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Abstract

microRNAs are conserved noncoding regulatory factors implicated in diverse physiological and developmental processes in multi-

cellular organisms, as causal macroevolutionary agents and for phylogeny inference. However, the conservation and phylogenetic

utility of microRNAs has been questioned on evidence of pervasive loss. Here, we show that apparent widespread losses are, largely,

an artefact of poorly sampled and annotated microRNAomes. Using a curated data set of animal microRNAomes, we reject the view

that miRNA families are never lost, but they are rarely lost (92% are never lost). A small number of families account for a majority of

losses (1.7% of families account for>45% losses), and losses are associated with lineages exhibiting phenotypic simplification.

Phylogenetic analyses based on the presence/absence of microRNA families among animal lineages, and based on microRNA

sequences among Osteichthyes, demonstrate the power of these small data sets in phylogenetic inference. Perceptions of

widespread evolutionary loss of microRNA families are due to the uncritical use of public archives corrupted by spurious

microRNA annotations, and failure to discriminate false absences that occur because of incomplete microRNAome annotation.
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Introduction

microRNAs (miRNAs) are short noncoding RNA molecules pre-

sent in the genomes of animals, plants, fungi, and both green

and brown algae (Tarver et al. 2012); they are important bio-

medically (Sayed and Abdellatif 2011), agriculturally (Zhou and

Luo2013),developmentally (Plasterk2006),ascausalagentsof

macroevolutionary change (Heimberg et al. 2008; Peterson

et al. 2009), and in phylogenetic inference (Tarver et al.

2013). Though they are thought largely to evolve from random

sequence, they have been perceived to be rarely lost after as-

suming a regulatory function (Tarver et al. 2013). Recent stud-

ies have called this prevailing view into question (Guerra-

Assunç~ao and Enright 2012; Meunier et al. 2013; Thomson

et al. 2014; Hertel and Stadler 2015), arguing that miRNA fam-

ilies exhibit rates of loss approaching 80% in some species

(Thomson et al. 2014; Hertel and Stadler 2015). However,

there are two key challenges to inferring the evolutionary his-

tory of miRNAs. The first is incomplete annotation of the

miRNAome of an organism as a consequence of incomplete

genome and/or small RNA sequencing, an ascertainment bias

that results in false-negatives (Thomson et al. 2014; Fromm

et al. 2015). The second challenge is the misannotation of ran-

dom or degraded sequence, or of other classes of small RNAs,

as miRNAs (Chiang et al. 2010; Hansen et al. 2011; Wang and

Liu 2011; Meng et al. 2012; Tarver et al. 2012; Castellano and

Stebbing 2013; Taylor et al. 2014, 2017), which results in false-

positives. The occurrence of false-positives is so widespread

that some have argued that only 16% of metazoan miRNA

annotations in the canonical miRNA database (Kozomara and

Griffiths-Jones 2014) are genuine (Fromm et al. 2015).
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In an attempt to obtain a realistic understanding of miRNA

family evolution, we exploited a curated data set of eumeta-

zoan miRNA families in which these biases are minimized

(Fromm et al. 2015). This data set includes all metazoan

taxa that have been the subject of exhaustive miRNAome

annotation based on genome and small RNA transcriptome

sequencing. We present an analysis of the dynamics of meta-

zoan miRNA evolution, demonstrating that miRNA families

are among the most conserved of phylogenetic characters.

Most losses can be attributed to a small number of families

that have been repeatedly lost, and a small number of line-

ages exhibiting reduced phenotypic complexity (e.g., as in-

ferred from cell diversity; Valentine et al. 1994). Finally, our

phylogenetic analyses of 1) the distribution of miRNA families,

and 2) their nucleotide sequences, demonstrate the power of

miRNAs in recovering phylogenetic resolution at the scale of

the animal kingdom.

Materials and Methods

Taxon Sampling

To minimize false negatives we constrained our analyses to

only those taxa with high-coverage genomic and small RNA

sequencing. To eliminate the effect of transcriptional noise

(i.e., non-miRNA sequences), we used the curated data set

of Fromm et al. (2015) which is based on a reanalysis of the

entire compliment of eumetazoan miRNA families in miRBase

V.21 (Kozomara and Griffiths-Jones 2014) following estab-

lished criteria (Ambros 2003; Kozomara and Griffiths-Jones

2011). Fromm and colleagues found that of the 7,095 anno-

tated metazoan miRNA families in miRBase V.21, only 1,178

(16.60%) meet all of the criteria required for correct annota-

tion, with a further 2,104 (29.7%) meeting some but not all

of the criteria required for validation (e.g., lacking the prod-

ucts of both the 50 and 30 arms). Taxa with low coverage

(<6�) genomes (e.g., Taeniopygia guttata), poorly annotated

small RNA repertoires (e.g., Ovis aries), and uncertain phylo-

genetic position (e.g., Strongyloides ratti), were removed, re-

ducing the data set to 1,139 miRNA families from 35 species,

representing a broad range of metazoan taxa (supplementary

file 1, Supplementary Material online). This data set minimizes

both false negatives and any bias from misannotated miRNAs,

providing the basis for an approximately unbiased assessment

of the rates of miRNA family birth and death.

To establish the impact of data curation, we compiled an

uncurated data set (supplementary file 2, Supplementary

Material online) from miRBase v.21 (Kozomara and

Griffiths-Jones 2014) which we subjected to parallel analyses.

Not all of the taxa in our curated data set appear in miRBase

v.21 (Kozomara and Griffiths-Jones 2014), viz. Alligator mis-

sissippiensis, Melibe maugeana, Columba livia, and Chrysemys

picta, and so we included the curated annotations for these

taxa in the otherwise uncurated data set. This facilitates direct

comparison of the results of the analyses of the two data sets,

but it biases the analysis in favor of the uncurated data set by

raising the overall quality of annotation, minimizing the im-

pact of noise reduction in the curated data set. Not all

miRBase miRNA genes are assigned to families,—particularly

in cases where there is only a single gene in the family. We

included these as individual families containing the single

gene. Some genes are named correctly but not assigned to

the correct family. For example, in Schmidtea mediterranea,

there are three genes which have correctly been given the

name miR-7 but which are not included in the miR-7 family

grouping on miRBase v.21 (Kozomara and Griffiths-Jones

2014). In such instances, we included each of these as a sep-

arate family. The alternative would have been to hand curate

the data set, which would be unrepresentative of miRBase, or

else we could assign genes to families based on their name.

However, this would introduce additional artifact since many

genes correctly assigned to families in miRBase have different

names (e.g., mmu-mir-300 is currently correctly listed in the

miR-154 family, not the miR-300 family, despite the differ-

ence in names). Thus, for consistency, we have followed the

family groupings that are listed on miRBase and ignored the

names of the genes.

Phylogeny and Rates of Evolution

The phylogenetic relationships between taxa included in the

analysis are not controversial and a constraint timetree was

used based on previous molecular clock studies (Dabert et al.

2010; Pyron 2010; Erwin et al. 2011; Reis et al. 2011; Crête-

Lafrenière et al. 2012; Tarver et al. 2016) onto which the evo-

lution of microRNAs was mapped. This allowed us to estimate

rates of miRNA gain and loss in two ways. First, for the analyses

of the Homo and Drosophila lineages, numbers of shared

miRNA families were calculated for the internal nodes of the

phylogeny, so that the branching pattern could be observed.

Second, for the total tree, the rate for each branch was aver-

aged across the length of the branch with rates calculated as

birth/death per million years. About 1,000 simulations were run

to generate confidence intervals around the average values.

We investigated the phylogenetic and temporal distribu-

tion of gains and losses using a novel stochastic character

mapping approach under a Dollo assumption; this model is

employed even by those who argue that miRNA loss is prev-

alent (Thomson et al. 2014) since there is no evidence for the

convergent evolution of miRNA families (Tarver et al. 2013).

First, we assumed that characters were gained only once and

that the gain occurred on either the terminal branch (for

singletons), or the branch subtending the least inclusive clade

of taxa exhibiting presence of that miRNA. Without further

information to constrain its position, we assumed equal prob-

ability of miRNA family gain having occurred at any point

along the branch and the precise timing of gain time was

generated by randomly sampling from a uniform distribution
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between the beginning and the end of this branch. Thus, in

practice, gains will always occur on the same branch, but the

precise position (and hence timing) is determined stochastically

and will vary each time the algorithm is run. Second, we as-

sumed no losses occurred in the case of singletons but allowed

stochastic losses to occur in instances of nonsingletons. Where

losses were possible, these were simulated by using the make.-

simmap function in thephytools package (Revell 2012)by plac-

ing a hard prior probability of presence on the root, and then

only allowing losses (1–0 transitions) in the model. When losses

wereobserved, thebranchonwhichtheywere inferred tohave

occurred was recorded, as well as the position along that

branch (effectively a temporal estimate). This whole process

was achieved using the custom-written function DolloSCM in

the package Claddis (Lloyd 2016). Because the algorithm is

stochastic, it was run 1,000 times in order to generate mean

and 95% confidence intervals. Similarly, the output allows

both phylogenetic and temporal positions to be examined for

each inferred transition, which can themselves be subdivided

into gains (0–1 transitions) and losses (1–0 transitions). We

used this output to estimate per-branch rates for gains-only

(as losses are necessarily biased both phylogenetically, to-

ward nested branches, and temporally, toward the pre-

sent, because they must occur after a gain). We also

generated separate (gains and losses) time series of rates

(changes per 10-Myr time bin) from 720 Ma to the present.

Finally, we compared inferred losses across all miRNAs to

simple minimum and maximum possible values based on

the observed data. Here, the minimum was set at zero (no

losses). The maximum is more complex to estimate, but

here we used a simple rule, viz.: 1) if a singleton then no

losses could be observed; 2) if presence of the miRNA is

present in all members of a clade of two tips then, again,

no losses could be observed; 3) if the least inclusive clade

exhibiting the miRNA contains more than two taxa, a loss

could be observed and the maximum number of losses is

2�N, where N is the number of taxa in that clade (i.e., with

all losses occurring on terminal branches). These rules were

then used to sum the maximum number of losses across all

miRNAs. The inferred total number of losses can vary (due

to the stochastic nature of the algorithm) and, thus, we

considered the full distribution of our 1,000 runs when

comparing between minimum and maximum losses. The

Dollo model necessitates that characters are rarely lost and

this may bias toward higher rates of gain. To avoid this po-

tential artefact, we used a model that would produce much

lower rates of gain compared with loss. Using DiscML (Kim

and Hao 2014) in R, we estimated single rates of gain (0.16)

and loss (1.64) for all characters, with the root set to miRNA

absence.Using these estimates,wecalculated maximum like-

lihood ancestral states in APE (Paradis et al. 2004) which we

used to estimate rates of evolution in Claddis (Lloyd 2016). All

analyses were performed in R (R Core Team 2016) and the

code and data used are available from Dryad.

Phylogenetics

Toevaluate the suitability ofmiRNAsasphylogenetic characters,

wefirst compiledadatamatrixusing thecompletedata setof all

miRNAfamilies, codingtheirpresenceandabsence(supplemen-

tary file 1, Supplementary Material online). We then estimated

the level of homoplasy in this data set using the Consistency

Index, following Sanderson and Donoghue (1989, 1996), with

comparisons made to their data set of 101 morphological and

molecular matrices. The Consistency Index was calculated in

MacClade with all characters considered to be unordered.

We conducted phylogenetic analyses of the curated and

uncurated data sets (supplementary files 1 and 2,

Supplementary Material online) using a stochastic Dollo binary

substitution model (Nicholls and Gray 2008) implemented in

RevBayes (Hohna 2016), with four discrete gamma loss rate

categories across sites, and the homogeneous origination rate

k integrated out of the likelihood equation (see Alekseyenko

et al. 2008). We applied an ascertainment bias correction to

account for unobserved miRNA families lost in all species

(Felsenstein 1992). We conducted a second analysis with all

singleton families removed, applying a correction to account

for the absence of both singletons as well as families lost in all

species (Alekseyenko et al. 2008; Nicholls and Gray 2008).

The RevBayes script used for this analysis is provided in sup-

plementary file 3, Supplementary Material online.

Convergence was assessed using the tracecomp and bpcomp

programs in the PhyloBayes package (Lartillot et al. 2013),

ensuring a maxdiff statistic< 0.05, a minimum effsize> 100

and maximum rel_diff< 0.1 across all parameters. Finally, we

conducted phylogenetic analyses of concatenated pri-miRNA

sequences. This alignment (supplementary file 4,

Supplementary Material online) was run under a GTRþG

model in PhyloBayes.

Results

Birth and Death of microRNA Families

The curated data set reveals a significant difference in the

number of miRNA families present in the most completely

annotated deuterostome (Homo sapiens) and protostome

(Drosophila melanogaster), with 300 in H. sapiens, and 132

in D. melanogaster (fig. 1). This difference in cumulative

miRNA family acquisition is widely recognized (Hertel 2006;

Heimberg et al. 2008; Wheeler et al. 2009; Fromm et al.

2015); the large complement of human miRNAs inferred to

be a consequence of episodic bursts in miRNA acquisition at

the origin of bilaterians, vertebrates, placentals, and primates

(Heimberg et al. 2008; Wheeler et al. 2009; Tanzer et al.

2010). Likewise, the absolute number of miRNA family losses

varies between species (23 in H. sapiens; 10 in D. mela-

nogaster). We find a low proportion of loss (�0.07) in these

lineages, with an overall ratio of 13.0 gains to every 1 loss in

H. sapiens and 13.2 gains to each loss in D. melanogaster.

Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss GBE

Genome Biol. Evol. 10(6):1457–1470 doi:10.1093/gbe/evy096 Advance Access publication May 18, 2018 1459

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy096#supplementary-data


To determine the extent to which these lineages are rep-

resentative of the broader pattern of miRNA gain and loss

across metazoans, we mapped all character state changes

onto the known phylogeny, with gains and losses calculated

for each taxon, running from the root to tree tips. This reveals

an average gain to loss ratio per taxon of 11.4 gains for every

loss, equating to �0.08 loss proportion (table 1), with a me-

dian ratio of 10.5:1 and a loss proportion of �0.087.

Of the 1,143 miRNA families in the curated data set, 1,052

(92%) exhibit no losses, 52 are lost once, 20 are lost twice, 10

are lost three times, 7 are lost four times, miR-2001 is lost five

times, and miR-315 is lost six times (fig. 2). Thus, although

only 91 individual families exhibit losses, we observe a total of

161 losses, and these are distributed unevenly across the tree.

Of the 68 branches with character changes, 24 show only

gains of miRNA families, a further 20 show� 75% gains,

while only eight branches are characterized by more losses

than gains (fig. 3A).

When character state changes are mapped through time

(fig. 3B), average gains outweigh losses, although the confi-

dence intervals overlap until the mid-Permian. Confidence

intervals are constrained by relatively long branch lengths

with an average length of 196 Myr, suggesting that the broad

CIs reflect variable, rather than constant rates of character

change. Thus, if we consider the 44 gains on the lineage lead-

ing to vertebrates (617–510 Ma), the CI spans a 6-fold range

from 0.025 to0.15 gains per million years. There is a significant

increase in the evolution of miRNA families corresponding to

the evolution of Bilateria during the Cryogenian. The rate

decreases until an Ediacaran rise followed by a steady

Cambrian–Permian decrease in the rate of gains. The subse-

quent rate of miRNA family gains has increased steadily, sub-

stantially from the Cretaceous. In contrast, losses exhibit an

approximately constant (and low) rate from the Cryogenian.

Numerous internal branches exhibit significantly high rates of

miRNA family acquisition (e.g., stem-lineages of bilaterians,

protostomes, vertebrates, placentals, and primates; supple-

mentary file 5, Supplementary Material online). Some external

branches show significantly high acquisition rates (most pla-

centals, birds, drosophilids, and nematodes). Significantly low

rates of miRNA family acquisition are observed on internal

branches leading to mammals and birds. These results obtain

regardless of whether the Dollo Parsimony or likelihood-based

models of ancestral state reconstruction are used as a basis for
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FIG. 1.—Cumulative numbers of gains and losses of miRNA families in the lineages leading to the two most completely sampled taxa (Homo and

Drosophila) over the past 720 Myr based on our curated data set.
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analysis of the curated data set (supplementary file 6,

Supplementary Material online). The likelihood-based analysis

differs principally in inferring a greater flux of miRNA family

gain and loss deep within metazoan evolution, though this is

likely an analytic artefact of the uninformative outgroup that

lacks miRNAs altogether (supplementary file 6, Supplementary

Material online).

Analysis of the uncurated miRBase data set yielded results

that imply anorder ofmagnitudehigher rateof gain and lossof

miRNAs within the Cenozoic, toward the tips of the phyloge-

netic tree, in comparison to the rates inferred from the curated

data set (supplementary file7, SupplementaryMaterial online).

Utility of microRNA Families in Phylogenetics

The utility of a marker for phylogenetic inference is related to

the level of homoplasy that it exhibits. In order to estimate the

level of homoplasy in our miRNA family data set, we used the

Consistency Index (CI) to characterize the number of times a

miRNA family is gained and lost on the tree. CI is based on

the minimum number of changes required by a character

or data set, divided by the actual number of changes

(Kluge and Farris 1969); values range from 0 to 1, where a

CI of 1 reflects the minimum number of changes and, there-

fore, zero homoplasy. The expected CI can be inferred based

on an empirically derived formula (Sanderson and Donoghue

1996); for a categorical data set of 35 taxa it is� 0.50, and for

molecular sequence data� 0.64. In contrast, the CI observed

for our miRNA data sets is 0.88, indicating that miRNA families

scored simply by presence/absence, exhibit surprisingly low

levels of homoplasy and, as such, should be reliable phyloge-

netic markers.

Having established the empirical basis for the phylogenetic

utility of miRNAs, we conducted a phylogenetic analysis of the

same data set using a stochastic Dollo model of binary char-

acter evolution, implemented in RevBayes. This recovered

trees that were largely compatible, even if not always highly

supported, with current knowledge of metazoan evolution

(fig. 4), suggesting that previous unorthodox results obtained

using BEAST were at least partly driven by model mis-

specification (previous analyses lacked ascertainment bias cor-

rection and did not use a Gamma distribution). Parallel anal-

yses of the uncurated miRBase data set (supplementary file 2,

Supplementary Material online) yielded trees that are much

more incongruent with current perceptions of metazoan

Table 1

Sum Total of miRNA Family Gains and Losses Along the Path from the Root

of the Phylogenetic Tree to Each Tip Based on our Curated Data Set

Node Lineage Gains Losses Gain:Loss

Ratio

Percentage

Loss

37 Amphimedon 8 0 N/A N/A

38 Nematostella 28 0 N/A N/A

40 Capitella 68 0 N/A N/A

39 Melibe 61 2 30.50 3.28

47 Apis 77 4 19.25 5.19

46 Ixodes 57 3 19.00 5.26

54 Branchiostoma 56 3 18.67 5.36

52 Saccoglossus 54 3 18.00 5.56

56 Petromyzon 99 6 16.50 6.06

60 Chrysemys 130 8 16.25 6.15

63 Columba 154 10 15.40 6.49

48 Tribolium 88 6 14.67 6.82

61 Alligator 128 9 14.22 7.03

70 Homo 301 22 13.68 7.31

51 D. melanogaster 133 10 13.30 7.52

53 Strongylocentrotus 46 4 11.50 8.70

62 Gallus 146 13 11.23 8.90

71 Macaca 235 21 11.19 8.94

59 Anolis 124 12 10.33 9.68

67 Bos 219 22 9.95 10.05

50 D. pseudoobscura 99 10 9.90 10.10

44 Celegans 105 11 9.55 10.48

58 Salmon 113 12 9.42 10.62

57 Danio 115 13 8.85 11.30

49 Bombyx 88 10 8.80 11.36

66 Sus 198 24 8.25 12.12

69 Mus 259 33 7.85 12.74

65 Monodelphis 143 19 7.53 13.29

41 Schmidtea 58 9 6.44 15.52

64 Ornithorhynchus 129 21 6.14 16.28

68 Rattus 221 36 6.14 16.29

43 Pristionchus 140 25 5.60 17.86

42 Ascaris 64 14 4.57 21.88

45 Tetranychus 56 13 4.31 23.21

55 Ciona 40 14 2.86 35.00

NOTE.—The gain to loss ratio, and percentage loss, for each individual lineage
are also shown. Thus, the three gains and two losses observed on the lineage leading
to chordates are recorded in all descendent taxa.
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from our phylogenetic analysis of the curated data set.
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phylogeny (fig. 5), regardless of whether singletons were in-

cluded (protostomes resolved as paraphyletic with respect to

deuterostomes; lizards, and archosaurs resolved as

paraphyletic with respect to mammals) or excluded (little res-

olution among invertebrates; lizard resolved as sister to mam-

mals rather than archosaurs).
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The results of the tetrapod superalignment are congruent

with established phylogenies (fig. 6). Some parts of the tree,

such as the higher level relationships within Laurasiatheria, are

unresolvedorhave low levelsof support,however, thesenodes

have traditionally proven hard to resolve (Tarver et al. 2016).

This expanded data set provides additional support for turtles

as archosaurs (Field et al. 2014), and resolves an

Atlantogenata–Boreoeutheria root for placental mammals

(Tarver et al. 2016).

Discussion

Diversification of miRNA Families

The results of our analyses based on the curated data set

show highly variable rates in the diversification of miRNA fam-

ilies, with some internal branches showing significantly high

acquisition rates (e.g., at the origins of Bilateria, Protostomia,

Vertebrata, and Placentalia), while others show significantly

low acquisition rates (e.g., at the origins of Aves, and

Mammalia). Terminal branches also show highly variable

rates; this likely reflects the depth of miRNA annotation rather

than genuine biological signal, as many of these taxa are

model organisms. The results of analyses of the uncurated

miRBase data set imply several factors higher numbers and

frequency of losses compared with the curated data set; the

general pattern of miRNA family gain and loss is the same

through the Phanerozoic, except for the Cenozoic where the

uncurated data set implies an order of magnitude higher

number and rate of gains and losses (supplementary file 7,

Supplementary Material online). These differences reflect the

impact of curation and the importance of using curated data

from high coverage genomes in attempting to obtain an ac-

curate perspective on miRNA family evolution; uncurated
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miRNA data sets yields spurious perceptions of miRNA

evolution.

The diversification of microRNAs is the result of birth and

death of individual miRNA families. Thus, apparent shifts in

the miRNA diversification rate can be caused by 1) variable

birth rates, 2) variable death rates, or 3) a combination of

both. Previous work has suggested that shifts in miRNA diver-

sification rates are caused by increased birth rates (Heimberg

et al. 2008, 2010; Iwama et al. 2013; Platt et al. 2014), or

constant birth rate and variable death rate (Lu et al. 2008;

Nozawa et al. 2010; Quah et al. 2015). Our data support

either variable birth rates, or a constant but low birth rate

with slight variation in a low death rate, rather than high birth

anddeath rates.Highbirthanddeath rateshavebeen inferred

primarily based on analyses of Drosophila species. Lu et al.

(2008) has been criticized for misannotation of degraded

transcriptional sequences as miRNAs (Berezikov 2010).

Nozawa et al. (2010) also inferred high death rates of

miRNA families in Drosophila but their study did not control

for the validity of miRNAs in miRBase or variable genome

quality, and compounded these problems by assaying

miRNA evolution at the gene level, increasing false-

negatives. Lyu et al. (2014) inferred 87–94% of miRNA family

loss within 4–30 and 60 Myr of Drosophila evolution, respec-

tively; unfortunately, their analysis assumed a constant birth

rate a priori, for which there is no evidence.
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Investigating butterflies and moths, Quah et al. (2015) ob-

served that the terminal lineages in their phylogeny exhibited

a much higher abundance of lineage-specific miRNAs than

subtending lineages, supporting the view that miRNA family

diversification rates are high. However, they failed to account

for the antiquity of their terminal lineages (e.g., the species

with the largest number of lineage-specific miRNAs, Pararge

aegeria, is also estimated to have diverged from its sister taxa

�100 Ma; Pohl et al. 2009; Wahlberg et al. 2009). It is this

viewpoint, that lineage specific miRNAs are therefore young,

which has been incorrectly interpreted as providing support

for the high birth rate of miRNAs (Taylor et al. 2014). This

artefact of perception underpins the theory of a transient

phase of early miRNA evolution which now lacks an evi-

dential basis. miRNAome annotation of populations and

closely related species are required to assess the veracity

of a perceived “pull of the Recent” in miRNA family ac-

quisition rates.

FIG. 6.—Phylogenetic tree derived from phylogenetic analysis of the concatenated analysis of pri-miRNA sequences. Node values are clade posterior

probabilities.
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Loss of miRNAs

Overall, we observed low levels of miRNA family loss and the

losses that we did observe are nonuniformly distributed across

the phylogeny. The losses we observed provide support for

the role of miRNA families in the evolution of morphological

complexity (Sempere et al. 2006; Heimberg et al. 2008;

Peterson et al. 2009; Wheeler et al. 2009; Berezikov 2011),

since loss-prevalent lineages, such as Ciona (89%), Ascaris

(22%), Pristionchus (14%), and Schmidtea (43%), correlate

with phenotypic simplification (Erwin et al. 2011; Philippe

et al. 2011; Fromm et al. 2013; Bai 2014), contra Dunn

et al. (2014). Large proportions of losses are also observed

in the spider mite Tetranychus (61%), which has undergone

large scale genomic reduction, losing>27% of its protein

coding genes (Grbic et al. 2011). Apparent exceptions to

this are the relatively large proportions of miRNA families

lost in Ornithorhynchus (30%) and Rattus (40%), and clus-

tered losses within the murid lineage where 36% of the

changes are losses. This branch shows the highest rate of

loss (0.2 miRNA families per million years) in our data set.

The miRNA losses identified in murids appear to be genuine,

as evidenced by the comprehensively annotated genomes,

deep coverage of its small RNA expression, which surpasses

that of all other taxa, and also by synteny maps which showed

that these losses of miRNA-families occurred on eight distinct

chromosomes (Fromm et al. 2015). The nature of these losses

is unexpected as nine of the eleven miRNAs that were lost,

originated on the lineage leading to placentals. miRNA losses

are otherwise mosaic in nature (Tarver et al. 2013), but the

pattern here implies the loss of one or more closely associated

genetic pathways, mirroring losses observed in the homeobox

gene repertoire of murids (Zhong and Holland 2011).

Comparisons to Studies Showing High Rates of Loss

While our results demonstrate that, overall, miRNA families

exhibit proportionally few losses, and the majority of these are

attributable to a small number of miRNAs families and evo-

lutionary lineages, this pattern is inconsistent with the

view that loss of miRNA families is close to zero

(Sempere et al. 2006, 2007; Peterson et al. 2009;

Sperling and Peterson 2009; Sperling et al. 2009;

Wheeler et al. 2009; Tarver et al. 2013). Nevertheless,

our results are clearly incongruent with those published

in other studies suggesting high rates of microRNA family

loss (Guerra-Assunç~ao and Enright 2012; Meunier et al.

2013; Thomson et al. 2014; Hertel and Stadler 2015). All

of these studies rely on different data sets, whether ge-

nomic (Guerra-Assunç~ao and Enright 2012; Hertel and

Stadler 2015), or small RNA (Meunier et al. 2013). Thus,

the causes of the discrepancies between these studies and

our own may include: 1) transcriptional noise, 2) false-

negatives, and 3) false-positives.

Transcriptional Noise

The critical first step in understanding microRNA evolution is

to establish a clear framework for what is and what is not a

microRNA, that is to separate miRNAs (signal) from tRNAs,

siRNAs, rRNAs, and degraded mRNAs (noise) within the tran-

scriptome. The inclusion of degraded mRNAs, as well as other

RNA molecules in studies of miRNA evolution, is a significant

source of bias in the inference of miRNA losses, and has im-

pacted previous results in several ways. First, individual studies

such as Meunier et al. (2013), who identified many putative

novel miRNAs and who showed variable conservation rates,

are suspect given that of the 333 purported miRNAs candi-

dates only 49 (14%) achieve all of the criteria necessary for

miRNA annotation (Fromm et al. 2015). Second, such errors

are compounded by the inclusion of such sequences into

miRBase (Kozomara and Griffiths-Jones 2014) (the official on-

line depository of microRNAs). Indeed, the majority of sequen-

ces deposited in miRBase may not be genuine microRNAs

(Hansen et al. 2011; Wang and Liu 2011; Meng et al.

2012; Brown et al. 2013; Taylor et al. 2014; Fromm et al.

2015), but are instead fragments of a great many different

types of RNA. Thus, in bioinformatic analyses (Guerra-

Assunç~ao and Enright 2012; Hertel and Stadler 2015) in

which the miRNA catalogue of miRBase (Kozomara and

Griffiths-Jones 2014) is used as a reference BLAST database,

many of the sequences under investigation are not miRNAs,

compromising the results from such studies.

False-Negatives

When inferring loss of miRNAs, a critical issue is the depth of

genome sequencing, a problem noted but not addressed by

Guerra-Assunçæo and Enright (2012) and Hertel and Stadler

(2015). Issues associated with the use of low-coverage

genomes in comparative genomics have been discussed pre-

viously by Milinkovitch et al. (2010) who showed that they can

generate artificially high numbers of gene losses. Tarver et al.

(2013) showed large-scale differences in the number of miss-

ing miRNAs between three levels of sequencing coverage,

with complete, high, and low coverage genomes missing

on an average 2.6%, 3%, and 19.5% miRNA families, re-

spectively. Low-coverage genomes were missing, on average,

6 times more miRNA families than high-coverage genomes,

yet low-coverage genomes were included in both Guerra-

Assunçæo and Enright (2012) and Hertel and Stadler (2015).

Sequencing depth not only affects bioinformatic studies

but also those that rely only on small RNA sequencing data,

such as Meunier et al. (2013). This study generated small

RNA-seq data from five organs of single male representatives

of six species, used to investigate the pattern of mammalian

miRNA evolution, concluding that there were high levels of

miRNA family turnover (Meunier et al. 2013). However,

miRNAs are known to have restricted tissue-specific expres-

sion profiles (Lagos-Quintana et al. 2002; Aboobaker et al.

Tarver et al. GBE

1466 Genome Biol. Evol. 10(6):1457–1470 doi:10.1093/gbe/evy096 Advance Access publication May 18, 2018



2005), and so miRNA families present in the genome may not

be sequenced in a sample of only five organs. Meunier et al.

(2013) inferred the loss of miR-1, miR-22, and miR-122

(among others) in humans, despite numerous other studies

highlighting the key roles these miRNA families play in muscle

development (Zhao et al. 2005), cancer (Song et al. 2013),

and in cholesterol and lipid metabolism within the liver (Girard

et al. 2008). It is clear that false-negatives caused either by the

use of low coverage genomes, unrepresentative tissue sam-

pling, or reliance on small RNA sequencing without reference

to a genome, have all greatly increased the number of appar-

ent losses of miRNA families.

False-Positives

Genuine miRNAs incorrectly homologized in distantly re-

lated clades result in an overestimation of miRNA loss from

all intermediate lineages. For example, the identification of

mir-7880 in the 13-lined ground squirrel (Hertel and Stadler

2015), a miRNA family previously identified only in nema-

tode intestinal parasites, implies 51 instances of loss across

all intermediate lineages in the tree topology of Hertel and

Stadler (2015). However, this miRNA is not only absent

from the ground squirrel genome, its annotation as a

miRNA is spurious (the hairpin sequence lacks a two nucle-

otide offset between the annotated 50 and 30 products;

Fromm et al. 2015). Thus, all of these hypothesized losses

are artefacts of a single false-positive.

microRNAs and Phylogenetics

Data from our analysis of consistency indices suggest that

miRNA families have the potential to be informative phyloge-

netic markers, supporting their use in previous studies

(Heimberg et al. 2008, 2010; Sperling et al. 2009; Campbell

et al. 2011; Philippe et al. 2011; Rota-Stabelli et al. 2011;

Helm et al. 2012; Fromm et al. 2013; Tarver et al. 2013;

Field et al. 2014). However, the phylogenetic utility of

miRNA families has been called into question by Thomson

et al. (2014) who found that the results from a selection of

previous analyses lack statistical robustness. Following Tarver

et al. (2013), Thomson et al. (2014) used a Bayesian stochastic

Dollo model (Alekseyenko et al. 2008) which better accom-

modates homoplasy than does parsimony. This led to the

reanalysis of some of the older studies using new genomic

and additional small RNA-seq data (Field et al. 2014), correct-

ing previous errors. Inevitably, early studies (e.g., Sperling

et al. 2009; Heimberg et al. 2010; Philippe et al. 2011;

Helm et al. 2012; Lyson et al. 2012) fall short of current stand-

ards, based as they were on low coverage miRNAome se-

quencing, annotated in the absence of a reference genome,

and performed before the Bayesian stochastic Dollo model

was available. As such, they warrant further investigation fol-

lowing contemporary standards of miRNAome sequencing

depth (100 Ms reads) from a breadth of tissues, organs,

and developmental stages, as well as manual annotation of

the miRNAome supported by a (� 6�) reference genome and

a high-quality bioinformatics pipeline (Taylor et al. 2017).

Our principal analyses were based on a data set that

minimizes false-positives and negatives (supplementary

file 1, Supplementary Material online). Our results dem-

onstrate that miRNA families have a consistency index far

higher than would be expected for either molecular or

morphological data sets of similar taxonomic scale and,

thus, should make robust phylogenetic markers. This is

reflected in the results of our phylogenetic analyses that,

even when based on miRNA family presence/absence,

produces a tree that is in good agreement with phyloge-

nies based on more traditional markers (fig. 4). In compar-

ison to the result of a similar analysis by Tarver et al.

(2013), many of the nodes exhibit lower support values,

principally because of differences in taxon sampling which

excluded lineages exhibiting few losses and introduced

lineages that exhibit many losses. Nevertheless, the results

are considerably more precisely and accurately resolved

than those based on an uncurated miRBase data set

(fig. 5; supplementary file 2, Supplementary Material

online).

We found that support for some clades changed after in-

cluding singleton miRNA families (fig. 4A), with stronger sup-

port for the conventional grouping of birds with reptiles, as

well as a monophyletic Ecdysozoa. However, this analysis also

gave strong support for a highly unconventional paraphyletic

arrangement within Deuterostomia. These incongruities sug-

gest that small miRNA families contain some phylogenetic

signal but may still be subject to potentially strong partial

sampling bias in our data set. Regardless, this topology was

still largely congruent with many established metazoan rela-

tionships, despite the fact that nonsingletons accounted for

only 322 miRNA families. Continued development of binary

substitution models accommodating additional types of rate

heterogeneity, as well as partial sampling schemes, may mit-

igate the effect of loss, leading to greater accuracy in such

data sets (Taylor et al. 2014; Thomson et al. 2014).

Finally, the concatenation of pri-miRNA sequences into

superalignments (Tarver et al. 2013) represents a promising

approach for future analyses. This approach has already re-

solved relationships among taxa as diverse as mammals, pri-

mates, reptiles, drosophilids, and nematodes (Field et al. 2014;

Kenny et al. 2015; Tarver et al. 2016), as well as in our analysis

of amniotes. In our pre-miR analysis, the results are robust al-

though there are some nodes which conflict with other recent

studies, the critical taxa (e.g., horse; Tarver et al. 2016) have

invariably been identified as phylogenetically problematic

based on conflict between previously published studies. At

the same time, these data resolve some controversial relation-

ships, such as the earliest diverging lineage of placental

mammals.
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Conclusions

Our data suggest that the loss of miRNA families is far from

pervasive, contrary to several recent studies, all of which are

undermined by a variety of biases, most substantially ascer-

tainment bias. Where losses occur, they are nonrandomly dis-

tributed, with only 1.7% of miRNA families accounting

for>45% of losses, while the nematodes Ascaris and

Pristionchus account for 20% of losses yet represent only

6% of branches, bearing out the suggestion that miRNA fam-

ily gains and losses are associated with increasing and de-

creasing phenotypic complexity (e.g., as inferred from cell

diversity; Valentine et al. 1994), respectively. We demonstrate

that the presence/absence of miRNA families has a consis-

tency index higher than expected for either morphological

or molecular data of comparable taxon sampling. Our phylo-

genetic analyses were, in the main, congruent with estab-

lished metazoan relationships. However, our results suggest

that small miRNA families (singletons in particular) may still be

subject to partial sampling bias in our data set. Our data sup-

port a pattern of miRNA diversification caused either by var-

iable rates of miRNA birth, or constant but low rates of

miRNA birth and a variable (but low) death rate, rather

than high birth and death rates. However, our under-

standing of miRNA evolution is greatly constrained by

the paucity of taxa with well-annotated miRNAomes, as

most of the taxa included here are distantly related to

each other with an average lineage-specific branch length

of 312.6 Myr. The paucity of taxa with well-annotated

miRNAomes runs the risk of telescoping past flux in spe-

ciation and extinction onto individual internal branches of

a phylogenetic tree. In this way, the summed effects of

random processes can produce nonrandom bursts in

(miRNA) innovation. More studies are needed to investi-

gate miRNA family evolution among congeneric species

with comparisons between the evolution of individual

miRNA genes and the evolution of miRNA families.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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