here a broadly applicable model qualification method
(MQM) designed to ensure that mechanistic physiological mod-
els are fit for purpose. This approach has been developed and
proven effective in dozens of professional applications in a
broad range of therapeutic areas.38,40,45,48,49,59,61,62,64,71 The
criteria address four aspects of model qualification: (1) rele-
vance to the research context; (2) dealing with uncertainty;
(3) dealing with variability; and (4) ensuring that model results
are qualitatively and quantitatively consistent with test data.
Table 1 lists some of the questions that need to be addressed
for each of these aspects of model qualification. Use of the
MQM brings structure to model-based research, creates a com-
mon language, and improves communication among and buy-
in from cross-functional teams faced with making decisions at
every step of the drug development process.4,71

THE MODEL QUALIFICATION METHOD

The MQM presented here evolved specifically to support
decision-making under the conditions commonly faced in
drug development: incomplete information and limited time.
Hence, the goal is to build the best and most useful model
possible under these conditions. Of primary importance is
to get buy-in from the development team that the model is
fit for its intended purpose of supporting drug development
research. Figure 2 is a graphical summary of the MQM.
We propose that these criteria are necessary and sufficient
for model qualification.

Table 1 Aspects of model qualification and example questions that model

qualification must address

Resolution

Conditions under which the resolution

is appropriate

Relevance � Is the research context clear and has biological

and functional scope been set accordingly?

� Does the representation of the biology and phar-

macology reflect the current state of knowledge?

Uncertainty � Given biological uncertainty, how robust are

model results and conclusions?

� Would conclusions or recommendations change

under different assumptions?

� What uncertainty poses a risk to the program,

and what experiments could resolve it?

Variability � How do known differences between patients

affect model results?

� What biological mechanisms can explain the

range of observed clinical or preclinical outcomes?

Data � Does the model match relevant data, at the clini-

cal/preclinical and mechanistic level?

� Are model responses to a variety of tests con-

sistent with current knowledge and expectations?
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All criteria of the MQM must be considered in every mod-

eling project, to the extent appropriate to the research con-

text (defined in the section below).
The following sections discuss each of the criteria of the

MQM and suggested qualification approaches to determine

whether the criteria have been met. It should be noted that

the MQM is a flexible framework rather than a strictly pre-

scriptive method. That is, it is not a rigid set of steps that

must be followed to satisfy each criterion. Such an

approach would be too inflexible given the broad range of

therapeutic areas and research questions that these mod-

els can help address and the wide range of data availability

and uncertainty that may be encountered. Rather, the spe-

cifics of the qualification approach for each of the criteria in

the MQM should be planned during the first stages of a

modeling project. The purpose of the MQM is to ensure

that all of the criteria that are relevant for model qualifica-

tion are considered and documented from the initiation of

the project.
As discussed above, two attributes that clearly distinguish

QSP models from empirical approaches are the purpose of

the modeling exercise and the data used for modeling. These

attributes also vary between QSP models. The purpose of

QSP modeling could range from target evaluation to phase III

protocol optimization. The data available may be overwhelm-

ingly mechanistic and preclinical, or could include a substan-

tial amount of clinical data. It is important to tailor the model,

the qualification approach, and indeed the team’s expecta-

tions according to the intended application of the model and

the available data. For example, an early evaluation to sup-

port the biological case for advancing a novel target can often

be made using primarily preclinical mechanistic data and the

broader disease literature. A fit-for-purpose model in this sce-

nario may not yet need to account for possible mechanistic

drivers of clinical variability, although it should consider the

impact of biological uncertainty on the go/no-go decision for

the target. On the other hand, a QSP model used for phase

III protocol optimization should include a range of virtual

patients to account for clinical variability and should certainly

be tested against clinical data from earlier phases (i.e., the

model qualification criteria must fit the data and intended use

of the model).
There is active ongoing research on techniques to

address many of the areas discussed below (see refs.

72–79 for examples). The focus here is not on specific

techniques but on: (1) elucidating the need for each of

the criteria; (2) suggesting qualification strategies; and

(3) bringing all of the criteria together into a complete

framework to appraise a model’s fitness for purpose.

MODEL SCOPE IS RELEVANT FOR RESEARCH

CONTEXT

The first criterion requires that the model scope be relevant

for the research context. A costly and unfortunately com-

mon problem in modeling-based research is building an

inappropriate model for the research context. For example,

models may have more detail than needed in areas that

are not of primary relevance for the current research ques-

tion, which could contribute to failure to address the key

questions in time to inform decisions. We submit that the

research context comprises: (1) the key research ques-

tion(s) or decision(s) to be made; (2) the available data and

knowledge; and (3) time and resource constraints.
Model scope should be parsimonious and based on rele-

vance to the research context.4,70,71 The determination of

which biological mechanisms to include in a mechanistic

physiological model should primarily be based not on what

is known or what data are available, but rather on what is

most relevant to the research context and what is sufficient

to answer the research question. For example, in building a

model to explore mechanistic explanations of the two-

phase bronchodilatory effects of zileuton in patients with

asthma, Demin et al.55 focused only on key drivers of bron-

chodilation and cellular dynamics that were relevant to the

timeframe of the clinical observations.
This qualification criterion should be the foremost consid-

eration when planning the project and designing the model.

Every scope decision must be made with the research con-

text in mind. Given time and resource constraints, inclusion

of extraneous detail can be as detrimental as exclusion of

needed components.

Recommended qualification approach
Begin the model-based research project by clarifying the

research context. Before, during, and after the project, ask

the following questions. If they can be answered in the

affirmative, then the model was scoped appropriately.

a. Did the modeling work yield actionable insights that advanced the
research agenda?
Examples of actionable insights include recommendations for opti-
mal protocols, targeted follow-up experiments to de-risk next steps,

Figure 2 Graphical illustration of the eight criteria of the model
qualification method.
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potential biomarkers predictive of efficacy or safety, or guidance for
follow-on compound properties.

b. Was the model constructed in a timely fashion so as to be useful
when decisions had to be made?
It is critical to keep the available timeframe in mind when scoping
models. It is often possible to stage the modeling work such that
early insights can be gained in time for the most proximal decision,
and additional functionality is then added in a staged fashion to
support ongoing development. Models should have as much detail
as is necessary for the research context, and no more. Unneces-
sary detail can delay or obscure insights into how mechanisms
relate to outcomes and make it more difficult to augment or modify
the model for future applications.

MODEL REPRESENTS RELEVANT BIOLOGICAL
MECHANISMS

Mechanistic physiological models must represent relevant
biological mechanisms at the level of detail appropriate to
the research context.71 It is not uncommon for data to be
most limited in precisely those areas that are of greatest
interest to explore. Building a mechanistic physiological
model in this situation is a way to integrate relevant infor-
mation and knowledge into one framework that can then be
used to test hypotheses and evaluate uncertainties in a
systematic fashion (more on this in sections below). Mecha-
nistic physiological modeling is particularly valuable when
specific target or compound data are sparse because these
models facilitate the representation of target or compound
information and hypotheses within the context of relevant
biological mechanisms. For example, Moore et al.65 were
able to use a mechanistic model of erythropoietin synthesis,
binding, degradation, and cell dynamics to extrapolate from
a single-dose study of a drug compound to assess likely
hemoglobin response to a multidose protocol in a range of
patients with kidney disease. This extrapolation was possi-
ble because the systemic effects of the drug and feedbacks
that affect repeat-dosing PK were largely because of bio-
logical mechanisms represented in the model that were
independent of the particular properties of the compound
under investigation.

The requirement that mechanistic physiological models
represent biological mechanisms imposes an important and
rich set of constraints on parameters, equations, and sub-
system behaviors. Parameters with physiological meaning
can be derived using various types of data. Functional equa-
tion forms are chosen to be appropriate for the interaction
that is represented (e.g., receptor binding), and subsystem
behaviors can be compared to a rich set of experiments elu-
cidating mechanisms (more on comparison to data in sec-
tions below). These attributes are particularly important in
supporting simulations for novel drugs or protocols (e.g., for
planning an optimally informative phase I trial). Note that cri-
terion 2 does not imply that all known biological mechanisms
must be represented, as that would violate criterion 1. Simi-
larly, the level of mechanistic detail represented should be
informed by the research context. For example, if the com-
pound under investigation is a receptor agonist, the details

of receptor binding and receptor recycling dynamics may be

very relevant to include, but the interactions of other ligands

and receptors in the same model need not have the same

level of mechanistic representation.

Recommended qualification approach
Document literature information, data, and the scientific judg-

ments and data interpretations that inform the model struc-

ture, equations, and parameters. All parameters must have

biologically reasonable values. In addition, it is imperative that

scientific experts on the team contribute to the modeling pro-

cess, understand the model structure, and confirm that the

represented interactions between components reflect the biol-

ogy appropriately. (Disagreement among experts suggests

uncertainty, which can be addressed as discussed in sections

below.) To facilitate communication within a multidisciplinary

team, it is extraordinarily helpful to use modeling software

with a graphical interface and annotation capabilities.

RELEVANT QUALITATIVE UNCERTAINTIES

ARE ASSESSED

Inevitably, explicit modeling of a biological system leads to iden-

tification of gaps in current knowledge. Knowledge gaps and

uncertainty exist irrespective of modeling; constructing a model

brings much-needed rigor to the identification and assessment

of uncertainty so that the best possible decisions can be made

in the presence of uncertainty. Typically, only a small subset of

uncertainties significantly affect outcomes, and identification of

these uncertainties can help determine the most informative

experiments or approaches to resolve them.
Assessment of the possible impact of mechanistic uncer-

tainty is a particular strength of mechanistic physiological

modeling. These models lend themselves exceptionally well

to scientifically motivated explorations of “what-if” scenarios

that do not necessarily require specific data or assessed dis-

tributions a priori. The motivating questions may be, what if

patients’ pathophysiology varied in one or two pathways,

would this pose a potential risk (i.e., some types of patients

would respond poorly) or would it present a potential opportu-

nity (i.e., some patients would respond particularly well)? Or,

if we do not know which of several mechanistic hypotheses is

correct, how much might that affect outcomes?
In the MQM, we distinguish qualitative and quantitative

uncertainty. Qualitative uncertainty is uncertainty about how

biological components interact (e.g., should there be an inter-

action between necrosis and activation of antigen presenting

cells? What is the functional form of the equation?), whereas

quantitative uncertainty is uncertainty about the degree or

rate of the interaction (e.g., to what extent does interleukin-10

inhibit T-cell activation in the presence of other mediators?).

Uncertainty about the identity of the compound’s molecular

target is an example of a qualitative uncertainty, whereas

uncertainty about the degree to which target modulation will

impact downstream functions is a quantitative uncertainty.
To assess a qualitative uncertainty means to evaluate its

impact on the research question. Often, closer examination

of an uncertainty leads to resolution, where some hypothe-

ses can be ruled out as unlikely given all the existing
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evidence. If a qualitative uncertainty persists (i.e., more

than one hypothesis is consistent with relevant knowledge

and data), its effect on the research question can be explic-

itly evaluated by maintaining multiple possible model struc-

tures and analyzing differences in predicted responses to

various in silico experiments. This can be achieved through

the use of virtual patients (VPs)21,33,36,41,42,60,68,80,81 –

alternative versions of the model in which sensitive path-

ways or parameters are deliberately varied to explore the

systemic effects of these differences.
In the interest of efficiency and focus, every effort should

be made to assess the likely impact of a qualitative uncer-

tainty as early in the modeling process as possible, using

sensitivity analysis as well as scientific judgment. Proximity

to the research target is one useful heuristic during model

development. For example, qualitative uncertainty about the

molecular target of a drug may merit close examination

given likely implications on efficacy predictions, dosing deci-

sions, or expected safety profile. Once the model is com-

pleted under one set of assumptions about qualitative

uncertainties, sensitivity analysis can help identify sensitive

mechanisms to focus on. If a parameter is identified as

sensitive via sensitivity analysis, the mechanism(s) that the

parameter is involved in should be assessed in more detail

to see whether, for example, choosing a different equation

form that is still consistent with data and knowledge would

lead to a different outcome.
For example, to construct VPs representing two different

qualitative hypotheses, one in which two signals have an

additive effect and one in which two signals have a less

than additive effect, one could write two versions of the

effect equation and switch between them using a switching

parameter that is off for one VP and on for another VP.

Each of the VPs would then be calibrated to have appropri-

ate behaviors that meet all the qualitative and quantitative

tests (see sections below). This process typically clarifies

trade-offs between parameters or pathways and can lead

to new insights into disease and therapy mechanisms. Fig-

ure 3 illustrates the VP concept—mechanistic differences

are encoded as combinations of different parameter values

in different versions of the model (i.e., different VPs). The

effects of these differences on outcomes become clear

when a protocol of interest is simulated.
Often, the VP exploration can be used to identify experi-

ments that would resolve an uncertainty. If multiple struc-

tural hypotheses are similarly consistent with data and

knowledge, then the multiple VPs can be used to investi-

gate the impact of the uncertainty on the research ques-

tions of interest, as further described below. For example,

Tess et al.40 used multiple VPs to assess the impact on

glucose area under the curve of alternate hypotheses about

the combined effect of a GPR119 agonist compound and

endogenous GLP-1.

Recommended qualification approach
Relevant qualitative uncertainties must be explicitly docu-

mented, and resolution should fall into one of the catego-

ries listed in Table 2.

RELEVANT QUANTITATIVE UNCERTAINTIES

ARE ASSESSED

Quantitative uncertainties are extremely common in mecha-

nistic physiological models. The vast majority of biological

systems are incompletely characterized in terms of rates,

kinetic profiles, dose responses, absolute amounts, and

other descriptive quantities. (Conceptually, we distinguish

between uncertainty, in which the distribution of a parame-

ter is completely unknown, and variability, in which the

value of a parameter is known to have a given distribution.

The latter is covered in the next section.) One goal of

mechanistic modeling is to identify the subset of uncertain-

ties that are sensitive (i.e., have an effect on outcomes)

Figure 3 Illustration of the virtual patient (VP) concept. Several
VPs were created to explore hypotheses of patient differences
underlying response or nonresponse to three cycles of blinatumo-
mab, a bi-specific T-cell engaging antibody in B-lineage acute lym-
phoblastic leukemia (B-ALL).62,87 All VPs share the same model
structure, and all have similar levels of malignant cells at the start
of the trial. All VPs have parameter values that are within reported
ranges, but the VPs differ in the values chosen within those ranges
for some sensitive parameters, such as the malignant cell doubling
rate. Some combinations of parameters were found to lead to treat-
ment nonresponse (e.g., VP1), some to response (e.g., VP2), and
some to relapse after initial response (e.g., VP3).

Table 2 Possible qualitative uncertainty resolutions

Qualification aspect

Example questions that model

qualification must address

Document and proceed with

agreed-upon most likely

hypothesis.

Appropriate if the outcomes are

unlikely to change regardless of

which hypothesis is used (e.g., if

impact is local, distal to the focus

of the research, and/or transient).

Simplify model structure to avoid

modeling uncertain area

explicitly.

Appropriate if possible without com-

promising the model’s ability to

address research questions.

Resolve definitively (i.e., eliminate

all but one hypothesis through

data analysis and/or modeling).

Appropriate if model predictions rele-

vant to the research question are

sensitive or likely to be sensitive to

the uncertainty.

Maintain multiple hypotheses

(VPs) in model to explore the

systemic impact on biomarkers

or endpoints of different hypoth-

eses explicitly.

Appropriate if model predictions rele-

vant to the research question are

sensitive to the uncertainty and if

more than one hypothesis satisfies

all constraints.

VPs, virtual patients.
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and material (i.e., impact drug development decisions). Pri-

oritization of sensitive and material uncertainties can inform

experimental approaches to help resolve the uncertainty

and reduce risk in drug development.
Typically, an initial model is constructed using a set of

baseline parameter values that bring the model in compli-

ance with qualitative and quantitative data and knowledge

constraints (see sections below). Uncertainties are tracked

and systematic sensitivity analysis (see ref. 78 for exam-

ples of techniques) is used to identify the subset of proc-

esses and associated parameters that have a significant

impact on outcomes. For example, Maxwell and Mackay46

used sensitivity analysis in a model of skin sensitization to

identify the pathways that most contributed to antigen-

specific T-cell expansion (the biological biomarker of great-

est interest) vs. to the local lymph node assay sensitization

index (the gold standard biomarker) and found only partial

overlap in the set of key pathways, suggesting that the gold

standard biomarker was not as biologically relevant as pre-

viously thought. In another application, Benson et al.82

used sensitivity analysis to identify sensitive druggable tar-

gets in a systems pharmacology model of the nerve-growth

factor pathway.
After sensitivity analysis, VPs can be constructed in

which sensitive parameters take on different values. Each

VP is a targeted, complete alternative hypothesis of the bio-

logical system, meeting all relevant qualitative and quantita-

tive constraints, such as responding appropriately to

existing treatment protocols and diagnostic tests. Conceptu-

ally, VP development therefore often involves making

changes to sensitive parameters and making compensatory

changes elsewhere in the system (e.g., in a redundant

pathway) to bring the VP in compliance with the con-

straints. Note that VPs are not created by simply drawing

values from the possible parameter space, because a

randomly drawn collection of parameters would generally

fail to satisfy the constraints that a valid VP must satisfy.

(If sampling techniques are used in the VP creation pro-

cess, the candidate VP must be tested and refined or dis-

carded if it fails to satisfy the testing criteria.) The set of

VPs should each satisfy all constraints while collectively

being as different from each other mechanistically as

possible.
Once created, VPs can then be used to investigate ques-

tions of interest, such as:

• How do different hypotheses about disease pathophysiology (repre-
sented by different VPs) affect the choice of optimal dose or
protocol?

• What biological features distinguish responders from nonresponders?
• What biomarkers could be used to identify these patients clinically?

The optimal or necessary number of VPs depends on

the research context and the degree of relevant uncertainty

and variability inherent in the biological system. At a mini-

mum, enough VPs should be created to explore the range

of possible values for any parameter sensitive enough to

have a material impact on the outcome of interest. It is

often instructive to create VPs close to the extremes of

possible parameter values to assess whether uncertainty in
the parameter is likely to pose a risk. If VPs with parameter
values at opposite ends of the feasible range have similar
responses to the drug of interest, then resolution of the
uncertainty is probably not necessary. In such a case, it
may also not be necessary to create a larger set of
VPs with intermediate values in the parameter under
investigation.

Generally, modeling projects investigating questions in
discovery or early development, such as go/no-go on a
new target should focus VP creation on highly sensitive
qualitative and quantitative uncertainties, but do not require
the collection of VPs to match the distribution of observed
clinical outcomes. Modeling projects investigating questions
in later development or lifecycle management typically
require more VPs covering the range of clinical outcomes
and may necessitate creation of a virtual population whose
distribution matches clinical data.

Recommended qualification approach
Identify sensitive quantitative uncertainties (e.g., through
sensitivity analysis). The impact of sensitive uncertainties
on research questions or drug development decisions can
be investigated through the use of alternative VPs.

MODEL CAPTURES RELEVANT KNOWN PATHWAY
VARIABILITIES

Managing variability is one of the great challenges in drug
development. In this tutorial, we consider two kinds of vari-
ability: pathway and outcome variability. Pathway variability
is known interpatient variability that occurs at the mechanis-
tic pathway level, such as when different etiologies give rise
to a similar disease state. For example, the extent to which
patients’ asthma is driven by eosinophils vs. neutrophils,
known to vary across patients, would be considered a path-
way variability. Outcome variability refers to the variability in
observed outcome variables.

Mechanistic physiological modeling seeks to identify and
elucidate causal mechanistic links. Known pathway variabil-
ity is of interest because it is one of the factors giving rise
to outcome variability. In the asthma example, it is now
known that the eosinophils vs. neutrophils pathway variabili-
ty does account for some of the outcome variability in
patients’ responses to particular drugs, because the role
that the drug targets play in patients’ pathophysiology
varies. Experts in any field have mental models of how
pathway variability leads to outcome variability; a well-
qualified physiological model makes these links explicit and
testable.

As is the case for uncertainty, VPs are helpful in explor-
ing the impact of pathway variability on outcomes. Indeed,
a common use of mechanistic physiological models is the
construction of alternative VPs with hypothesized pathway
variabilities that could explain observed clinical outcome
variability.

Recommended qualification approach
Identify sensitive known pathway variabilities through a
combination of scientific research and model-based
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sensitivity analysis. Investigate the impact of pathway varia-
bilities on research questions of interest through the use of
alternative VPs.

RELEVANT OUTCOME VARIABILITY IS REPRODUCED

Analysis of outcome variability in the mechanistic physiolog-
ical modeling context strives to illuminate the biological
sources of outcome variability once drug-specific variability
has been accounted for. (Existing PK models can often be
directly incorporated, and the impact of varying PK parame-
ters in accordance with their established distributions can
be assessed.) Typically, known PK and pathway variability
account for some but not all of the outcome variability. Note
that outcomes here include both clinical outcomes and sub-
system outcomes, such as response of an organ or cell to
a given protocol.

Clinical outcome variability is at the heart of many chal-
lenging questions in drug development, such as:

• Will a novel drug work well enough in a range of different types of
patients?

• Is the variability seen in response to a competitor drug because of
underlying pathway variability in patient pathophysiology or because
of drug-specific properties?

• Could clinical biomarkers stratify patients by relevant pathophysiol-
ogy and explain or reduce clinical variability?

• To what extent could clinical variability be explained by poor adher-
ence to the protocol?

• Is combination therapy beneficial in all types of patients?

Mechanistic physiological modeling can help address
these questions by improving understanding of the connec-
tion between mechanisms and outcomes. Investigations into
the mechanistic sources of clinical outcome variability may
be of interest even at early stages of drug development. For
example, if there is a subset of patients who fail to respond
to the current standard of care drug, understanding whether
a novel drug may help these patients could be of great stra-
tegic value. In this scenario, it is the clinical variability in
response to a different drug that the model should first focus
on exploring. It should be noted, however, that the degree of
emphasis on clinical outcome variability varies depending on
the specific research context and data availability. See the
following sections for approaches to reproducing outcome
variability at the level appropriate for the research context.
Lack of relevant clinical outcome data does not invalidate
the model, it just implies a greater qualification emphasis on
subsystem outcomes and on exploration of uncertainty and
variability that could lead to clinical outcome variability and
thus pose a program risk.

When outcome data are available for the drug under
investigation or for mechanistically related drugs in the clini-
cal population of interest, the model must demonstrate the
ability to reproduce observed outcome variability. This is
achieved by creating a number of VPs with diverse parame-
ter values reflecting PK and pharmacological variability,
known pathway variability, and uncertainty in sensitive path-
ways, within the ranges of observed data. Alternatively, the

model can be used to anticipate possible outcome variabili-

ty by creating VPs that are as different from each other as

possible while still observing relevant constraints. In either

scenario, the model helps elucidate the connections

between mechanisms and outcomes. In one application,

Singh et al.62 used a mechanistic physiological model

of acute lymphoblastic leukemia and created three VPs

representing a prototypical nonresponder, responder, and

relapser to conduct initial research and clarify mechanisms

and sensitivities. The set of VPs was later expanded to

cover the observed range of clinical variability and explore

alternative dosing protocols in the intended patient

population.64

Recommended qualification approach
Demonstrate the ability of the mechanistic physiological

model to reproduce the observed range of outcomes for

protocols and outcomes that are relevant to the research

context. Use a number of VPs appropriate for the research

context.

MODEL RESULTS ARE QUALITATIVELY CONSISTENT

WITH RELEVANT DATA AND KNOWLEDGE

Mechanistic physiological models give users the ability to

simulate many different protocols and observe all variables

at every timepoint. This presents extraordinary opportuni-

ties for qualitative testing, most commonly, visual checks of

model results under many conditions and comparison to

related data and expert knowledge (visual checks are also

commonly utilized in statistical modeling83,84).
Importantly, qualitative testing does not require specific

types of data or sampling frequency. Many valuable and

mechanistically relevant data are from only somewhat related

populations (e.g., patients with rheumatoid arthritis in Asia vs.

irritable bowel disease in America), animal data, etc. Although

such data may not be suitable for strict statistical testing, they

nonetheless contribute to the overall scientific understanding

of disease mechanisms. It is appropriate to expect simulated

model responses to be qualitatively consistent (e.g., similar

time profiles, shapes of curves, relative responses to tests)

with the data that are available and other knowledge, such as

known differences between patients or species. Criteria that

can be used to check qualitative consistency depend on the

biology and the data available and may include, for example,

expecting to see a similar time profile of response in patients

with rheumatoid arthritis and patients with irritable bowel dis-

ease, or expecting similar relative responses to different

therapies in patients with moderate vs. severe disease.
Qualitative testing includes comparing VP responses to

reported data ranges for a variety of protocols, and it also

provides additional constraints when data were sparsely

sampled. For example, it may be quite reasonable to expect

each VP’s time trajectory of response between the meas-

ured points to be smooth (i.e., VPs with significant transient

excursions or oscillations could be considered invalid,

despite not violating any explicit data constraints).
Typically, experts have many more test criteria in mind

than they can easily enumerate and articulate. An
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interactive process of running simulations, showing graphi-

cal results, and asking for feedback from experts is extraor-

dinarily useful in eliciting a more complete set of conditions

that the model should meet in order to be considered valid.

Qualitative testing thus ensures that the model is consistent

with the known science and the experts’ state of knowl-

edge, not just with specific data points.

Recommended qualification approach
Identify and document qualitative test criteria with expert

input and feedback. The most common qualification tech-

nique is visual check of time charts.

MODEL MATCHES RELEVANT PRESPECIFIED

QUANTITATIVE TEST DATA

Perhaps the most obvious measure of model quality is its

ability to reproduce relevant test data. Quantitative testing

can be done at different levels, depending on the research

context and data availability.
During model construction, a vast amount of data is identi-

fied and used to inform choices of parameter values as well

as to serve as quantitative test data at the subsystem or

whole-system level. For mechanistic physiological models

that are deterministic in nature and built for the purpose of

elucidating mechanisms, not optimizing parameter estimates,

separating build and test datasets is not generally appropri-

ate or useful. The most efficient workflow is one where all

available data are used to first build the mechanistic path-

ways and then test that the model simulations reproduce the

system-level data (e.g., clinical outcomes).
It is gratifying when a mechanistic model predicts results

that are subsequently shown to be in agreement with new

data. This is an indication that the representation of biology

implemented in the model can produce relevant behaviors

and extrapolate beyond the clinical tests that were already

conducted. However, one should be cautious in interpreting

such an outcome as “validation.” These models are typically

much too complex to be confidently validated with any single

dataset. Further, unless the new data are for an experiment

testing a mechanism for which no data were available before,

this is a weak validation of a deterministic model, because

the mechanism would already have been tested with existing

data. Finally, if the new data are for a new mechanism, then

should the model fail to match the new data, this would be an

indication that some aspect of biology was not previously well

understood and thus an opportunity to learn and improve the

model. Thus, although matching new data certainly adds con-

fidence in the model, this type of “validation” is neither strictly

necessary nor sufficient, and should therefore not be overem-

phasized in the overall model qualification plan.
Relevant quantitative testing for mechanistic models often

involves ensuring that every VP’s simulated outcomes fall

within a prespecified range of reported outcomes (e.g.,

within two SDs of the mean). This is done using many dif-

ferent types of test protocols that perturb different parts of

the system, thus ensuring that each VP’s set of model

parameters can reproduce appropriate outcomes in response

to a range of relevant protocols. For example, every VP in

the model developed by Tess et al.40 was tested against sita-

gliptin, exenatide, metformin, and glyburide, as well as meal

tests and infusion protocols. If a research goal is investiga-

tion of the mechanistic drivers of outcome variability, it may

be of great interest to create a set of VPs that collectively

span the range of observed outcomes reported, espe-

cially in clinical trials of drugs with mechanisms of action
that are mechanistically related to the compound under

investigation.
When the research context requires it, simulation-based

quantitative statistical testing can be performed (e.g., to

support clinical trial simulations using populations of VPs to

reproduce outcome distributions). Clinical data for quantita-

tive testing must meet the following relevance criteria:

• The clinical data population is similar to the VP population.
• The protocol is relevant to the research context.

Randomly sampled VPs with relevant PK and mechanis-

tic variability can then be simulated using the appropriate

protocol, and simulation results can be used for a visual

predictive check.83

Note that statistical testing is never sufficient for assess-

ing the fitness-for-purpose of a mechanistic physiological

model, nor does lack of data appropriate for statistical test-

ing mean that the model cannot be qualified. Confidence in

the model primarily derives from the fact that it draws on

many sources of data and knowledge to construct a coher-

ent mechanistic representation of the biological system

under investigation28 and that it addresses all of the other
criteria of the MQM.

Recommended qualification approach
Identify and document the relevant data and criteria. Quan-

titative testing criteria depend on the research context and

the data available.

DISCUSSION

Drug compounds interact with complex biological systems

that include redundancies, nonlinearities, and feedback

loops. Data and understanding of the biology are always
limited. Patient variability further complicates the picture.

Pharmaceutical development challenges multiple research-

ers in different disciplines to integrate vast amounts of dif-

ferent types of data and prior knowledge into a coherent

framework to arrive at an optimal course of action for

advancing therapeutics that will ultimately make a meaning-

ful difference in patients’ lives.
Mechanistic physiological modeling is a scientific approach

that utilizes understanding about biology to facilitate interpre-

tation of data and exploration of hypotheses in a model that

reproduces relevant complex behaviors. The MQM presented

here is a customizable, complete, and practical approach for
determining if a mechanistic physiological model is qualified

to support drug discovery and development (i.e., if it is “fit for

purpose”). The current discussion has been mostly limited to

the use of the MQM for qualifying mechanistic physiological

models for drug development, the context in which this
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method has proven successful. Recent publications suggest

that the concepts are portable to QSP more broadly or other

modeling methodologies.4,17,70,85 Similarly, the MQM frame-

work can also be applied to model qualification in other con-

texts, such as academic or regulatory. It should be noted

that the same model in different contexts may require addi-

tional or different qualification if the research question or

intended model use is different. For example, a regulatory

decision may require more extensive model qualification and

documentation than an internal decision. The MQM frame-

work emphasizes the use of relevant criteria, and relevance

depends on the research context.
Pharmaceutical development organizations increasingly

recognize the need to integrate across functional areas and

make better use of data and knowledge that have for too

long been siloed in different parts of the organization. Mech-

anistic physiological models can be ideal tools for supporting

these strategic initiatives provided that team members have

confidence that the models are fit for purpose. The MQM

laid out here can serve as a planning, communication, and

documentation framework. In the planning and scoping

stages, the MQM clarifies the process of model development

and qualification and ensures alignment on the research

context. For a model to be qualified as fit for purpose, it is

critical that that purpose be explicitly agreed upon, docu-

mented, and periodically revisited. Clarity of the research

context then facilitates the process of making scope deci-

sions and getting agreement on the testing criteria and over-

all qualification plan. During model development, relevant

biological discussions, decisions, assumptions, uncertainty,

variability, and tests against data and knowledge should all

be presented to the team in the context of the MQM frame-

work and documented. In this manner, the information that

the team needs to assess model quality is generated along

with the model. Consistent and careful application of the

MQM can thus ensure that model-based research is seen

as relevant and actionable for drug development.
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