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Background. Head and neck squamous cell carcinoma (HNSCC) is one of the worst and most common malignant tumors. This
study is aimed at studying the complex interaction between glycosylation-related genes and HNSCC. Methods. The Cancer
Genome Atlas (TCGA) contains gene expression profile data of HNSCC and normal tissues, as well as patient survival and
clinical data. Combining five glycosylation-related gene sets, bioinformatics was used to analyze the expression of
glycosylation-related genes in TCGA-HNSCC datasets and to identify prognostic risk markers, analyze their prognostic value,
and the influence of glycosylation-related genes on the tumor immune microenvironment. Results. Gene expression profiles
and corresponding clinical information of 499 cases of HNSCC and 44 cases of adjacent tissues were obtained. Using 11
glycosylation-related genes to construct a prognostic risk score, the Kaplan-Meier curve analysis found that the overall survival
of the high-risk group was significantly different than that of the low-risk group (P < 0:001). ROC analysis was used to
evaluate the prognostic efficacy of prognostic risk markers, and the results showed that the prognostic risk markers had good
efficacy in predicting the prognosis of patients. We also found that there is a correlation between glycosylation-related genes,
PD-L1, and immunocyte infiltration, and there is a dynamic effect between the change in the copy number of glycosylation-
related genes and the number of tumor-infiltrating immune cells. Conclusions. Our research shows that glycosylation-related
prognostic risk markers may be independent risk factors for the prognosis of HNSCC. We have found that there may be subtle
links between glycosylation-related genes, PD-L1, and immunocyte infiltration, which has certain significance for exploring the
occurrence and development of HNSCC and exploring the research of targeted therapy.

1. Introduction

Head and neck cancer is one of the main causes of global
morbidity and mortality; among which more than 90% are
squamous cell carcinomas, and most are derived from the
stratified squamous mucosa of the lips, oral cavity, orophar-
ynx, hypopharynx, and epithelial larynx [1]. Current studies
have shown that the occurrence and development of head
and neck squamous cell carcinoma (HNSCC) are related to

smoking, long-term chewing of betel nuts, heavy drinking,
and increasingly, high-risk human papillomavirus (HPV)
infections [2, 3]. Although with the improvement of medical
standards and the development of advanced medical equip-
ment, an increasing number of patients can be diagnosed
and treated at an early disease stage. As one of the most
common malignant tumors, the 5-year overall survival
(OS) period for patients with HNSCC is only approximately
50% [4]. Tumor biomarkers are considered markers that can

Hindawi
Journal of Oncology
Volume 2022, Article ID 2786680, 16 pages
https://doi.org/10.1155/2022/2786680

https://orcid.org/0000-0001-5861-0731
https://orcid.org/0000-0001-5054-3431
https://orcid.org/0000-0002-8375-2683
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2786680


assist in the diagnosis and understanding of the occurrence
and development of malignant tumors and can predict and
identify specific cancer types, improve clinical diagnosis
and treatment, and provide predictive information about
the response to treatment [5]. Therefore, it is of great signif-
icance to explore effective tumor markers and design new
treatment strategies for HNSCC patients.

The research found that mechanisms related to abnor-
mal glycosylation play an important role in promoting the
occurrence and development of HNSCC [6]. The study also
found that there are many cytokines and immunosuppres-
sive cells related to tumor immune escape in the HNSCC
microenvironment [7]. Programmed death ligand 1 (PD-
L1) positive advanced and metastatic HNSCC patients are
likely to be sensitive to immunotherapy, immune check-
points such as programmed death 1 (PD-1) treatment have
received widespread attention, and related inhibitory anti-
bodies can improve the prognosis of patients with
HNSCC [8].

Abnormal glycosylation is one of the unique characteris-
tics of cancer cells. Specific glycan changes and abnormal gly-
cosylation processes are crucial in tumorigenesis and
metastasis [9]. Studies show that glycan structures, glycosyl-
ated proteins, and glycosylation enzymes have influence on

different steps of the metastatic process, including epithelial-
mesenchymal transition (EMT), migration, invasion/intrava-
sation, and extravasation of tumor cells [10]. Studies have
found that abnormal glycosylation plays a key role in promot-
ing the occurrence and development of HNSCC. These
changes promote the proliferation, invasion, and metastasis
of HNSCC [11]. Therefore, identifying reliable prognostic
markers is very important for selecting appropriate targeted
therapy and improving the prognosis of HNSCC patients. In
addition, the correlation between glycosylation-related genes
and PD-L1, the expression of PD-L1 in HNSCC, and the
abundance of immune infiltrating cells all need to be further
studied. This study intends to analyze the transcriptome
sequencing data, clinical data, and immune cell data of
HNSCC, construct glycosylation-related genes as prognostic
risk markers, and study its potential clinical application value.
In addition, we also studied the infiltration of immune cells,
the expression of PD-L1 in HNSCC, and the correlation with
glycosylation-related genes.

2. Materials and Methods

2.1. TGCA Head and Neck Squamous Cell Carcinoma Gene
Expression Profile and Clinical Data. The genome-wide
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Figure 1: GSEA analysis of the enrichment of five glycosylation-related gene sets between HNSCC and normal tissues.
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expression profiles and clinical data of patients with HNSCC
were extracted from The Cancer Genome Atlas (TCGA)
dataset. Gene profile expression comparing HNSCC tissues
(n = 499) and normal tissues (n = 44) and the corresponding
clinical-related information were obtained.

2.2. Prognostic Glycosylation-Related Genes and Construction
of New Predictive Risk Markers. Using gene set enrichment
analysis, five glycosylation-related gene sets were obtained.
The gene set files are from the Molecular Signatures Data-
base and were in GMP format. We analyzed the expression
differences of the glycosylation-related genomes in HNSCC
tissues and adjacent tissues. P < 0:05 was considered to have
a significant difference in gene expression, and the core gene

signature was constructed. Through single-factor and multi-
factor Cox regression analysis based on core genes, prognos-
tic risk indicators were selected and prognostic risk
indicators established.

2.3. Statistical Methods and Survival Analysis. R language
was used to screen for glycosylation-related genes with dif-
ferential expression and to analyze the correlation between
potential prognostic risk markers and other clinical vari-
ables. The R language loaded with the limma (linear model
of microarray data) package was necessary for the statistical
analysis of this study. Each patient was assigned a unique
risk score based on the linear combination of gene expres-
sion levels: Risk score = expression value of gene 1 × β1 +
expression value of gene 2 × β 2 +⋯ + expression value of
gene n × β n expression.

Using the risk score value to obtain the median as a cut-
off value, 499 patients with HNSCC were divided into high-
and low-risk groups. The Kaplan-Meier curve was used for
survival analysis, and ROC analysis was used to predict the
prognostic efficacy of the labels. Univariate and multivariate
Cox regression analysis was used to analyze the correlation
between predictive signatures of glycosylation-related genes
and other clinical variables. A P value less than 0.05 was con-
sidered statistically significant.

cBioPortalc is an online analysis database that provides
visualization tools for research and analysis of cancer genetic
data and uses molecular data obtained from cancer tissue
and cytology to understand heredity, epigenetics, gene
expression, and proteomics. STRING version 11.0 is an
online tool that can modify and integrate information from
many sources to analyze interactions between
glycosylation-related genes.

3. Results

3.1. Glycosylation-Related Gene Set. The datasets included
gene profiles of throat squamous cell carcinoma and oral
squamous cell carcinoma. All information is derived from
the Cancer Genome Atlas database (https://portal.gdc
.cancer.gov/repository). We obtained and screened
glycosylation-related gene sets on the GSEA website
(https://www.gsea-msigdb.org/gsea/login.jsp), and we used
five different gene sets (GO_PROTEIN_N_LINKED_GLY-
COSYLATION, GO_ROUGH_ENDOPLASMIC_RETICU-
LUM, HP_ABNORMAL_GLYCOSYLATION, HP_
ABNORMAL_PROTEIN_GLYCOSYLATION, and REAC-
TOME_ASPARAGINE_N_LINKED_GLYCOSYLATION)
to explore whether these five glycosylation-related gene sets
are different between the paracancer sample and the tumor
sample. We found that the abovementioned gene set in
HNSCC was significantly different than that of the adjacent
tissues and tumor tissues (FDRs were 0.003, <0.001, 0.007,
0.002, and 0.007, respectively, Figure 1). Next, P value <
0.05 considered that the expression of glycosylation-related
genes in HNSCC and normal tissues was significantly differ-
ent, the glycosylation gene set was screened, and the core
genes are thus obtained. Table 1 shows genes with significant
differences in expression in tumor tissues.

Table 1: The core genes were selected from 5 glycosylation-related
gene sets.

n = 282
ALG10B, NAPA, CTSZ, TMED3, CYBB, F8, GLUL, SYVN1,
TUBB1, DYNC1LI2, RAB1A, TRAPPC6B, CDKAL1, NAT8L,
LHB, ALG6, MT3, DYNC1I2, CAPZA1, CD55, FOLR1, GMPPA,
LMAN2, NCF1, SEC22A, TMEM258, COPG1, MGAT4A, RPS23,
EPHA5, EDEM3, TRAPPC4, DERL1, TUBA1C, ATP6V1A,
FUT3, TUBB6, DPAGT1, PCSK9, UGGT1, TUBA3D, ST8SIA5,
RPS28, TMEM97, PSMC1, NAGK, TP63, ST8SIA2, ST8SIA4,
UGGT2, COPE, SEC22C, STT3B, ALG12, OSTC, AREG,
SFTPA2, YKT6, TRAPPC2L, COG4, TMED9, TUSC3,
ST6GALNAC2, NGLY1, SEC24C, APP, COPB2, GMDS, FKRP,
SEC31A, ALG2, SLC7A11, SEC62, LMAN1L, KDELR2,
DYNC1H1, HSPD1, SEC63, ST8SIA6, DERL2, FKTN, SEC61A2,
GOSR2, PPP6R1, KDELR3, ST6GALNAC1, ST3GAL2, SPPL3,
MACO1, MGAT5, UBC, GOSR1, NAPG, RNF103, SEL1L, DPM1,
VCP, BGLAP, SEC23IP, AMDHD2, EDEM1, PKM, COPZ1,
SPTBN2, MGAT5B, ST8SIA1, ALG1, EDEM2, PGM3, SEC23A,
MIA2, CCDC115, STX5, SRP9, DDOST, MOGS, MGAT4B,
B4GALT1, CNIH1, RAB1B, TGFA, CALR, CSNK1D, SLC35A2,
TRIM13, ST6GALNAC5, SEC61G, USO1, MLEC, DERL3,
SPTBN4, MGAT2, TMEM165, ANK3, PLOD3, LIN28A,
ACTR1A, ST6GALNAC6, NANP, PLOD1, GLB1, GANAB,
SERPINA1, B4GALT4, MAN1B1, ANKRD28, PGM1, PI4KB,
SLC35C1, COL7A1, ATP6V1E1, SEC24D, UBE2J1, CTSC,
ALG13, ALG10, RPL4, CHST8, TUBA3E, COG1, NUDT14,
KRTCAP2, DCTN5, DPM2, SEC16A, TRAPPC3, GNPNAT1,
PDIA3, CNIH2, STT3A, ST3GAL4, RPN2, COPA, GNRH1,
CANX, ARSB, MGAT1, FUOM, TRAPPC1, TMED2, GNE, RP9,
TRAPPC2, PRKCSH, NSF, COPB1, ARL6IP1, KDELR1, ALG3,
RENBP, B4GALT2, GMPPB, LMAN1, RPN1, PLOD2,
ATP6V0A2, UBXN1, F12, ST3GAL, BET1, PPP6R3, STAU1,
BET1L, MYOC, LRAT, HM13, SEC61B, FPGT, DAD1, RAD23B,
B4GALT7, RFT1, LRPAP1, SEC16B, NUS1, TMED10, FUT8,
ALG5, ST3GAL1, ARCN1, COG2, ARF3, LMAN2L, ALG8,
SRPRB, CNIH3, OST4, PREB, TUBA4A, CTSA, NEU3,
ADCYAP1R1, CAPZB, SAR1B, PMM2, MAN2A1, ENGASE,
MAN1C1, GBF1, NEU4, KCNJ2, TUBB3, ENTPD5, PSEN1,
NUCB1, OS9, B4GALT3, COPZ2, SCGB1A1, ANK2, TMEM199,
CAD, TUBA1B, GORASP1, NPL, BAIAP2, TUBAL3, GFPT2,
ARF1, ARFGAP1, DCTN1, TMCC1, RNF139, MANEA, PTGDS,
NEU1, NAPB, GRIA1, TFG, RANGRF, SCFD1, DOLK, SLC17A5,
SPTA1, ARF5, CKAP4, CA4, ASGR1, SEC61A1, DOLPP1,
ARFGAP3, B4GALT6
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Figure 2: Continued.
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To verify whether the core genes were related to glyco-
sylation, we used GO analysis and KEGG pathway enrich-
ment analysis for more in-depth analysis. Figure 2 shows
that the most enriched biological process (BP) is related to

a variety of glycosylation processes, and molecular functions
(MF) are related to multiple glycosylation pathways includ-
ing glycosyl transfer, UDP-glycosyltransferase activity, O-
Glycosyl compounds, and other related; KEGG pathway
enrichment analysis involves protein processing in the endo-
plasmic reticulum, N-glycan biosynthesis, and glycosphin-
golipid biosynthesis, suggesting that the core genes
screened are related to glycosylation.

3.2. Construction of Prognostic Risk Markers Based on Core
Genes. To define the OS data of HNSCC patients in associa-
tion with core genes, single-factor Cox regression analysis
was used to screen glycosylation genes related to OS of
patients. Multivariate Cox regression analysis further veri-
fied the correlation between glycosylation-related core genes
and patient OS. After the analysis, prognostic risk markers
related to OS were screened, and the result was a prognostic
risk marker composed of OS-related glycosylation-related
genes, namely, PSMC1, NAGK, AREG, DDOST,
ATP6V1E1, KDELR1, PLOD2, TMED10, ALG5, ARF3,
and OST4 (Table 2).

The regression coefficient (β) of each prognostic risk index
was calculated by multivariate Cox analysis. The unique risk
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Figure 2: Functional enrichment analysis of core genes: (a) GO enrichment analysis and (b) KEGG enrichment analysis.

Table 2: Prognostic risk markers are screened from core genes
based on bioinformatics analysis.

Prognostic risk markers
Gene P value HR HR.95L HR.95H Coeff (β)

PSMC1 1.27E-09 1.7435 1.2496 2.4327 0.549384

NAGK 1.92E-06 0.7046 0.5359 0.9264 -0.35266

AREG 0.013 1.1569 1.0662 1.2553 0.133426

DDOST 5.78E-16 1.3907 1.0065 1.9216 -0.31938

ATP6V1E1 1.44E-08 1.6330 1.1599 2.2992 0.424889

PLOD2 5.92E-16 1.2171 1.0527 1.4070 0.149545

TMED10 3.12E-05 1.3489 1.0248 1.7756 -0.34939

ALG5 0.002 1.7314 1.2715 2.3578 0.323277

ARF3 2.26E-10 1.4682 1.0263 2.1005 0.617688

OST4 0.030 1.5341 1.17272 2.0070 0.407259

KDELR1 8.27E-14 1.7969 1.2700 2.5423 0.37953
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score of these patients is obtained based on the regression
coefficient and the expression level, where the risk score value
ðRisk scoreÞ = ðPSMC1 expression × 0:549384Þ + ðNAGK
expression × −0:35266Þ + ðAREG expression × 0:133426Þ + ð
DDOST expression × −0:31938Þ + ðATP6V1E1 expression ×
0:424889Þ + ðPLOD2 expression × 0:149545Þ + ðTMED10
expression × −0:34939Þ + ðALG5 expression × 0:323277Þ + ð
ARF3 expression × 0:617688Þ + ðOST4 expression × 0:407259
Þ + ðKDELR1 expression × 0:37953Þ. Based on unique risk
score, HNSCC patients were divided into a high-risk group
and a low-risk group according to the median value of the risk
score, with a risk score greater than themedian being classified
as a high-risk group (n = 249) and a risk score less than the
median being classified as low-risk risk group (n = 250). The
Kaplan-Meier (KM) survival curve was used to assess the
prognostic difference between the two groups. The results
showed that the OS of the high-risk group was significantly
different from that of the low-risk group (P value < 0.001)
(Figure 3(a)). To test the effectiveness of 11-gene
glycosylation-related prognostic risk markers in predicting
OS in patients with HNSCC at 3, 5, and 10 years in the diag-
nosis of HNSCC, we used receiver operating characteristic
curve (ROC) analysis that further verified its diagnostic effi-
cacy. The results showed that the respective area under the
curve (AUC) was 0.725, 0.669, and 0.766, respectively
(Figure 3(b)), indicating that prognostic risk markers perform
well in predicting OS in patients with HNSCC. Based on the
risk score, we drew a risk curve (Figure 4) and found that
the higher the risk score, the shorter the patient’s survival time.

3.3. Analysis of the Expression and Correlation of 11
Glycosylation-Related Genes in Head and Neck Squamous
Cell Carcinoma. In the cBioPortal online database, we ana-
lyzed the mutations of 11 glycosylation-related genes in
HNSCC through clinical samples. The results showed that
78 patients (15.6%) had genetic mutations. Among them,
the rate of mutation of the PLOD2 gene was 9%, including
37 cases of amplification and 8 cases of missense mutations.

PSMC1 and ATP6V1E1 gene mutations accounted for 1.4%,
TMED10 gene mutations accounted for 1.2%, and ALG5
gene mutations accounted for 1%; in addition, NAGK,
AREG, DDOST, KDELR1, ARF3, and OST4 gene mutation
rates were all lower than 1% (Figure 5(a)).

We further analyzed the differential expression of
PSMC1, NAGK, AREG, DDOST, ATP6V1E1, KDELR1,
PLOD2, TMED10, ALG5, ARF3, and OST4 in HNSCC
and normal head and neck tissues and found that compared
with normal tissues, there are 11 glycosyl groups in HNSCC
tissues. The expression of metabolism-related genes is signif-
icantly different (P < 0:001 for PSMC1, NAGK, DDOST,
ATP6V1E1, KDELR1, PLOD2, TMED10, and ARF3; P =
0:013 for AREG; P = 0:002 for ALG5; P = 0:03 for OST4)
(Figure 5(b)). We classified the expression of each gene in
tumor samples from HNSCC patients and then divided
these patients into two subgroups based on the median
expression value, namely, the high-expression group and
the low-expression group. The Kaplan-Meier curve was used
to verify whether the high or low expression of each gene
was associated with the OS in patients with HNSCC.
PSMC1, NAGK, AREG, DDOST, ATP6V1E1, KDELR1,
PLOD2, TMED10, ALG5, ARF3, and OST4 were found to
be related to a poor prognosis of HNSCC (P = 0:004,
<0.001, 0.027, 0.035, 0.030, and 0.009, respectively)
(Figure 6). For PSMC1, NAGK, AREG, DDOST,
ATP6V1E1, KDELR1, PLOD2, TMED10, ALG5, ARF3,
and OST4, their role as independent biomarkers of progno-
sis needs to be further verified. Thus, we used ROC curve
analysis to further confirm their prognostic effects (shown
in Table 3), but the AUC values of the 11 glycosylation-
related genes that predicted OS in HNSCC patients were
below 0.725, 0.669, and 0.766, respectively, indicating that
they were predictors of poor prognosis.

The Pearson correlation coefficient was used to test the
strength of the coexpression of glycosylation-related genes.
As shown in Figure 7, we found that 11 gene pairs showed
a coexpression relationship. Among these gene pairs, the
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Figure 3: Survival analysis of prognostic risk markers: (a) Kaplan-Meier curve analysis of OS between high-risk groups and low-risk groups
and (b) ROC curve analysis of diagnostic power.
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TMED10-PSMC1 pair has the strongest correlation (0.52);
while ATP6V1E1 and ALG5 showed the lowest correlation
with other glycosylation-related genes, and NAGK was neg-
atively related to the other glycosylation-related genes. We
used the online tool STRING version 11.0 to construct a
protein-protein interaction (PPI) network. We found that
the genes TMED10, ARF3, and KDELR1 were closely related
and seemed to be associated with other genes.

3.4. Correlation between Prognostic Risk Markers and
Clinical Characteristics. We then evaluated whether the
glycosylation-related prognostic risk markers composed of
11 oncogenes were related to clinical parameters including
sex, age, grade, and clinical stage of patients with HNSCC.
We used clinical parameters as covariates, analyzed the
entire data set using univariate and multivariate Cox regres-
sion, and analyzed the correlation between prognostic
markers and covariates. The results showed that in univari-
ate Cox regression analysis, age, tumor clinical stage, and
risk score were significantly correlated with OS, while sex
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Figure 6: Based on the expression of each glycosylation-related gene in HNSCC, Kaplan-Meier curve analysis predicted the overall survival
(OS) of HNSCC patients stratified into high- and low-expression groups of the indicated genes.

Table 3: ROC curve analysis of the prognostic diagnostic power of
11 genes.

ROC curve analysis of the prognostic diagnostic power of 11 genes

Gene
(AUC)

3 years 5 years 10 years

PSMC1 0.629 0.559 0.526

NAGK 0.420 0.433 0.448

AREG 0.609 0.538 0.581

DDOST 0.571 0.601 0.523

ATP6V1E1 0.602 0.591 0.628

PLOD2 0.564 0.570 0.656

TMED10 0.595 0.541 0.501

ALG5 0.611 0.582 0.654

ARF3 0.579 0.564 0.630

OST4 0.570 0.592 0.668

KDELR1 0.596 0.579 0.481
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and tumor grade were not. After further analysis by multi-
variate Cox regression, the results showed that the risk score
was significantly correlated with the OS of patients with
HNSCC (P < 0:001, 95% CI 1.221-1.465, HR = 1:337). The

results of univariate and multivariate Cox regression analysis
showed that prognostic risk signature composed of 11
glycosylation-related genes can predict the prognosis of
patients and can be independent of clinical characteristics.
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In summary, prognostic risk markers can be applied to pre-
dict OS in patients with HNSCC (Figure 8).

We carried out a stratified analysis of each clinical fea-
ture and further evaluated the correlation between the risk
score and the clinical feature. The result is shown in
Figure 9. We found that when patients were stratified
according to age, patients older than 65 years old have
high-risk subgroups (n = 93) and low-risk subgroups
(n = 82); while patients younger than 65 years old have high
risk subgroup (n = 156) and low-risk subgroup (n = 168),
there was a significant difference in OS between the two sub-
groups (P < 0:001). Patients were stratified by sex; for the
females, 64 were in the high-risk subgroup and 69 were in
the low-risk subgroup, while for males, there were 185 cases
in the high-risk subgroup and 181 cases in the low-risk sub-
group. The analysis showed that there were significant dif-
ferences in OS rates between the two subgroups (P < 0:001).

All patients were stratified according to tumor grade (G)
and were divided into two subgroups: GI/GII (n = 359) and
GIII/GIV (n = 121). According to the risk score, there were
180 cases in the high-risk subgroup and 179 cases in the
low-risk subgroup for GI/GII. We found a significant differ-
ence in OS between the two subgroups (P < 0:001). The
same results were also observed in the two subgroups of
patients with GIII/GIV tumors (P = 0:003). Patients were
divided into T1 and T2 groups (n = 177) and T3 and T4
groups (n = 266) based on the T stage of the tumor. The sur-
vival rate of the low-risk subgroup in the T1 and T2 groups
was significantly different from that of the high-risk sub-
group (P = 0:003), and similar survival rates of the high-
and low-risk subgroups in the T3 and T4 groups were also
found (P < 0:001). Depending on the presence or absence
of lymph node metastases, these patients were divided into
two groups. We found that the survival rates of the low-
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Figure 8: Univariate and multivariate Cox analysis to analyze the relationship between risk score and clinical characteristics: (a) univariate
Cox analysis and (b) multivariate Cox analysis.
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risk and high-risk subgroups were significantly different
between the two groups (P = 0:018 and P < 0:001, respec-
tively). We divided patients into stage I and II groups
(n = 94) based on the clinical stage of the tumor, which

was high-risk subgroups (n = 36) and low-risk subgroups
(n = 58). Stages III and IV were grouped together (n = 337
), for the high-risk subgroup (n = 184) and low-risk sub-
group (n = 153). In tumor stage III and IV groups, the
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Figure 9: Kaplan-Meier curve analysis of the survival relationship between risk score and clinical characteristics.
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survival rate of patients in the high-risk subgroup was signif-
icantly different from that of patients in the low-risk sub-
group (P < 0:001). In the tumor clinical stages I and II
groups, there was no significant difference in the survival
rate of patients in the two subgroups (P = 0:125). Since there
was only 1 patient with distant metastasis, we could only
stratify patients without distant metastasis to obtain a
high-risk subgroup and a low-risk subgroup. The results
suggested that there was a significant difference in survival
rate between the two groups (P < 0:001).

3.5. The Relationship between PD-L1 and Glycosylation-
Related Genes. We assess the difference in expression of
PD-L1 in tumor tissue and normal tissues of HNSCC
patients (Figure 10(a)). Compared to normal tissues, the
expression of PD-L1 in HNSCC tissue increased signifi-
cantly. We analyzed the relevance of PD-L1 and 11
glycosylation-related genes (Figure 10(b)). We have found
that the expression of PD-L1 is significantly positively corre-
lated with the expression of NAGK, and the expression of
PD-L1 is significantly negatively correlated with the
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Figure 10: (a) Expression of PD-L1 in HNSCC tissue and normal tissue. (b) Correlation between PD-L1 and 11 glycosylation-related genes.
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expression of OST4. HNSCC patients were divided into high
expression groups and low expression groups according to
the expression level of PD-L1, and the two groups were
divided into four subgroups according to the risk score.
We found that there is a significant difference in overall sur-
vival between 4 subgroups (Figure 10(c)).

3.6. The Effects of Genetic Changes in Glycosylation-Related
Prognostic Risk Markers on Immune Cell Infiltration. We
analyzed the relationship between prognostic risk markers
and the level of infiltration of six immune cell types
(Figure 11). The results showed that there was a significant
negative correlation between the risk score and the level of
infiltration of B cells, CD4+ T cells, CD8+ T cells, dendritic
cells, and neutrophils. There was no significant correlation
between the risk score and the level of macrophage infiltra-
tion. The results confirmed that signatures based on
glycosylation-related genes were related to the TIME of
HNSCC.

The effects of somatic copy number alteration (CNA)
based on glycosylation-related genes on immune cell infiltra-
tion were further analyzed. The CNA of identified
glycosylation-related genes significantly influenced the infil-
tration of B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells in HNSCC. These results
indicated that glycosylation-related genes had a key regula-
tory effect on the TIME in HNSCC patients (Figure 12).

4. Discussion

The occurrence, development, and invasion of tumors are
accompanied by changes in glycosylation of related glyco-
proteins. The changes in the structure of carbohydrates on
the surface of cancer cells play an important role in the
course of cancer [12]. The process of glycosylation affects
the complexity of the regulation of protein function and pro-
motes tumor proliferation, invasion, and angiogenesis [13,
14]. Abnormal glycosylation mediated by glycoproteins such
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as E-cadherin, PD-1/PD-L1, EGFR, and CD44 can have a
vital impact on the epithelial-mesenchymal transition and
immune escape of HNSCC [15]. However, the specific

mechanism of abnormal protein glycosylation on the occur-
rence and development of HNSCC has not been fully eluci-
dated. We constructed 11 glycosylation-related prognostic
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Figure 12: The effects of somatic copy number alteration (CNA) on the expression of glycosylation-related genes on immune cell
infiltration. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001.
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risk markers composed of PSMC1, NAGK, AREG, DDOST,
ATP6V1E1, KDELR1, PLOD2, TMED10, ALG5, ARF3, and
OST4 from the glycosylation-related gene set, and calculated
risk scores perform well in predicting the prognosis of
HNSCC patients, indicating that the prognostic risk markers
composed of glycosylation-related genes can be used as pre-
dictive biomarkers for HNSCC to predict the prognosis of
HNSCC. Subsequent univariate and multivariate Cox pro-
portional hazards regression analysis showed that the risk
score was significantly related to the patient’s OS, indicating
that the risk score can be independent of other clinical char-
acteristics. This study constructed prognostic risk markers
related to glycosylation as a prognostic marker for HNSCC
patients, providing new ideas and molecular targets for
HNSCC research and individualized treatment. Our results
indicate that predictive features composed of glycosylation-
related genes have shown potential in predicting the progno-
sis of HNSCC patients and personalized treatment.

Abnormal glycan structure and glycosylation process
may be an important factor in the complex process of
immune escape of tumor cells [16]. The protein stability
of PD-L1 may be affected by ubiquitination, phosphoryla-
tion, and glycosylation, while altering its protein-protein
interaction [17]. Studies have shown that N-glycosylation
plays a key role in maintaining the protein structure sta-
bility of PD-1, which affects antitumor immune responses,
while inhibition of Fut8 affects cell surface PD-1 expres-
sion, T cell activation be enhanced, thereby affecting the
occurrence and development of tumors [18]. We found
that the expression of PD-L1 in HNSCC tissue increased
significantly. Further, the results show that the expression
of PD-L1 is significantly positively correlated with the
expression of NAGK, and the expression of PD-L1 is sig-
nificantly negatively correlated with the expression of
OST4. HNSCC patients were divided into high expression
groups and low expression groups according to the expres-
sion level of PD-L1, and the two groups were divided into
four subgroups according to the risk score. We found that
there is a significant difference in overall survival between
4 subgroups. The results show that the PD-L1 may have
close contact with the glycosylation-related genes, and this
connection also affects the overall survival of HNSCC
patients to a certain extent.

Immune-related cells are considered an indispensable
key part of the innate and adaptive immune system, such
as B cells, T cells, dendritic cells (DCs), and natural killer
(NK) cells. During tumorigenesis, abnormal glycosylation
processes can directly or indirectly affect the immune
response of tumor cells, thereby regulating tumor progres-
sion [19]. Exploring the role of protein glycosylation in the
structure and function of immune cells, immunoglobulins
and immune factors may help reveal the molecular mecha-
nisms of glycosylation in tumor immunity and may suggest
new treatments to inhibit tumor recurrence and metastasis.
At present, the effect of glycosylation-related genes on
immune cell infiltration in the tumor immune microenvi-
ronment is still unclear. In this study, the results of immune
cell infiltration analysis based on 11 glycosylation-related
genes showed that the risk score was significantly correlated

with the infiltration levels of B cells, CD4+T cells, CD8+T
cells, dendritic cells, and neutrophils related.

The small sample size in the validation data set under-
lines the limitations of this study and suggests there may
be selection bias in the results. To verify the reliability of
the conclusions, more prospective clinical trials are neces-
sary. In addition, our study only explored the potential cor-
relation of glycosylation-related genes, PD-L1 and immune
infiltration in the occurrence and development of HNSCC,
more detailed studies are needed to analyze the specific
mechanisms of glycosylation-related genes in promoting
HNSCC progression. It is necessary to further study how
glycosylation-related genes, PD-L1 and immune infiltration,
jointly regulate the occurrence and development of tumors.
It provides clinicians with more reliable diagnostic markers,
provides an important basis for finding potential targets for
HNSCC treatment, and is expected to provide precise and
personalized treatment strategies for HNSCC patients.

5. Conclusions

Our study identified an 11 glycosylation-related gene signa-
ture of prognostic risk markers, namely, PSMC1, NAGK,
AREG, DDOST, ATP6V1E1, KDELR1, PLOD2, TMED10,
ALG5, ARF3, and OST4. These markers can predict the
prognosis of patients with HNSCC, indicating that
glycosylation-related genes can be used as prognostic risk
markers for HNSCC. We analyzed and evaluated the corre-
lation between 11 glycosylation-related genes and PD-L1, as
well as the potential regulatory mechanisms. The risk score
of glycosylation-related genes is significantly related to the
level of immune cell infiltration in HNSCC patients, and
glycosylation-related genes may be involved in the regula-
tion of the immune microenvironment of HNSCC. There-
fore, identifying glycosylation-related genes and molecular
pathways that affect tumor immune response and further
study into their regulatory mechanisms may provide poten-
tial molecular targets for improving the sensitivity of
HNSCC to targeted immunotherapy.
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