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Abstract

The attentional blink (AB) effect is the reduced probability of reporting a second target (T2)

that appears shortly after a first one (T1) within a rapidly presented sequence of distractors.

The AB effect has been shown to be reduced following intensive mental training in the form

of mindfulness meditation, with a corresponding reduction in T1-evoked P3b brain poten-

tials. However, the mechanisms underlying these effects remain unknown. We propose a

dynamical-systems model of the AB, in which attentional load is described as the response

of a dynamical system to incoming impulse signals. Non-task related mental activity is repre-

sented by additive noise modulated by meditation. The model provides a parsimonious

computational framework relating behavioral performance, evoked brain potentials and

training through the concept of reduced mental noise.

Author summary

Mindfulness meditation involves the training of attention and has been shown to improve

performance in temporal-attention demanding tasks such as the attentional blink. It alleg-

edly does so by reducing ongoing mental noise in the brain, allowing the practitioner to

allocate attentional resources more efficiently. We develop a parsimonious, dynamical-

systems based model of the temporal limitations of attention and their improvement

through mental training. We show that the model can reproduce the attentional blink

effect and explain improved performance following intensive mental training. The model

provides a novel, mechanistic account relating the effects of mental training on behavioral

performance in the attentional blink task and similar tasks, as well as the associated event

related brain potentials.

Introduction

The temporal dynamics and limitations of attention have attracted considerable interest over

the last decades (see [1] for an overview). Whether such limitations can be modified and

improved by training is an obviously important question. A number of studies have suggested
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that mental training, in the form of mindfulness meditation, can modulate attention allocation

[2–7] as well as resting state brain activation patterns [8, 9]. This form of meditation is hypoth-

esized to reduce “mental noise”, i.e., non task-related mental activity and mind wandering,

which presumably compete with incoming task-related stimuli for limited attentional

resources [2, 10]. However, the underlying neural and computational mechanisms for the

effects of such mental training on attentional capacity remain unknown.

Here we describe a simple dynamical model of attentional resource allocation. Mental noise

is introduced into the model as an additive perturbation that competes with incoming stimuli

for attentional resources. We apply the model to a widely studied experimental effect known

as the attentional blink (AB) [11, 12], which refers to the reduced ability of subjects to report a

second target stimulus (T2) that appears within 200–600 ms after another target (T1) in a

rapid serial visual presentation (RSVP) task.

The AB effect has played an important role in studying the limits of human ability to allo-

cate attention over time (see [13, 14] for reviews). It has also been used to study the effects of

mental training on cognitive performance and brain resource allocation [2–4]. Of particular

interest here is the work of Slagter et al. [2]. The authors compared T2 detection accuracy and

T1-elicited P3b amplitudes of 17 meditation practitioners before and after a 3 month medita-

tion retreat using a meditation technique aimed at reducing elaborate object processing. A con-

trol group, consisting of 23 meditation novices interested in learning about meditation,

received a 1 hour meditation class and were asked to meditate for 20 minutes daily over 1 week

prior to each session. The intensive training of the practitioners was associated with improved

identification accuracy of T2 and reduced T1-evoked P3b event related potential (ERP) ampli-

tudes, interpreted as evidence for reduced allocation of attentional resources to T1. The present

study describes a parsimonious computational model of the temporal dynamics of attentional

resource allocation which explains these findings and provides novel predictions.

Methods

Model description

In line with previous theoretical accounts of the attentional blink [12, 15], our model postu-

lates that incoming stimuli are processed in two consecutive stages (Fig 1). Both processing

stages are modeled as lowpass filters (implemented as finite impulse response filters) with

some further processing on their outputs. The lowpass filtering represents the time constants

of the neural networks that process the sensory signals.

In the first stage, target stimuli are detected and integrated into a unified sensory signal. We

call this signal the sensory trace as it postulates a pre-attentive, sensory representation of target

identification. The model assumes that at the level of the sensory trace, targets and distractors

are perceptually discriminable. This is required in order for the blink to be attentional rather

than perceptual. The sensory trace measures the likelihood of a target being present. Since any

likelihood measure is obviously bounded by certainty (the value 1), the sensory trace is clipped

at unit threshold, making it a sub-linear function of the input signal. Thus, the sensory trace

evoked by two temporally close target inputs is smaller than the sum of sensory traces pro-

duced by each one of the targets on its own. This sub-linearity is operative when the targets

appear consecutively, since the temporal overlap of their sensory representations, and hence

the portion of the combined signal which is clipped, will be largest in this case. As we demon-

strate below, this component of the model accounts for the lag-1 sparing phenomenon, i.e., the

attentuation of the attentional blink when T1 and T2 appear consecutively.

In the second stage, the sensory trace is processed by a limited capacity attentional system

for subsequent report or response. Importantly, this stage incorporates an additive noise term
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representing ongoing mental noise in the brain. The output of the second stage is referred to

as the attentional load and measures the amount of attentional resources drawn by the combi-

nation of the mental noise and the incoming target stimuli. When the attentional load reaches

a predefined limit, called the blinking threshold, conscious processing of the signal is assumed

to be interrupted, rendering the subject unable to report the identity of any stimulus that elicits

a crossing of the blinking threshold. Formally, the sequence of incoming stimuli is described

as an impulse train, u(t), indicating the temporal position of the targets:

uðtÞ ¼
1 target on at t

0 otherwise
:

(

ð1Þ

The temporal resolution of the model is defined by the sampling rate of Δt = 10ms. Target sti-

muli are represented by an impulse of 10 samples, corresponding to a duration of 100ms.
Thus, each lag increases the T1-T2 inter-stimulus interval by 100ms. For example, a T1-T2 lag

of 3 corresponds to an inter-stimulus interval of 200ms (Fig 1 left column, top). We note that

the particular values used for encoding targets and distractors, 1 and 0 respectively, are not

essential to the model. If they were encoded by different values, the model would still work by

shifting and scaling the signals at later stages of the model. The important point is that targets

and distractors are encoded differently.

Fig 1. Attentional blink model. Input targets (left) are processed in two stages: a unit-clipped sensory trace (center,

clipping threshold represented by solid black line) followed by a threshold limited allocation of attentional resources

(right, blinking threshold represented by dashed red line). Top: When input targets appear in close temporal

succession (here, lag 3) the output of the attentional system is more likely to cross the blinking threshold (dashed red

line) resulting in reduced detection of T2 (the attentional blink). Middle: When the temporal interval between targets

is longer (here, lag 7), the overlap between their attentional loads is reduced, with a lower chance of crossing the

blinking threshold. Bottom: When the two targets are even further apart (lag 15), each one creates a separate peak in

the attentional load and the probability of triggering an attentional blink is negligible.

https://doi.org/10.1371/journal.pcbi.1010398.g001
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In the first processing stage, the input signal is filtered with an impulse response function

h1(t), and clipped at a threshold of 1, yielding the sensory trace:

ŷðtÞ ¼ min
uðtÞ � h1ðtÞ

1
:

(

ð2Þ

In the second stage, the sensory trace is filtered with another impulse response h2(t). The

second filtering stage represents the time scales of the attentional processes, which are slower

than the sensory/perceptual ones. A stationary white-noise Gaussian process,

nðtÞ � N ðm; s2Þ, representing ongoing mental noise fluctuations, is added to the filtered sig-

nal, yielding the attentional load:

yðtÞ ¼ ŷðtÞ � h2ðtÞ þ nðtÞ: ð3Þ

According to the model, an attentional blink occurs whenever the attentional load crosses a

predefined capacity limit, the blinking threshold, denoted by yB. The target eliciting the blink-

ing threshold crossing suffers reduced detection. Thus in a typical RSVP trial with two targets,

T2 detection may be jeopardized without affecting T1 detection accuracy.

The introduction of the noise term, n(t), is central to the model. It represents ongoing men-

tal noise levels that are postulated to result from mind-wandering and other non-task related

mental activity. The noise competes with incoming targets for limited attentional resources. It

is specified by its mean, μ(t), and standard deviation, σ(t), representing respectively the base-

line and fluctuations levels of the noise. In this paper we use a Gaussian white noise process for

the sake of analytical tractability, but the mental noise may have more complex structure such

as temporal correlations with a power-law profile [16]. Such correlations may be easily incor-

porated into the model.

For a given stimulus sequence, behavioral performance level, i.e., blinking probability, is

thus determined by the distance between the blinking threshold and the peak attentional load

during the response of the system to the input signal. In S1 Text, we derive an analytical

approximation for the blinking probability, using the theory of extreme value distributions

[17].

To implement the model, specific choices must be made for the filters. While the particular

shape of the impulse response function h1(t) is not essential to the model, its width must be

somewhat longer than the inter-stimulus interval in order that two stimuli one lag apart would

interfere but two lags apart remain unaffected. We used a Gaussian impulse response with a

window length of L1 = 90 samples and a standard deviation of τ1 = 60ms, corresponding to a

half-maximum width of 141ms.
For the second stage filter, h2(t) we used the following Gamma function:

h2ðtÞ /
te� t=t2 t > 0

0 t � 0

(

ð4Þ

with a window length of L2 = 263 samples and a time constant τ2 = 500ms, which determines

the maximum response time of h2(t). We choose the Gamma function to represent the

response profile of the attentional system as it is known to represent well temporal processes

related to attention allocation such as pupillary dilation (a correlate of attentional effort) [18]

and temporal sensitivity in the visual system [19].
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The P3b brain potential

The P3b is a positive ERP, peaking around 300ms after the triggering event. The amplitude of

the P3b is often interpreted as an index of cognitive workload, or of the demand for attentional

resources [20, 21]. To model the P3b amplitude, we first defined a Resource Allocation Index
(RAI): the ratio between the maximal attentional load drawn by a specific stimuli sequence

and the total attentional resources available in the system:

RAI ¼
maxtyðtÞ � m

yB � m
; ð5Þ

where μ is the mean mental noise level and the maximum is computed over the total duration

of the stimulus sequence. The RAI can be considered a measure of attentional resource alloca-

tion in the model, with small values (RAI� 0) indicating low demand on the attentional sys-

tem, and high values (RAI� 1) indicating near depletion of attentional resources. We would

like therefore to relate the RAI with the P3b amplitude. While the RAI is a dimensionless

index, typically taking values between 0 and 1, the range of P3b amplitudes can vary substan-

tially between individual subjects [22]. We suggest here that the P3b measures the RAI, relative

to the mental noise fluctuation level of the subject. In other words, to account for inter-subject

variability, we posit that the P3b amplitude is the RAI, scaled by the subject-specific standard

deviation of the mental noise σ:

P3b ¼
RAI
s
: ð6Þ

Mental noise fluctuations thus scale the subject-specific P3b amplitudes. For the same atten-

tional demand level (RAI), larger values of σ correspond to smaller T1-evoked P3b

magnitudes.

Summary of model assumptions

To summarize, we proposed a two stage model of attentional resource allocation dynamics.

Each stage is implemented by a linear filter followed by some additional processing. The first

stage represents the sensory processing of the input target stimuli followed by a clipping non-

linearity. The second stage represents the capacity limited attentional channel in which sensory

stimuli and internal noise compete for attentional resources. The attentional blink occurs

when attentional resources required to process a stimulus are higher than a maximal value.

The amplitudes of T1-evoked P3b potentials are hypothesized to reflect the ratio between

available and total attentional resources, scaled by a subject specific mental-noise fluctuation

parameter (Eqs 5 and 6).

Parameter estimation

All parameters of the model are summarized in Table 1. The blinking threshold, impulse

response parameters and mental noise parameters before training (time 1) were optimized to

minimize the squared error between simulated and empirically reported T2 detection rates

over different time lags [4]. The values of the optimized parameters were: μ1 = 17.4, σ1 = 3.2, yB
= 53.3. The first stage filter was implemented by a Gaussian window, with a standard deviation

of τ1 = 60ms and a window length of L1 = 90 samples. The second stage filter was implemented

by a Gamma function with a time constant of τ2 = 500ms and a window length of L2 = 263

samples. The noise parameters after training (time 2) were optimized to fit the reported effects

of mental training [2], as explained below in Modeling the effects of mental training. The value

of the post-training optimized parameters were: μ2 = 13.2 and σ2 = 3.8.
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Results

Reproducing the attentional blink

We first tested whether the model reproduces the basic AB effect, namely a reduction in detec-

tion accuracy of T2 within 200–500 ms after T1 presentation. For a given input stimulus, we

define blink occurrence as the event that the attentional load reaches or crosses the blinking

threshold during the time period in which the system is responding to the given input signal:

PðBlinkÞ ¼ Pðmax
t

yðtÞ � yBÞ: ð7Þ

We simulated the behavior of the model over N = 1,000 repetitions for T1-T2 lags between 1

and 8. We estimated the blinking probability as the proportion of runs in which the attentional

load reached or crossed the blinking threshold. We also compared the simulated results with

an analytical approximation which yielded similar results (see S1 Text). For the chosen values

of the model parameters (see the Parameter estimation section), the model was able to repro-

duce the typically reported relationship between T2 detection rates and T1-T2 lags (Fig 2).

The increased blink probability for lags 2–4 results from the low-pass filtering of the signal

at the first and second stages, which, in turn, causes an overlap between the attentional

response of the two targets. Thus, the attentional load of the combined signal is more likely to

reach the blinking threshold even in cases where the individual responses to each one are not

likely to do so (Fig 1, left). The model results, both simulation and analytical solution, fit well

the experimental observations. Note that the model performs better than the data at long lags,

suggesting the presence of additional load on the attentional resources that we didn’t model

here.

Lag-1 sparing

When T2 appears immediately after T1 (so-called lag-1 occurrence), the overlap between the

first stage responses to T1 and T2 is maximal, resulting in a maximal rectification effect due to

overflow of the sensory trace above the clipping threshold (Fig 3, center). As a result, the atten-

tional load drawn by the combined response to T1 and T2 in the second stage is reduced for

lag-1 compared to the case of lag-2 occurrences (Fig 3, right), with a corresponding reduction

in blinking probability, reproducing the “lag-1 sparing” effect. For a given choice of noise

parameter values, we computed the probability for attentional blinking, i.e., attentional load

crossing the blinking threshold, to occur on trials with a T1-T2 lag of 2, but not on trials with

lag 1 nor lag 5 and higher. This calculation was used to constrain the set of possible noise

parameters, before and after training, to those which reproduce the typical U-shaped perfor-

mance curve obtained in empirical studies of the attentional blink. Operationally, we simu-

lated the response of the system 2,000 times for every T1-T2 lag between 1 and 11 and

computed the frequency of blinking threshold crossing for each T1-T2 lag. We required that

Table 1. Model parameters.

Parameter name and value Description

μ1 = 17.4, μ2 = 13.2 Mental noise mean, before and after training

σ1 = 3.2, σ2 = 3.8 Mental noise standard deviation, before and after training

yB = 53.3 Blinking threshold

τ1 = 60, τ2 = 500 Time constants (in ms) for stage 1 and stage 2 filters

L1 = 90, L2 = 263 Window length (in samples) for stage 1 and stage 2 filters

https://doi.org/10.1371/journal.pcbi.1010398.t001
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the product of the probabilities of the three events: blinking does not occur at lag 1, does occur

at lag 2, and does not occur at lag 5 and higher, will be at least 0.2.

Modeling the effects of mental training

We wanted to capture the effects of mental training in the model through a modulation of the

mental noise parameters, which were presumably manipulated through the training proce-

dures in Slagter et al. [2]. Therefore, only the mental noise parameters were modified to model

the data after training (time 2). Specifically, the following two effects were reported:

1. Meditation practitioners exhibited a greater reduction in blinking probability between time

1 and 2 compared to novice controls.

2. When comparing T1-elicited P3b amplitudes at times 1 and 2, meditation practitioners

exhibited a large amplitude reduction in no-blink trials but not in blink trials. In novices

however, P3b amplitudes remained similar at both times for both no-blink and blink trials.

We therefore used the model to estimate behavioral performance and P3b amplitudes for

pairs of parameter values, (μ1, σ1) and (μ2, σ2), representing mental noise statistics before (time

1) and after (time 2) the training period respectively. Following the effects reported by Slagter

et al. [2], we defined such pairs to be consistent with the observations when they satisfied all of

the following conditions:

1. An increase in T2 detection accuracy, from 0.6 ± 0.1 at time 1 to 0.8 or more at time 2, for a

T1-T2 lag of 3.

2. A reduction in T1-evoked P3b amplitude between time 1 and 2 by a factor of 1.25–2.

Fig 2. The attentional blink effect, model and typical data. T2 detection probability for different T1-T2 lags. Typical

empirical data, replotted from [4] (yellow). Model simulated detection probability averaged over N = 1, 000 repetitions

(blue). An analytical calculation of the probability, using double exponential distribution was used to approximate the

distribution of the maximal attentional load (red).

https://doi.org/10.1371/journal.pcbi.1010398.g002
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3. Reproduction of the typical U-shape profile of T2 detection probability vs. T1-T2 lag

(Fig 3).

Conditions 1 and 2 correspond to the empirical effects 1 and 2 above respectively. Condi-

tion 3 was introduced as a further constraint on the range of mental noise parameters, to

ensure that they reproduce the characteristic U-shaped performance profile typically observed

empirically. As above, this was defined as a requirement that the product of probabilities for

attentional blink occurring at lag 2, not occurring at lag 1 and not occurring at lag 5 or higher,

would be greater than 0.2.

Fig 4 shows the model-derived values of T2 detection probability (Eq S1 in S1 Text) at a

T1-T2 lag of 3 (A), P3b amplitudes (Eq 6) also at a lag of 3 (B), and U-shape profile probability

as a function of mental noise parameters (C). Blue and red crosses indicate (μ, σ) parameter

pairs which satisfy the conditions 1–3 above (blue crosses correspond to time 1 and red ones

to time 2). The model predicts that mental noise baseline level μ decreases by a factor of about

0.75. Interestingly, the model also predicts that the fluctuations in the mental noise, σ, increase

by about the same amount. For these parameter ranges, the model reproduced the three-way

interaction in the T1-evoked P3b amplitudes: a reduction of 30% in T1-evoked P3b amplitude

for practitioners versus novices in no-blink versus blink trials at time 2 versus time 1. These

results are summarized in Fig 5 (solid bars). The findings of Slagter et al. [2], are also replotted

for comparison (lighter hued bars).

The effects of meditation on the attentional load are shown in Fig 6 for a T1-T2 lag of 2.

The reduction in mental noise baseline after training (right panel, red trace) reduces blinking

probability despite the increase in noise fluctuation.

Discussion

Our model provides a unified computational account of the attentional blink and the P3b

potentials evoked during task performance. Furthermore, modifications of the mental noise

component in the model account for both behavioral and electrophysiological effects of mental

training reported by Slagter et al. [2]. This noise may be related to mind wandering or thoughts

Fig 3. Lag-1 sparing effect. When T2 appears immediately after T1 (lag-1, top), their overlap in the first processing

stage is maximal, resulting in a stronger reduction of the sensory trace due to the clipping threshold (solid black line).

This causes a decrease in the attentional load at the second processing stage (bottom axis) with a corresponding

reduction in blinking probability. At lag-2 (bottom), the overlap in the first stage is smaller, resulting in less clipping of

the sensory trace and a higher attentional load.

https://doi.org/10.1371/journal.pcbi.1010398.g003
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Fig 4. Model behavior in mental noise parameter space. (A) T2 detection probability for a T2-T1 lag of 4. (B) The

model P3b amplitude defined in Eq 6, for a T2-T1 lag of 4. (C) lag-1 sparing probability as a function of mental noise

activity parameters (mean and variance). The color indicates the probability of crossing the blinking threshold at lag 2

but not at lags 1 and 5. Blue and red crosses indicate (μ, σ) values at time 1 and 2 respectively, for which the model

reproduces lag-1 sparing as well as the main findings of Slagter et al. [2], namely an increase of in T2 detection

accuracy from 0.6±0.1 at time 1 to 0.8 or higher at time 2, and a reduction in T1-evoked P3b amplitudes by a factor of

of 1.25–2. The green arrow connects the pair of mental noise parameter values at time 1 and 2 corresponding to the

effects of mental training shown in Fig 5 below.

https://doi.org/10.1371/journal.pcbi.1010398.g004

Fig 5. Simulated and empirical effects of mental training on T1-evoked P3b amplitudes. Left: T1-evoked P3b

amplitude as a function of T2 detection (blink or no-blink), session (time 1 or time 2), and group (practitioners or

novices). Meditation practitioners show a greater reduction in T1-evoked P3b amplitude compared to novices in no-

blink vs blink trials at time 2 vs time 1. Right: Selective reduction in T1-evoked P3b amplitude in no-blink trials in the

practitioner group. Mental noise mean and standard deviation levels (μ, σ), for practitioners: (17.5, 3.15) at time 1 and

(14.5, 3.8) at time 2. For novices: (17, 3) at both times. Colors follow figure 3 in Slagter et al. [2], whose data is replotted

here.

https://doi.org/10.1371/journal.pcbi.1010398.g005

PLOS COMPUTATIONAL BIOLOGY A simple model of the attentional blink and its modulation by mental training

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010398 August 29, 2022 9 / 14

https://doi.org/10.1371/journal.pcbi.1010398.g004
https://doi.org/10.1371/journal.pcbi.1010398.g005
https://doi.org/10.1371/journal.pcbi.1010398


that are unrelated to the task, which are known to be reduced following mindfulness medita-

tion [23]. Notably, the model emphasizes the interaction between mental noise and the time

scales of attentional processing. An explicit neurophysiologically plausible implementation is

not attempted here.

Several computational models for the AB effect have been described (for an overview see

the section “Formal Theories” in the review by Dux & Marois [13]). These models can be cate-

gorized according to the proposed mechanism hypothesized to underlie the AB. The first type,

which includes the Simultaneous Type/Serial Token model [24], suggests that blinking repre-

sents an attentional capacity limitation due to T1 processing. The second type, represented by

the Boost and Bounce model [25], proposes top-down inhibition of attention due to distractors

following T1 as the mechanism responsible for attentional blinking. Our model is similar in

spirit to the first type. Its simple and transparent structure makes it particularly easy to under-

stand and analyze. More specifically, the model accounts for changes in T2 detection accuracy

at different inter-target intervals, relating them to T1-evoked P3b amplitudes and mental noise

levels. The model suggests that the increase in T2 detection accuracy, as well as the mental

training induced decrease in T1-evoked P3b amplitudes reported by Slagter et al. [2], can be

explained as resulting from a combined reduction in the baseline and increase in the size of

the fluctuations of the mental noise. The model also posits that early sensory processing is sub-

jected to a saturation threshold, resulting in sub-linear depletion of attentional resources when

targets appear in close temporal proximity. This threshold mechanism accounts for the “lag-1

sparing” effect: the somewhat surprising finding that attentional blinking is often attenuated

when T2 appears directly after T1 [26].

The early sensory integration stage of the model suggests that visual stimuli separated by a

brief interval are integrated into a unified precept. Such temporal integration effects are well

documented and have been hypothesized to result from the temporal overlap between the

activity elicited by two brief sequential visual stimuli [27]. Importantly, our model suggests

that such integration of temporally proximal targets results in sub-linear activation of sensory

representations, implemented in the model by the clipping threshold applied at the sensory

integration processing stage. This hypothetical threshold mechanism implies that the activa-

tion induced by temporally proximal sequential stimuli would be lower, and with shorter dura-

tion, than the combined activation of each stimuli alone. Interestingly, sub-linear integration

mechanisms have previously been implied in ‘max’ operations [28] and orientation selectivity

[30] in the primary visual cortex. Our model suggests that a similar mechanism could also play

a role in enhancing the resolution of temporal attention for brief consecutive sequences of

visual targets.

Fig 6. Mental training induced modulation of attentional load reduces blink probability. The attentional load

profiles before and after meditation (right, blue and red traces respectively). The effects of meditation are modelled as a

reduction in mental noise mean from 17.5 to 14.5 and an increase in mental noise standard deviation from 3.15 to 3.8.

https://doi.org/10.1371/journal.pcbi.1010398.g006
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A related prediction of the model is that adjacent target stimuli are merged into a single,

undifferentiated signal at the integration stage, thereby possibly losing information about the

unique identity of each one. This is consistent with the finding that when T2 appears immedi-

ately after T1 (lag 1 trials), report order is often reversed [15, 30].

The role of distractors in generating the attentional blink is a matter of ongoing debate.

Under certain accounts, the attentional blink is caused by the appearance of a distractor after

T1, triggering a disruption in attentional control [25, 31]. These accounts are in line with the

view of the P3b potential as reflecting context updating [22], in this case switching from dis-

tractor to target processing. Another family of accounts attributes the attentional blink to

resource capacity limitations [15, 32]. Our model supports such capacity limitation accounts,

suggesting that attentional resource consumption is determined by the interstimulus interval.

We assume that targets are identified and segregated from distractors at the pre-attentional

sensory stage. In consequence, distractors do not draw attentional resources, and the P3b

amplitudes reflect attentional resource allocation rather than a context update.

Our model is unique in providing a parsimonious account of the effects of mental training

on attentional capacity and the associated event related brain potentials. Importantly, both sets

of results were based on the properties of a single internal signal, the overall attentional

resources engaged during task performance. The overall amount of attentional resources in

the model is composed of two components: those resources that are engaged by the task, and a

mental noise that accounts for all task-independent resources that are used, reflecting the pre-

sumed mind wandering. We modeled the effect of meditation training as changes in the prop-

erties of this mental noise. As expected, the model predicts that the baseline mental noise level

is reduced following intensive mental training. Unexpectedly, the model also suggests that the

fluctuations of the mental noise, as captured by its standard deviation, increase following men-

tal training (Fig 4). The predicted decrease in mean noise levels is consistent with the reported

association of meditation with decreased mind wandering and reduced default mode network

activity levels [9, 10]. The increased fluctuations in mental noise following meditation, pre-

dicted by the model, may appear surprising, but this prediction falls in line with recent studies

suggesting that mental states induced by meditation, as well as by psychedelic substances, are

characterized by increased variability in brain oscillatory behavior and signal diversity mea-

sures [33–35].

The goal of mindfulness meditation is often described as becoming aware of ongoing men-

tal activity and changing one’s attitude towards it, rather than actively manipulating it [36].

Indeed, Slagter et al. interpreted the effects of meditation on the attentional blink as a top-

down regulation of the engagement with the sensory trace in response to the first target [2]. In

its current formulation, our model does not account for such meditation-specific effects on the

sensory trace. Rather, it implements a task-unrelated modulation of mental noise in the atten-

tional processing stage which modulates behavioral performance and P3b amplitudes. Admit-

tedly, while mindfulness meditation may reduce mental noise, it does not necessarily do so.

Conversely, mental noise can be reduced in other ways as well. The model predicts that

changes in mental noise would affect attentional performance and P3b amplitudes in a similar

way to meditation.

In a more recent study, van Vugt et al. compared attentional blink performance in expert

meditators performing two different types of meditation: focused attention, in which attention

is focused tightly on an object, and open monitoring, in which one is simply aware of whatever

comes into awareness [5]. This study reported a smaller attentional blink during open moni-

toring compared to focused attention meditation, indicating that particular meditative states

can also influence the magnitude of the attentional blink. While that finding was also inter-

preted in terms of reduced top-down processing of T1, our model provides an alternative
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explanation, namely that open monitoring meditation causes a larger reduction in mental

noise compared to focused attention meditation.

Supporting information

S1 Text. Analytical approximation of blinking probability.

(PDF)
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