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A B S T R A C T   

Due to the lack of comprehensive evaluation of all metabolites in wampee, the metabolic reasons for taste dif-
ferences are unclear. Here, two local varieties YF1 (sweet taste) and YF2 (sweet–sour taste), were selected for 
quality analysis, followed by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/ 
MS) based widely targeted metabolomic analysis. YF1 and YF2 were clearly separated by principal component 
analysis (PCA) and cluster analysis, and 449 metabolites were different between the cultivars, including 29 
carbohydrates and 29 organic acids. Among them, D-galactose, D-mannose, and D-fructose 6-phosphate 
contributed mainly to the sweet taste of the YF1 wampee. L-citramalic acid, 2-hydroxyglutaric acid, and 3-meth-
ylmalic acid were the dominant organic acids in YF2 wampee, and therefore, contributed primarily to the 
sweet–sour taste. The differential metabolites were significantly enriched in the “ascorbate and aldarate meta-
bolism” and “C5-branched dibasic acid metabolism” pathways. Ascorbate played a crucial role in the regulation 
of sugars and organic acids through those pathways. In addition, high-performance liquid chromatography 
(HPLC) based quantitative verification exhibited the same specific cultivar variations.   

1. Introduction 

Wampee [Clausena lansium(Lour.) Skeels] is a tropical fruit of the 
family Rutaceae. It is usually widely planted in southern China, 
including Guangxi, Guangdong, and Hainan provinces, and occasionally 
in India and the United States(Fan et al., 2018; Lim, 2012). The fruit 
tastes sweet or acidic, such as grapes, and pulp can be used to make jelly, 
fruit drinks, and desserts (Prasad et al., 2009). Wampee is becoming 
popular not only because of its unique sweet and sour tastes but also 
because of its antioxidant (Zhu et al., 2020; Zeng et al., 2020), antifungal 
(He et al., 2019), and anti-obesity (Huang et al., 2017) effects. Many 
wampee cultivars are classified according to taste, such as sweet or 
sweet–sour. Generally, consumers prefer sweet wampee better, while 
sweet–sour wampee is widely used to prepare beverage and fermented 
food. 

Metabolites contribute significantly to the flavor and taste of fruits. 

The composition and concentration of primary metabolites, especially 
carbohydrates and organic acids, are closely related to the sweetness and 
sourness of fruit (Chen et al., 2009; Guo et al., 2015; Ma et al., 2015; Zhu 
et al., 2020). Many scientists have focused on the bioactive components 
in the leaves and peels of wampee because both are traditional herbal 
remedies for gastrointestinal disorders, asthma, and coughings in China 
(Li, Wu & Li, 1996). However, as far as we know, the profiling and 
comparative analysis of the taste components in different varieties is 
very limited. Recently, wampee fruit was reported to contain different 
phenolics, flavonoids, and phytochemical compounds between sweet 
and sweet–sour varieties (Chang et al., 2018). Key taste compounds and 
metabolic causes between sweet and sweet–sour wampees are still 
unknown. 

Widely targeted metabolome analysis based on ultra-performance 
liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) is 
fast, accurate and reliable, and has been successfully used to detect 
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numerous plant metabolites (Chen et al., 2013; Zou et al., 2020). To 
discover all metabolite contributions to taste, UPLC–MS/MS based 
metabolomics analysis was performed to identify and quantify all me-
tabolites in the two wampee cultivars. Then, multivariate statistical 
analysis was used to compare the characteristic metabolites, especially 
carbohydrates and organic acids. The possible molecular mechanism 
was also explained by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) annotation and pathway analysis. Our findings provide new 
molecular evidence and metabolic causes related to taste among wam-
pee varieties. 

2. Materials and methods 

2.1. Chemicals and reagents 

A 0.1 mol/L NaOH standard solution was purchased from Shenzhen 
Bolinda Technology Co., Ltd. (Shenzhen, China). Chromatographic 
grade D-galactose, D-mannose, and D-fructose 6-phosphate were pur-
chased from the National Institute of Metrology (Beijing, China). 
Chromatographic grade L-citramalic acid, 2-hydroxyglutaric acid, and 3- 
methylmalic acid were purchased from Dr.Ehrenstorfer GmbH (Augs-
burg, Germany). 

2.2. Materials and sampling 

Two wampee cultivars with 90% maturity (102 ± 5 days after 
flowering; 2.5 ± 2 mm transverse diameter; 14.5%-16.5 % total soluble 
solids; yellow peel) were selected in this study (Fig. 1). YF1 is a sweet 
cultivar that originated from Guangdong Province, while YF2 is an 
ancient local sweet–sour cultivar in Hainan Province and both are 
widely planted in South China. Wampee fruits were collected from five- 
year-old trees grown at the Yongfa Research Base of Hainan Academy of 
Agricultural Sciences (19.7622 N, 110.2117E). 

Six to eight mature fruits were collected from three trees, peeled, 
juiced, and mixed to form a biological sample. Each variety has three 
biological samples, with at least 18 fruits. Then, samples were imme-
diately dried by a freeze-dryer (Scientz-100F, Ningbo, China) and 
crushed by a mixer mill (MM400, Shanghai, China) with a zirconia bead 
at 30 Hz for 1.5 min. One hundred milligrams of lyophilized powder was 
dissolved in 1.2 mL of 70% methanol solution. After vortexing for 30 s 
every 30 min six times, the sample was stored at 4 ◦C overnight for 
extraction. After centrifugation at 12000 rpm for 10 min, the extracts 
were treated with a nylon syringe filter (0.22 μm, ANPEL, Shanghai, 
China) before UPLC–MS/MS analysis. 

2.3. Quality analysis 

The wampee pulp was separated from the peel, and juiced to 
determine pH, total soluble solids (TSS), titratable acid (TA), and soluble 
sugar content. A pH meter (PH838, SMART SENSOR, Dongguan, China) 
and a Brix refractometer (FNV-55, Henan Suijing Environmental Pro-
tection Technology Co., Ltd., Luoyang, China) were used to determine 
pH and TSS, respectively. TA content was measured by 0.1 mol/L NaOH. 
The soluble sugar content was determined by the sulfuric acid-anthrone 

colorimetric method at a wavelength of 620 nm. All quality analyses of 
the samples were repeated three times. 

2.4. UPLC–MS/MS based widely targeted metabolome analysis 

UPLC–MS/MS analysis was performed according to Deng et al. 
(2021) with some modifications. Briefly, UPLC (Nexera X2, Shimadzu) 
was equipped with a column (SB-C18, 2.1 mm × 100 mm, Agilent) and 
coupled to a 6500 quadrupole-linear ion trap (QTRAP) mass spectrom-
eter. First, 2.0 μL filtered sample was loaded and maintained with a 
column at 40 ◦C. The flow rate of the mobile phase was 0.35 mL/min, 
which consisted of solvent A (ultrapure water with 0.1% formic acid) 
and solvent B (acetonitrile with 0.1% formic acid). The mobile phase in 
the column was programmed to start with solvent of 95% A and 5% B. 
Second, 5% B was linearly increased to 95% within nine minutes and 
kept at 95% for 1 min. After that, 95% B decreased to 5% within 0.1 min. 
Finally, a 3 min re-equilibration period was employed. 

2.5. KEGG annotation and pathway enrichment analysis of metabolites 

Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www. 
kegg.jp) is a database resource for understanding molecular-level in-
formation on the genome and chemicals in organisms (Kanehisa et al., 
2011). All metabolites were annotated by the KEGG database, followed 
by enrichment and topological analysis of the pathways where differ-
ential metabolites were present. Key pathways were further screened 
based on the number of differential metabolites. 

2.6. Quantitative verification of key taste metabolites by HPLC 

The sugars and organic acids in the sample were extracted by the 
following methods: a 2 g sample was added to 10 mL deionized water, 
vortexed for 10 min, and ultrasonically extracted for ten minutes. After 
being filtered through an aqueous membrane (0.45 μm) and diluted five 
times, the sugars were analyzed by HPLC (Agilent 1260, USA) equipped 
with a column (Angela Innoval NH2 5 μm, 4.6 × 250 mm) according to 
GB5009.8–2016 (National Food Safety Standard for the Determination 
of Fructose, Glucose, Sucrose, Maltose and Lactose in Foods, CN). The 
organic acids were analyzed by UPLC (Waters ACQUITY UPLC H-CLASS, 
USA) equipped with a column (Waters Luna Omega Polar C18, 1.6 μm, 
2.1 × 100 mm) according to GB5009.157–2016 (National Food Safety 
Standard for the Determination of Organic Acids in Foods, CN). All the 
analyses were repeated four times. 

2.7. Statistical analysis 

SPSS software(version 22.0, SPSS Inc.) was used to analyze the least 
significant difference(LSD) at the 5% and 1% levels. OriginPro software 
(2019b, OriginLab Inc.) was used for image processing. 

Fig. 1. Mature fruits of YF1 and YF2 wampees.  

Table 1 
The basic qualities of fruit juice of YF1 and YF2 wampees.  

Cultivars pH TSS(%) Soluble sugar 
(%) 

TA(%) Sugar-acid 
ratio 

YF1 5.12 ±
0.09a 

16.46 ±
0.66a 

12.34 ±
1.81a 

0.47 ±
0.09b 

26.32 ±
1.48a 

YF2 3.57 ±
0.05b 

14.86 ±
1.77a 

9.93 ± 0.59a 2.51 ±
0.23a 

3.95 ±
0.25b 

Note: Different letter on the number meant significant difference between YF1 
and YF2 wampees(p < 0.05) 
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3. Results and discussion 

3.1. Quality analysis of wampee 

YF1 (sweet taste) and YF2 (sweet–sour taste) are two distinct wam-
pee cultivars widely cultivated in China. As shown in Table 1, there was 
no noticeable difference in total soluble solids (TSS) or soluble sugars 
between YF1 and YF2 wampee juice. However, pH, titratable acid (TA), 
and sugar-acid ratio showed significant differences. The TA of YF2 
wampee was 2.51%, which was 5.34 times higher than that of YF1, 
resulting in a significantly lower pH and sugar-acid ratio of YF2 wam-
pee. These findings indicated that the various compositions and con-
centrations of acids in the two cultivars were the main reason for the 
difference in sugar-acid ratio. 

Generally, sugars are closely related to the sweetness of the fruit. 
Organic acids greatly contribute to the sour taste, and their composition 
has a substantial impact on either sweet or sour taste (Chen et al., 2009; 
Ma et al., 2019; Minas et al., 2013). Soluble sugars in most mature fruits 
mainly include fructose, glucose and sucrose, while the composition of 
organic acids varies greatly among varieties. For instance, citric acid is 
the main organic acid in citrus fruits (Scherer et al., 2012). In contrast, 
malic acid is the dominant organic acid in loquat (Chen, Liu & Chen, 
2009), apple (Ma et al., 2015). To the best of our knowledge, the 
comprehensive and comparative analyses of sugars and acids in different 
wampee cultivars are very limited. Thus, widely targeted metabolome 
analysis was performed for qualitative and quantitative detection of 
taste metabolites, especially sugars and acids. 

3.2. Widely targeted metabolome analysis of wampee 

With the development of UPLC–MS/MS, widely targeted metabolite 
analysis has been widely used for large-scale identification and profiling 
of metabolites in several fruits (Oikawa et al., 2015; Wang et al., 2016; 
Zhang et al., 2020). In total, 1012 metabolites were identified, including 
carbohydrates, organic acids, amino acids, and other potential taste 

contributors. We carried out principal component analysis (PCA) on the 
1012 metabolites. As shown in Fig. 2A, the contributions of PC1 and PC2 
were 50.91% and 14.35%, respectively. The total contribution of the 
two principal components was 65.26%, which contained the major in-
formation of all 1012 metabolites. Three samples of YF1 gathered 
closely and obviously separated from YF2 and mixed samples(quality 
control), indicating that there were significant differences among vari-
eties. In other words, YF1, YF2 and mixed samples were clearly sepa-
rated by PCA. After applying a log10 transformation to the peak areas of 
each metabolite, hierarchical cluster analysis was performed. This result 
indicated that YF1 and YF2 wampees were two distinct groups (Fig. 2B). 
Thus, PCA and hierarchical cluster analysis both demonstrated that YF1 
and YF2 had distinct metabolite profiles. 

3.3. Identification and classification of differential metabolites 

To identify differential metabolites between the two cultivars, we 
selected metabolites based on fold change ≥ 2 (upregulated) or ≤ 0.5 
(downregulated) in YF2 compared with YF1. After that, a variable 
importance in projection value (VIP ≥ 1) from the orthogonal pro-
jections to latent structures-discriminatory analysis (OPLS-DA) model 
was used to screen these metabolites again. As shown in Fig. 3A, 449 
differential metabolites between the two wampee cultivars were iden-
tified, 217 of which were downregulated, and 232 metabolites were 
upregulated in YF2 compared with YF1. The 449 differential metabolites 
can be categorized into 13 different classes (Fig. 3B), and the majority 
were flavonoids, lipids, phenolic acids, amino acids and derivatives, 
nucleotides and derivatives, organic acids, and carbohydrates. Previous 
studies also demonstrated that wampees contain high levels flavonoids, 
phenolic acids and carbazole alkaloids in different cultivars, showing 
high antioxidant and anticancer activities (Sun et al., 2020; Zhu et al., 
2020). Many taste metabolites, including organic acids and carbohy-
drates, were also identified in the two cultivars. 

Fig. 2. Differential fruit chemotype between YF1 and YF2. (A) PCA analysis of metabolites identified from YF1, YF2 and mix sample. Equal weight of YF1 and YF2 
flesh samples were mixed for use as quality control. Each group had three individual samples. For example, YF1-1, YF1-2, YF1-3 were three YF1 wampee samples. (B) 
Hierarchical cluster analysis of metabolites from YF1 and YF2. The color from green (low) to red (high) indicates the level of each metabolite. The Z score represents 
the deviation from the mean by standard deviation units. 
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3.4. Carbohydrates and organic acids 

We focused on carbohydrates and organic acids, which may be the 
main contributors to taste. As shown in Table S1, 29 carbohydrates 
differentially accumulated in YF1 and YF2 wampees, 21 of which 
showed a significant difference (p < 0.05). Except for D-arabinono-1,4- 
lactone, 2-dehydro-3-deoxy-L-arabinonate, and D-glucurono-6,3- 
lactone, 26 other carbohydrates downregulated in the YF2 wampee 
compared with the YF1 wampee, which could explain the much sourer 
taste of YF2 wampee. In particular, the abundances of D-galactose, D- 
mannose, and D-fructose 6-phosphate, as the major sugars in YF1, were 
significantly greater than YF2, which contributed primarily to the 

sweeter taste of the YF1 wampee. Numerous studies have shown that 
fructose is the main sugar in fruits, such as citrus (Zhou et al., 2018), 
apple (Jakopic et al., 2012), and mango (Liu et al., 2013). Galactose and 
mannose were also reported as important components of water-soluble 
polysaccharides in wolfberry and cherry, and varied from maturity 
levels and cultivars (Fan et al., 2010). 

Organic acids are crucial factors in fruit flavor (Chen et al., 2009). In 
total, 29 organic acids were differentially accumulated and 25 exhibited 
significant differences (p < 0.05). This finding is consistent with the 
result that TA showed significant differences between YF1 and YF2 
wampees (Table 1). Among them, L-citramalic acid, 2-hydroxyglutaric 
acid, and 3-methylmalic acid accumulated at the highest 

Fig. 3. Differential metabolites between YF1 and YF2. (A)Volcano plot of the 1012 metabolites identified. (B) Pie chart of the biochemical categories of the 449 
differential metabolites. 

Fig. 4. Maps of KEGG pathways involved in key differential metabolites. Note: The pathway maps include “ascorbate and aldarate metabolism” and “C5-branched 
dibasic acid metabolism”. The colored circles in front of each metabolite indicate log2YF2/YF1 values. 

Q.-c. Yin et al.                                                                                                                                                                                                                                   



Food Chemistry: X 13 (2022) 100261

5

concentrations significantly in YF2 wampee compared with YF1 wam-
pee. These three massive organic acids were the main reasons for the low 
sugar/acid ratio of YF2 wampee (Table 1), therefore, contributing 
mostly to acidic taste. The dominant acids are malic and citric in most 
fruits, and their final concentrations are influenced by the balance of 
biosynthesis and degradation of organic acids in mature fruit (Diakou 
et al., 2000). We speculated that the biosynthesis and degradation of 
organic acids, especially three major organic acids, in the two cultivar 
wampees were significantly different. The possible molecular mecha-
nism of carbohydrate and organic acid regulation needs to be further 
studied. 

3.5. KEGG classification and enrichment analysis of differential 
metabolites 

KEGG enrichment was carried out for the 449 differential metabo-
lites to uncover the molecular mechanism related to taste. The KEGG 
pathway analysis revealed that a significant enrichment occurred in 
“ascorbate and aldarate metabolism” and “C5-branched dibasic acid 
metabolism”. As shown in Fig. 4, the Log2YF2/YF1 of L-ascorbate was 
20.2, and the peak area of L-ascorbate in YF2 wampee was 1253888-fold 
higher than that of YF1 wampee. This result indicated that L-ascorbate 
might play a vital role in the above main pathways. 

According to maps of KEGG pathways (Fig. 4), on the one hand, the 
large consumption of sugars as precursor substances, especially D-glu-
curonate and D-glucarate, caused a considerable accumulation of 
ascorbate in YF1 wampee. On the other hand, several organic acids, 
including (S)-citramalate and itaconate, were produced through the 
“C5-branched dibasic acid metabolism pathway” by ascorbate degra-
dation. Ascorbate is reported as the biosynthetic precursor of L-tartaric 
and oxalic acids in several plants (Debolt, Melino & Ford, 2007). It is the 
dominant organic acid in many fruits, such as grape (Keskin et al., 
2021), wolfberry (Zhao et al., 2015). Our findings proved that carbo-
hydrates and organic acids associated with ascorbate synthesis and 
degradation might be vital for wampee taste differences. Flavonoids, 
lipids, lignans, and coumarins were also identified in our widely tar-
geted metabolite analysis. However, they were not significantly 
enriched in the KEGG pathways; therefore, they were deemed unlikely 
to be the main contributors to the taste differences between the two 

wampees. 

3.6. Quantitative verification of key taste metabolites by HPLC 

Six key taste metabolites, including three carbohydrates (D-galac-
tose, D-mannose, D-fructose 6-phosphate) and three organic acids (L- 
citramalic acid, 2-hydroxyglutaric acid, 3-methylmalic acid) were 
selected for quantitative verification by HPLC. As shown in Fig. 5, all key 
taste metabolites exhibited extremely significant differences (p < 0.01) 
between cultivars, which was similar to the metabolomics results. The 
contents of D-galactose, D-mannose, D-fructose 6-phosphate in YF1 
wampee with sweet taste were significantly higher than those in YF2 
wampee. In contrast, the accumulation of L-citramalic acid, 2-hydroxy-
glutaric acid, and 3-methylmalic acid in YF2 wampee with sweet–sour 
taste was significantly higher than that in YF1 wampee. In particular, the 
L-citramalic acid contents were 968.0 mg/kg and 8611.3 mg/kg in YF1 
and YF2 wampees, respectively, which exhibited the greatest differences 
between cultivars. Therefore, the notably different accumulation of the 
three carbohydrates and three acids between YF1 and YF2 was one of the 
main reasons for the different sugar-acid ratios, leading to the individual 
sweet or sweet–sour tastes. In general, sour fruits contain higher levels of 
ascorbate (Liang et al., 2017). As one of the important substrates for 
ascorbate biosynthesis, sugar content exhibited a close correlation with 
ascorbate in fruit (Mario et al., 2021; Assoi et al., 2021). This correlation 
could be one of the main reasons for the low carbohydrates and high 
ascorbic acid contents found in YF2 wampee. The large amount of L- 
citramalic acid found in YF2 wampee was another reason for its much 
more sour taste. 

4. Conclusions 

In this study, we performed UPLC–MS/MS based widely targeted 
metabolome analysis on two typical wampees, YF1 (sweet taste) and 
YF2 (sweet–sour taste). A total of 449 differential metabolites were 
identified between the two cultivars, including 29 carbohydrates and 29 
organic acids. Among them, D-galactose, D-mannose, and D-fructose 6- 
phosphate contributed mostly to the sweet taste of the YF1 wampee. L- 
citramalic acid, 2-hydroxyglutaric acid, 3-methylmalic acid, and quinic 
acid were the dominant organic acids in YF2 wampee. Furthermore, 
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Fig. 5. Quantitative verification of key taste metabolites by HPLC. (A) Quantitative verification of carbohydrates. (B) Quantitative verification of organic acids. Note: 
** on the column meant extremely significant difference between YF1 and YF2 wampees (p < 0.01). 
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KEGG pathway enrichment analysis also indicated that “ascorbate and 
aldarate metabolism” and “C5-branched dibasic acid metabolism” were 
the main underlying causes of differences in tastes between the cultivars, 
and ascorbate played a vital role in the regulation of sugars and organic 
acids. The above results provide important insights into the taste- 
forming components and mechanism of wampees. 
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