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Neural structure of a sensory decoder for motor
control
Seth W. Egger 1✉ & Stephen G. Lisberger 1

The transformation of sensory input to motor output is often conceived as a decoder

operating on neural representations. We seek a mechanistic understanding of sensory

decoding by mimicking neural circuitry in the decoder’s design. The results of a simple

experiment shape our approach. Changing the size of a target for smooth pursuit eye

movements changes the relationship between the variance and mean of the evoked behavior

in a way that contradicts the regime of “signal-dependent noise” and defies traditional

decoding approaches. A theoretical analysis leads us to propose a circuit for pursuit that

includes multiple parallel pathways and multiple sources of variation. Behavioral and neural

responses with biomimetic statistics emerge from a biologically-motivated circuit model with

noise in the pathway that is dedicated to flexibly adjusting the strength of visual-motor

transmission. Our results demonstrate the power of re-imagining decoding as processing

through the parallel pathways of neural systems.
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The complex circuits of the brain transform sensory inputs
into appropriate motor outputs. However, the brain is
imperfect, and motor outputs vary from trial to trial even

for identical sensory inputs. The variation has a distinct form,
leading to well known psychophysical “laws”. Fitts law describes a
proportional increase in movement variation with the speed or
size of the movement1. The Weber–Fechner law states that sen-
sory discrimination thresholds grow in proportion with stimulus
amplitude2. Both laws are classically attributed to “signal-
dependent noise”, where noise in the brain increases with the
amplitude of sensory or motor signals.

Signal-dependent noise has a long history in models of
sensory-motor behaviors. To capture the psychophysical laws,
models of sensory-motor transformations often take a “black
box” approach, where the complete set of operations that trans-
form sensory representations into motor outputs are subsumed
into a decoding equation3–8. Signal-dependent noise is built into
behavioral output either through the properties of the sensory
representation9,10 or noise in the motor command11,12. Yet, the
responses of neurons in the varied and complex “decoder” cir-
cuits between sensory representations and motor coordination
vary considerably from trial to trial13. The likely presence of
decoder noise challenges the “black box” design of decoding
models, as the non-sensory, non-motor neurons that perform the
computations required of decoding are proposed to contribute to
behavioral variation14,15. Further, the ability of models that
delegate noise exclusively to sensory or motor sources to explain
behavioral variance becomes more limited as behavioral tasks
become more complicated16–18. Our goal is to understand the
neural computations that generate sensory-motor behavior, and
doing so requires opening the “black box” to consider the com-
putations performed by specific neural pathways as they become
engaged during increasingly complex behaviors. The key question
that arises from this approach is not whether the responses of
neurons in the decoder vary (they do), but rather if the variation
that arises in each neural pathway contributes uniquely to
behavioral variation as a consequence of the pathway’s specific
function in sensory-motor transformations.

We approach a mechanistic understanding of sensory decoding
by studying the initiation of visually-guided smooth pursuit eye
movements, a system where we know much about the underlying
neurophysiology. The extrastriate middle temporal visual area
(MT) provides sensory signals that drive the behavior19–21 and
several strong empirical observations link the responses of MT
neurons to behavioral variation. First, the limits on sensory
precision by MT neurons are similar to pursuit eye movements22.
Second, the properties of MT neurons are appropriate to trans-
form the fluctuations of individual neurons into signal-dependent
noise23. Finally, trial-by-trial “neuron-behavior” correlations
between the responses of individual MT neurons and the eye
velocity in the initiation of pursuit argue that correlated sensory
noise contributes to motor variation, and places limits on how
much variation is added downstream24. The robust link between
responses in MT and motor behavior has led to a canonical
model, where downstream circuits simply decode MT responses
and the fluctuations in MT neurons are the primary driver of
variation in pursuit.

We start by presenting the simple experimental observation
that changing target size breaks the traditional psychophysical
laws of signal-dependent noise. The observation was unexpected
and cannot be explained by what we know about sensory or
motor systems, motivating a consideration of signal and noise in
the circuit pathways that make up the sensory decoder. Pursuit
eye movements have a neural substrate with at least two pathways
radiating from the sensory representation before converging onto
the final motor circuits25. Anatomically, the output from area MT

is transmitted both through fairly direct ponto-cerebellar path-
ways and through a cortico-cortical circuit that involves the
smooth eye movement region of the frontal eye fields (FEFsem).
FEFsem exerts profound control over pursuit behavior by mod-
ulating the strength or “gain” of visual-motor transmission26. The
“gain control” pathway seems to afford flexible, context-based
visual-motor transformations as opposed to reflex-like
input–output behavior25,27–29. The combination of multiple
anatomical, physiological, and behavioral observations leads
directly to the proposition that an accurate decoding model will
include a pathway for gain control that makes separate and
independent contributions to both signal and variation.

We design a sensory-motor decoder to capture our behavioral
results. We extrapolate from the extensive data on MT neuron
response properties to generate a synthetic population response to
each target size and speed. Based on the neuroanatomy of path-
ways downstream from MT, the tight link between neural activity
in MT and FEFsem30, and extensive neurophysiological and
behavioral data24,31, our decoder includes parallel pathways for
(1) computing the gain of visual-motor transmission and (2)
estimating target speed. Under our assumptions about the MT
population response and decoding architecture, noise in the gain
pathway is required to account for the breakage of traditional
psychophysical laws by changes in target size and capture the
competing constraints provided by physiological observations.

Results
The relationship between behavioral variance and mean
changes with the size of the pursuit target. We start by pre-
senting a simple experiment with results that contradict previous
conceptions of the relationship between the variance and mean of
motor behavior. We analyzed the eye movements of monkeys
that were rewarded for smoothly pursuing patches of moving dots
of different sizes. In each trial, a patch of dots centered on the
fovea moved within a stationary aperture for 150 ms before
moving along with the aperture across the screen. Target speeds
were selected randomly from trial-to-trial from 4, 8, 12, 16, and
20 deg/s with equal probability (Fig. 1a, top). Target sizes were
selected randomly with equal probability from diameters of 2, 6,
and 20 deg (Fig. 1a, bottom). Here, we focus our analysis on the
initiation of pursuit, the period before feedback from the motion
of the eye can contribute to signal and variation in behavior32.
Thus, we analyzed the open-loop performance of the visual-
motor system to known image motions that were exactly equal to
target motion. In this interval, target speed and size strongly
influenced mean eye speeds over the first 210 ms after the onset of
target motion (Fig. 1b), as expected based on previous experi-
mental results32–34. It would not have made sense to analyze
variance later in the pursuit response because the impact of visual
feedback at later times would cause trial-by-trial variation in the
image speed driving later responses.

Our results show that the relationship between the variance
and mean of pursuit responses depends strongly and unexpect-
edly on target size: changing target size disrupts signal-dependent
noise. Figure 1c–f plot variance as a function of mean eye speed
calculated from trial-by-trial, time-averaged data, using the
interval from 110 to 190 ms after the onset of target motion
(Fig. 1b, vertical lines). To ensure that latency variation did not
contribute to our measures of speed variance, we performed all
analyses after using an objective procedure to align all responses
by removing trial-by-trial variation in pursuit latency (see
“Methods” section). For a given target size, variance increased
with the mean eye speed for each individual target size. At a given
mean eye speed generated in response to different target sizes,
however, variance differed, breaking the relationship expected
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based on a standard interpretation of the psychophysical laws.
Variance increases more rapidly as a function of mean pursuit
initiation speed for the 2 deg patch (Fig. 1c–f; green triangles)
compared to the larger patches (red and black circles). The effect
of target size on speed variance withstood multiple control
analyses, including use of only trials with fixation closer to the
center of the patch than required by our fixation window and
verification that monkeys pursued the moving target on all trials
(Supplementary Fig. 1).

We use a signal-dependent noise model of the form σ2=w2μ2 to
quantify the effect of target size on the relationship between mean, μ,
and variance, σ2. The Weber fraction, w, captures the proportionality
between mean and variance and allows us to use changes in the

Weber fraction to refer to the effect of target size on signal-
dependent noise. We fitted the models to the data for target motion
at 4, 12, and 20 deg/s and tested its ability to predict the data for
target motion at 8 and 16 deg/s. A model that allowed Weber
fractions to vary (curves in Fig. 1c–f; see Supplementary Table 1 for
parameter values) better predicted the variance associated with the 8
and 16 deg/s patches across patch sizes by allowing the Weber
fraction to decrease with increasing target size (see “Methods”
section; fixed w vs. flexible w: Monkey X, left pursuit: RMSE = 0.89
vs. 0.76 (deg/s)2, p = 0.05, t(499) = 1.68; Monkey X, right pursuit:
RMSE = 0.63 vs. 0.27 (deg/s)2, p = 0.01, t(499) = 2.20; Monkey R,
left pursuit: RMSE = 0.35 vs. 0.21 (deg/s)2, p << 0.01, t(499) = 3.89;
Monkey R, right pursuit: RMSE = 0.46 vs. 0.22 (deg/s)2, p << 0.01,

4 deg/s

20 deg/s

a

12 deg/s

Target speeds
0 100 200

E
ye

 s
pe

ed
 (

de
g/

s)

0

15

30

Monkey X

2 deg

b

Time from motion onset (ms)

0 100 200

6 deg

0 100 200

20 deg

20 deg

6 deg

2 deg

20 deg

6 deg

2 deg

Pursuit targets

Mean eye speed (deg/s)

-15 -10 -5 0

V
ar

ia
nc

e 
(d

eg
/s

)²

0

1

2

3

e

Monkey X

Mean eye speed (deg/s)

0 5 10 15

V
ar

ia
nc

e 
(d

eg
/s

)²

0

1

2

3

c

Mean eye speed (deg/s)

-15 -10 -5 0

V
ar

ia
nc

e 
(d

eg
/s

)²

0

1

2

3

f

Monkey R

Mean eye speed (deg/s)

0 5 10 15

V
ar

ia
nc

e 
(d

eg
/s

)²

0

1

2

3

d

Fig. 1 Target size affects the relationship between the variance and mean of pursuit initiation. a Properties of pursuit stimuli. Top: Arrows indicate target
speeds. Dot patches moved at a speed selected from a discrete uniform distribution with 5 values evenly spaced between 4 to 20 deg/s (colors). Bottom:
Example dot patches corresponding to targets of three different sizes: 2 deg, 6 deg, and 20 deg. b Mean pursuit initiation behavior for monkey X, sorted by
target speed (colors; see arrows in panel a) and patch size indicated at the top of each graph. Each trace shows trial-averaged eye speed as a function of
time, starting at the time of target motion onset. Vertical dashed lines indicate the window of time averaging used for subsequent analyses. c Variance of
eye speed of monkey X plotted against the mean eye speed for rightward pursuit. Symbols plot the behavior for different target speeds and sizes. Curves
indicate the fit of a signal-dependent noise model where the Weber fraction is allowed to change with target size. d As in panel c, but for rightward pursuit
in monkey R. e As in panel c, but for leftward pursuit in monkey X. f As in panel c, but for leftward pursuit in monkey R. c–f, Green, red, and black symbols
and curves show results for target sizes of 2, 6, and 20 deg, respectively. Source data are provided as a Source Data file.
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t(499) = 4.61). The significance of the results were confirmed by a
bootstrap analysis using all target speeds where we fitted data from
half of the trials and tested the fit with the held-out half of the trials.
Also, we observed the same decrease in Weber fractions with target
size when we calculated w in 20 ms bins (Supplementary Fig. 2).

Intuitively, one might expect that the change in Weber fraction
results from integrating the additional motion information
associated with larger target sizes. However, this intuition is
valid only when the biological sensors for motion improve their
signal-to-noise as a function of target size, or if the downstream
decoder can pool information from several sensors with
independent sources of noise. While direct measurements of
motion responses to the targets used in our task do not exist,
several related results argue against either scenario in the case of
smooth pursuit. Motion sensitive neurons in area MT, the region
of the primate cortex that contributes causally to pursuit19–21,
exhibit decreased signal-to-noise as the size of a motion object
extends beyond the classical receptive field35,36, rather than the
increased signal-to-noise required to explain our data. Further,
MT neurons are subject to strong noise correlations37,38, which
potentially limit the integration of motion information by
downstream decoders of MT activity39,40.

Neither are our results predicted by standard sensory or motor
psychophysical models. Variance in the perception of speed is
typically modeled as the result of signal-dependent noise in the
sensory system under the assumption that sensory noise increases
with speed, s, according to σ2= w2s2, where w represents the
Weber fraction for perception. However, Weber fractions for
speed perception are constant across the range of target sizes used
here41,42, suggesting that the larger number of neurons activated
by larger stimuli cannot be used to improve sensory signal-to-
noise. Motor noise models represent variance as σ2=w2μ2,
with w now representing a motor Weber fraction. As a result,
behavioral variance is tied to the outgoing motor command11,
and standard motor noise models do not predict any difference in
the Weber fraction for stimuli that lead to identical mean
behavioral output.

Target size affects the gain of visual-motor transmission. The
fact that target size affects the average eye speed during the
initiation of pursuit (Fig. 1b) provides a clue to explanations for
the effect of target size on pursuit Weber fractions. Figure 2b, c
plot the eye speed of each trial, averaged across the interval from

110 to 190 ms following the onset of visual motion, as a function
of target speed separately for each target size. The slope of the
relationship between eye speed and target speed increased from
0.31 to 0.52 to 0.62 for the 2, 6, and 20 deg targets in monkey R,
and from 0.46 to 0.77 to 0.80 in monkey X (95% confidence
intervals were all less than ±0.03). For both monkeys, the slopes
associated with the 6 deg target were significantly larger than
those for the 2 deg target (monkey R: z= 34.81, p << 0.01;
monkey X: z= 24.11, p << 0.01) and those associated with the 20
deg target were significantly larger than those for the 6 deg target
(monkey R: z= 22.45, p << 0.01; monkey X: z= 3.88, p < 0.01).

Considerable prior research on pursuit eye movements allows
us to think of eye speed (E) at the initiation of pursuit in simple
terms as the product of two terms, E ¼ Gŝ, where ŝ is an estimate
of target speed based on sensory data before pursuit initiation,
and G is the result of a process that controls the strength of
visual-motor transmission43. Thus, the effect of target size on the
slope of the relationships in Fig. 2b, c could represent an effect of
target size on G or ŝ. Available physiological evidence argues
against the possibility that the change in slope arises from a
change in the speed estimate, ŝ. When driven by stimuli that
extend beyond their classical receptive fields, individual MT
neurons exhibit little to no change in speed tuning44, suggesting
the changes in surround stimulation resulting from changes in
target size do not alter preferred speeds. Therefore, the
computation of ŝ should not shift as a function of target size
when based on traditional approaches to estimating target speed,
such as vector averaging or related algorithms that find the
preferred speed at the center of the population response24,45–47.
Future measurements of MT responses to the stimuli used here
are required to validate this assumption.

We propose instead that the effect of target size on the slopes of
the relationships in Fig. 2b, c reflects an effect on the gain of
visual-motor transmission, G. Therefore, we should focus on the
neural circuits that control G to explain the companion effects of
target size on the Weber fraction of pursuit. Our previous
research on the initiation of pursuit has pointed to an overall
neural circuit that has two parallel pathways (Fig. 2a). A direct
pathway estimates target speed (̂s) from the population response
in MT. An indirect pathway combines inputs from MT and other
inputs to determine how strongly the motor system will respond
to a given estimate of target speed by setting the value of
G. Considerable evidence supports the existence of this second,
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Fig. 2 Gain of pursuit initiation increases with target size. a Conceptual circuit model where neurons in the middle temporal area (MT) drive pursuit
initiation through (at least) two parallel pathways: a direct pathway to the cerebellum and an indirect pathway for gain control through the smooth eye
movement region of the frontal eye fields, FEFsem. Arrows indicate the direction of signal flow. The red box indicates that we can think of the entire pursuit
circuit downstream of MT as the “sensory decoder”. b Eye speed during pursuit initiation as a function of target speed for monkey X, sorted by patch size.
Each symbol plots the time-averaged behavior for one trial of a given combination of target speed and size. For each condition, we plot a random sample of
15 trials. Lines plot the best fitting linear model to the 2 deg (green), 6 deg (red), and 20 deg (black) targets. c As in panel b, but for monkey R. Source data
are provided as a Source Data file.
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“gain-control” pathway27,29 and assigns this function to the
smooth eye movement region of the frontal eye fields or
FEFsem26,30. Accordingly, we assume changing the size of the
target increases the total activity in the MT population response,
which increases the gain of visual-motor transmission (G) and
cause the changes in slope in Fig. 2b, c.

Noise in the gain of visual-motor transmission captures the
observed changes in Weber fractions. If changing target size
alters pursuit initiation by controlling the strength of visual-
motor transmission (G), then we should look at the pathways that
control G as the potential basis for the companion changes in the
Weber fraction. Indeed, the challenges of explaining the changes
in the Weber fraction in terms of sensory or motor noise sources
support a source of noise in the sensory-motor decoder39.

To develop an intuition for how the pathway that controls
visual-motor gain might also influence Weber fractions, we
simplified the pursuit system into a computational model that is
analytically tractable (Fig. 3a). The model applies a gain, G, to the
sensory estimate, ŝ, to generate motor output according to
ðGþ ηGÞð̂sþ ηsÞ þ ηm. The model includes three possible sources
of behavioral variation:

1. Sensory noise, ηs, which we model as Gaussian with
variance that increases with sensory signal according to
w2
s ŝ

2 to accommodate the increase in perceptual variance
associated with increased stimulus magnitude (e.g., Weber’s
law2,41).

2. Motor noise, ηm, which increases with mean motor output,
μ, according to w2

mμ
211,48.

3. Gain noise, ηG, which is Gaussian with variance σ2.

If the sources of noise are statistically independent, then
the mean output, μ, is Gŝ and its variance is ðw2

s þ w2
mÞμ2 þ

μ2ðσ2 þ σ2w2
s Þ=G2 (see Supplementary Note 1). Therefore, this

simple model produces the standard relationship between the
mean and variance, w2μ2, where the standard Weber fraction is
replaced by the effective Weber fraction in the simple model:

weff ¼ ðw2
s þ w2

mÞ þ
σ2 þ σ2w2

s

G2 : ð1Þ

We can see from Eq. (1) that the effective Weber fraction, weff,
will depend on G if (and only if) the variance of the gain noise, σ2,
is non-zero.

Graphical analysis of Eq. (1) confirms that the mean gain
becomes an important factor in setting the value of w and
therefore the relationship between variance and mean speed in
the presence of gain noise (σ2 > 0). With gain noise, the variance
of motor behavior increases with the mean motor output (μ) at a
rate that depends on both the mean sensory-motor gain (G) and
the variance of gain (σ2; Fig. 3b, middle and right graphs). The
model predicts that the rate of increase in the variance of motor
output will shift in a way that mimics our behavioral data. In the
absence of gain noise (σ2= 0), variance grows with mean motor
output (½w2

s þ w2
m�μ2) but the model predicts that Weber fractions

will be constant across different levels of gain (Fig. 3b, left). While
the exact relationship between mean output and variance depends
on the linearity of the model (see Supplementary Note 2), the key
prediction of a decreasing Weber fraction with increasing mean
gain is robust to relaxing the linearity assumption (Supplemen-
tary Fig. 3).

The simple model in Fig. 3a fits the change in Weber fraction
we observed in pursuit if and only if we allow gain noise.
The effective Weber fraction for the model fitted with gain
noise agreed with our behavioral observations across monkeys,
directions, and target sizes (Fig. 3d, see Supplementary Table 1 for
parameter values), whereas the effective Weber fraction for a
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Fig. 3 The “gain-noise” model: effect of gain noise on the relationship between variance and mean eye speed in behavior. a Simplified model of
sensory-motor transformations, where sensory input is transformed by the application of a gain signal to determine total motor output. bMotor variance as
a function of mean behavioral output for the simple model (Eq. 1). From left to right, the three graphs show the predictions for gain noise with three
different values of variance, σ2. Variance is plotted relative to the maximum across gains for each value of noise variance. Green, red, and black curves
show predictions for three different mean gains at each value of noise variance. c The effective value of the Weber fraction, weff, inferred from a fit of the
simple model without gain noise is plotted against the value of the Weber fraction, w, fitted directly to the data for each target size separately (colors
correspond to target size, as in Fig. 1c). Plus signs and diamonds indicate right and left pursuit, respectively, for Monkey R. x'es and squares indicate right
and left pursuit for Monkey X. Green, red, and black correspond to results from 2, 6, and 20 deg targets, respectively. d As in panel c, but with gain noise
included in the model. Source data are provided as a Source Data file.
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model without gain noise did not (Fig. 3c). We further compared
the quality of fit of the model with versus without gain noise by
fitting models to data from target motions at 4, 12, and 20 deg/s
and testing on data from target motion at 8 and 16 deg/s. As
before, a model with gain noise predicted the data better than a
model that assumed no gain noise when fit to data (predicted
variance without vs. with gain noise; Monkey X, left pursuit:
RMSE = 0.89 vs. 0.56 (deg/s)2, p < 0.01, t(499) = 2.85; Monkey X,
right pursuit: RMSE = 0.63 vs. 0.44 (deg/s)2, p < 0.01, t(499) =
2.56; Monkey R, left pursuit: RMSE = 0.35 vs. 0.33 (deg/s)2,
p << 0.01, t(499) = 3.36; Monkey R, right pursuit: RMSE = 0.46
vs. 0.32 (deg/s)2, p << 0.01, t(499) = 4.81). Indeed, the relation-
ship between the gain inferred from the behavioral mean and
variance alone matched the gain inferred from the trial-by-trial
data as a function of stimulus speed (Supplementary Fig. 4). And,
again, the statistical significance was confirmed by a bootstrap
analysis using all target speeds where we fitted data from half of
the trials and tested the fit with the held-out half of the trials.

Biomimetic model for gain control in pursuit. The success of a
model in predicting a single experimental result is not a strong
test of the model, especially in an experimental system like
smooth pursuit eye movements where so much is known about
the statistics of neural and behavioral responses. Therefore, we
have elaborated the model by creating a biologically-realistic MT
population response and processing it through a sensory decoder
that includes the two known pathways that perform sensory
estimation and control of visual-motor gain.

We set the following goals for the elaborate, more “biomi-
metic” model:

1. The model’s signal-dependent noise should shift with target
size as in behavior.

2. The variance of the model’s output should match the
overall variance of behavior.

3. The output of the model should exhibit the correct
magnitude of trial-by-trial correlations with the activity of
model MT neurons24.

Our goal was to build a motion representation from model
neurons that mimic the statistics of the spike counts of neurons
recorded from area MT in response to the onset of target motion
and before pursuit is initiated. Each model neuron was selective to a
given direction and speed of motion, with mean tuning functions
based on the well characterized properties of individual MT
neurons and distributed in accord with published data23,38,49,50

(Fig. 4b). We distributed receptive field centers from 0.25 to 30 deg
eccentricity based on the density of MT neurons per degree of visual
angle51,52, we set each neuron’s receptive field size based on the
known relationship of size with eccentricity53, and we implemented
inhibition outside the classical receptive field according to data from
the literature35,36,44,54,55 (see “Methods” section; Fig. 4d). We
generated many single-trial population responses (Fig. 4e) for each
target speed and size by (1) measuring mean responses from the
model population’s tuning curves, (2) adding Poisson-like noise,
and (3) constraining the noise with neuron-neuron noise correla-
tions as measured in MT37–39 (Fig. 4c).

We constructed a sensory decoder that transmits the output of
each model MT neuron along two pathways (Fig. 4a), an
architecture that accounts for a considerable amount of published
behavioral and physiological data30,56. The upper pathway
performs vector summation of model MT neural responses,
following previous results relating motion reliability to the
amplitude of the MT population response. It uses that amplitude
to set the gain of sensory-motor transmission, G30. The lower
pathway performs vector averaging of the MT population

response to estimate log base 2 of target speed, ŝ24,45,47. We then
multiply the outputs of the two pathways (Gŝ) to complete
decoding and generate simulated pursuit behavior. Both of the
pathways are needed, for example, to account for the joint effects
of target speed and contrast on eye speed in the initiation of
pursuit30,57. Indeed, the non-linearity created by decoding the log
of speed is compensated by the non-linearity of the gain increase
as a function of speed, and allows the mean output of the model
as a function of target speed to match the data qualitatively.

Because larger motion patches increased the number of model
MT neurons activated by the stimulus (Fig. 4d), vector
summation performed by the motion reliability pathway
generated a gain that increased with patch size when averaged
across trials (Fig. 4f). Gain also increased with target speed due to
the log-normal shape of the speed tuning of MT neurons and the
fact the weighting in the model increases with preferred speed
(Fig. 4f). Multiplication of the output of the gain pathway times
the target speed provided by the vector averaging speed
estimation pathway resulted in mean eye speeds similar to those
observed in our monkeys (Fig. 4g). Specifically, the decoder’s
output generated mean eye speeds that increased steeply as a
function of target speed at a rate that depended on target size.

Noise in the gain-control pathway reproduces the statistics of
behavioral and neural data. When we add noise in the gain-
control pathway, our biomimetic model predicts all three of the
key statistics we set out to reproduce: an effect of target size on
Weber fractions, realistic magnitudes of variance in eye speed at
the initiation of pursuit, and realistic trial-by-trial correlations
between the activity of individual MT neurons and pursuit eye
speed. Without noise in the gain-control pathway, the model
failed to predict any of these statistics.

Comparison of Fig. 5b, c shows that noise in the gain-control
pathway allows the rate of increase in model variance to depend
on the size of the target: the variance in the simulated response to
the 2 deg patch (green triangles) increases more rapidly than for
the 6 deg patch (red circles), with a still slower rise for the 20 deg
patch (black circles). The presence of gain noise also increases the
magnitude of the variance in eye speed so that it matches more
closely the values in the data from our monkeys.

Comparison of Fig. 5d–f shows that noise in the gain pathway
allows the model to reproduce the MT-pursuit correlations
recorded by Hohl et al.24. To obtain the data in Fig. 5d, the
authors recorded up to 500 responses of individual MT neurons
to the same moving target during the initiation of pursuit. They
then computed trial-by-trial correlations between the spike count
of the MT neuron and the eye speed in the initiation of pursuit,
and plotted the result as a function of the relationship between
the target speed and the preferred speed of the neuron. They
found statistically significant, mostly positive correlations in
many neurons (Fig. 5d).

We compared the results of our model to the data by analyzing
model MT-pursuit correlations while limiting the neurons
studied to those with preferred or antipreferred directions near
that of the target direction, as had been done in the experimental
study (see “Methods” section). Without gain noise (Fig. 5e), the
model predicts MT-pursuit correlations that are mainly positive,
as in the data, but the magnitude of the correlations is
considerably larger than in the data (Fig. 5d). Gain noise is
effectively “noise added downstream” and therefore reduces the
magnitude of the model’s MT-pursuit correlations (Fig. 5f) to a
level closer to the measured values. We also note that the
2-pathway decoder used in our model (Fig. 5a) reproduces the
lack of dependence of MT-pursuit correlations on target speed
relative to preferred speed. This is in contrast to simple vector
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averaging, which predicts negative correlations for target speeds
higher than the preferred speed of a given neuron24. Overall, the
presence of gain noise has the expected effect of adding
downstream noise. It both increases the variance of model output
and partially decorrelates the responses of MT neurons from
model output15.

While our circuit leverages much of what is known about MT
response properties, many detailed aspects of the model remain
poorly constrained by results from neurophysiology. Therefore,
we parameterized surround suppression and threshold nonlinea-
rities in our model units and tested the impact of each on our
results. Across a wide range of parameterizations, no instantiation
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Fig. 4 A more biomimetic model of MT and the downstream pursuit circuit. a Overview of the biomimetic circuit model of pursuit. Activation of model
middle temporal (MT) neurons (triangles within square, left) depends on patch size (colored circles). Each neuron drives (1) the motion reliability pathway,
which computes a vector sum of MT activity (top) and (2) the speed estimation pathway, which computes a vector average (bottom). Application of the
output of the motion reliability pathway to the output of the estimation pathway generates simulated pursuit (right). b Direction tuning (top) and speed
tuning (bottom) of a random sample of model MT neurons. Purple highlights one neuron. c Noise correlations between model neurons as a function of the
difference in direction preference (Δ Direction preference; top), distance between receptive field positions (Δ Position; middle), and difference in speed
preference (Δ Speed preference; bottom). Each dot plots the measured noise correlation for a different pair of model neurons sampled from the population.
d Receptive field centers (gray points) of the population of MT neurons used to represent motion for pursuit. Green, red, and black circles correspond to
the locations of the 2 deg, 6 deg, and 20 deg targets. Purple and cyan circles plot the classical receptive field of two example neurons. e Response of each
model neuron for an example trial (spikes/s; color). The center of each point corresponds to the neuron’s preferred direction and speed. Large purple
symbol indicates the example neuron from panels b and d. f Mean gain of the population as a function of target speed and size. g Mean simulated eye
speed as a function of target speed and size (colors as in panel f). Source data are provided as a Source Data file.
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of the circuit recapitulated the effect of target size on Weber
fractions and predicted realistic amplitudes of behavioral variance
without noise in the gain-control pathway (Supplementary Fig. 5).
Similarly, the change in Weber fraction and magnitude of MT-
pursuit correlations could not be captured by simply increasing
the size of the simulated population without adding gain noise
(Supplementary Fig. 6). Still, the response properties measured
from stimuli optimized to the receptive fields of individual MT
neurons may not generalize to the conditions of our behavioral
experiment. Our results might be explained by signal and noise in
MT alone if as yet unmeasured MT response properties (i)
support motion integration during pursuit beyond that which
occurs perceptually41,42 and (ii) revealed higher magnitude noise
correlations in MT than what is expected based on previous
measurements. We think it is unlikely that both of these
conditions will be met, but revisions to our model would be
necessary if future experiments reveal errors in our assumptions.

Discussion
Behavior results from the complete set of operations that trans-
form sensory representations into motor output, which we refer
to here as sensory decoding. There are many examples where
application of decoding equations to sensory representations have
elucidated how the brain generates motor or perceptual
behavior3–8. However, to accommodate the complexity of the
natural behavioral repertoire, a decoder requires the capacity to
flexibly map sensory inputs to motor outputs. By incorporating
the known structure of the neural system for smooth pursuit into

a decoder and leveraging structural noise, we have created a
flexible sensor-motor circuit that is biologically more realistic and
that reproduces the complete statistics of sensory-motor behavior
more powerfully than traditional decoding equations. Our ana-
lysis demonstrates how the conventional decoding approach to
understanding the neural basis for perceptual or motor behavior
can be re-imagined and aligned better with biological reality.

We have combined theory, measurements of the statistics of
behavior and neural responses, and explicit modeling of the
functional pathways of the sensory-motor decoder. Our approach
was driven by extensive knowledge of the relationship between
the functional components of visually-guided smooth pursuit eye
movements, and firing properties of neurons in the relevant cir-
cuits. Recordings made in monkeys during pursuit eye move-
ments have led to a strong hypothesis for the structure of this
sensory-motor system30,43 and focused us on a sensory decoder
with two pathways and two functional components. Both path-
ways rely on inputs from the sensory representation of visual
motion in area MT. The first pathway estimates target speed,
regardless of target size, by performing vector averaging of the
MT population response. Vector average decoders successfully
capture much of pursuit behavior4,24,38,47, and have the critical
emergent property that they predict larger magnitude pursuit
initiation for faster target speeds. The second pathway computes
the gain of the sensory-motor transmission based on the fact that
the evoked eye movement is modulated by the context of a visual
motion input27–29. The responses of neurons in FEFsem sub-
stantiate a 2-pathway architecture that includes gain control58–60
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σ2. b Relationship between variance and mean eye speed of model output without gain noise. Green triangles, red circles, and black circles correspond to
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and FEFsem has a causal relationship with the gain of visual-motor
transmission26,61,62.

Building a two pathway structure into the model sensory
decoder allowed us to capture our observation that changing
target size also changed the Weber fraction for the initiation of
pursuit. The two-pathway structure allows for a plausible source
of independent noise in gain control that captures the changes in
Weber fraction we observe. The resulting model’s output repro-
duced the measured amplitude of behavioral variation and also
matched the trial-by-trial correlations between model MT
responses and pursuit behavior to those observed in physiology.
Thus, a decoder with multiple functional pathways and a finite
contribution of noise provides a parsimonious account of a wide-
ranging set of results.

Previous publications have concluded that the variation in
sensory-motor behavior could be explained in terms of noise
in the sensory system alone for both pursuit and other
motor behaviors63,64. However, increasing evidence from both
behavior16–18 and physiology14,65,66 suggests that neural systems
between sensation and action, including gain systems31,67, are
subject to noise that propagates into motor output. Under stan-
dard experimental conditions, the expected impact of gain noise
on behavioral variation is identical to that of sensory noise and so
the analytical results of Osborne et al.63 would emerge whether
behavioral variation arises from sensory noise only, or from a
combination of sensory and gain noise. Thus, our conclusion that
the computation of sensory-motor gain is subject to an inde-
pendent source of noise that arises from gain control does not
contradict previous data, only previous conclusions.

Several lines of evidence argue against the logical idea that
integration of the additional information associated with
increasing target size should decrease the effective Weber fraction
in behavior68, and therefore explain our behavioral results. First,
due to surround suppression35, the average MT neuron exhibits
decreased precision as target size increases beyond the classical
receptive field36, not the increased precision that would be
required to explain our data. Second, increasing target size does
not lead to increased precision during perceptual decision making
that is based on the same sensory representation that drives
pursuit initiation41,42. Finally, the correlated variability of MT
neurons appears to limit the increase in information with
increasing population size38,39. Indeed, our model’s inclusion of
correlated variability in MT neurons with different receptive field
locations provides a parsimonious account of results from
experiments with both motor and perceptual endpoints.

This final point, however, deserves additional consideration
given theoretical results demonstrating that noise correlations do
not necessarily limit information recovered by the downstream
decoder. Whether noise correlations harm or help in decoding
depends on the tuning functions of the population, the structure
of the noise correlations, and the form of the decoder69,70. It has
been shown that, for a model of MT with realistic tuning prop-
erties, an optimal decoder can “average out” correlated noise to
recover speed with precision limited only by neuron number,
assuming the noise correlations decay with the difference in
preferred speed and no other structure exists40,71. However, the
noise correlations in MT also depend on other stimulus features
(e.g., direction preferences and the distance between receptive
fields38), and each additional source of correlated variability
decreases the likelihood that an optimal decoder can average out
noise40. Further, it is an open question if the decoder of MT
activity is optimal. A given linear decoder will only optimally
estimate speed from MT neurons over a limited range of target
speeds, contrasts, and forms40. Achieving an optimal estimate
across the range of natural motion inputs requires stimulus-
dependent adaptation of the linear decoder. Implementing a

flexible gain to modulate stimulus estimates, as modeled in our
biomimetic circuit, may reflect a decoding solution sufficient for
pursuit initiation, obviating the need for an optimal decoder.
Future experimental and theoretical work is required to char-
acterize the structure of noise correlations and the construction of
the pursuit decoder to provide a full account of variability in
pursuit initiation.

MT neurons drive the initiation of pursuit19–21. Therefore, it
was important in creating our model MT population response to
assess critically the signal and noise properties of MT neurons in
response to our stimuli. One important consideration is how
stimuli outside the classical receptive fields of MT neurons
influence the representation of motion by the population. We
modeled our neurons with a uniform surround that divisively
inhibits the response of the classical receptive field35,36,47. Under
this assumption, made because surround stimulation changes the
amplitude but not other properties of MT neuron speed tuning44,
our decoding model is robust to the degree of suppression by
surround stimulation. However, extra-classical surrounds of MT
neurons are varied and complex72, and a still more accurate
model of how our stimuli impact the responses of MT neurons
and downstream systems would be the next step to completely
explain the complex spatial integration properties of pursuit73.
Another critical assumption is the noise properties of MT itself.
We have modeled Poisson-like noise that is consistent with
classical measurements from MT74,75. However, recent results
have demonstrated that the variability of MT neurons can be
partitioned into Poisson-like noise and gain noise that is corre-
lated across neurons76. Therefore, while we have modeled noise
in a feed-forward pathway through FEFsem, it is possible that gain
signals with noise are fed back to MT during our task.

It is also important to consider how the many other pursuit
related areas77 outside of MT, FEFsem, and the cerebellum might
contribute to signal and noise of pursuit in our task. Larger sti-
muli increasingly engage neurons in the medial superior temporal
cortex (MST)78, an area implicated in the reflexive pursuit in
response to large-field motion stimuli known as ocular
following79. While stimuli used to drive both MST neurons and
ocular following are typically larger than those used here, we
cannot rule out the possibility that the changes in gain we
observed can be attributed to an increased ocular following based
on the MST pathway. Finally, while motion responses in MST
and other areas are typically thought to be driven by MT, it is
possible that our stimuli activate alternative motion pathways
with signal and noise properties that can explain our results. We
stress that, although made quite specific here, our results apply
generally to decoders of any architecture that implements the
computation f(rmotion)wTrmotion, where w is a vector of decoding
weights, rmotion is a vector of motion responses, and f(rmotion)
returns a gain with noise that is independent of the noise in
rmotion. Through this framework it will be possible to test the
contributions of MT, FEFsem, MST, or other areas to the effects
we observe.

Our choice of decoding architecture is strongly informed by
previous work that highlights the importance of stimulus relia-
bility to motion processing. Previous results have demonstrated
that observers tend to have a bias in speed perception toward
slower speeds that depends on stimulus contrast80–82. A similar
result applies to smooth pursuit, where the motor output shows
systematic biases that also depend stimulus contrast28,29.
Assuming stimulus reliability increases with contrast, these results
can be explained by a strategy that performs a reliability-weighted
combination of the estimate of the sensory stimulus with prior
expectations28,29,82. A similar argument can be applied with
regards to target size, where reliability, and therefore stimulus
weight, increases with target size. Indeed, previous work from our
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lab has identified FEFsem as a critical locus for computing a
reliability weighted sensory-motor gain based on motion
contrast30, and the modeling here applies that architecture to
pursuit in response to targets of different size.

Decoding architectures that employ gain control apply broadly
to sensory-motor behaviors. The reliability-based adjustments to
estimation discussed in relation to speed have been observed in
behavior across modalities and tasks68,83–89. These results sup-
port a general computational strategy of sensory estimation by
Bayesian integration90. Implementation of a reliability-weighted
computation can be achieved by the appropriate application of
sensory gains, suggesting a general role of gain control during
estimation behavior. Gain control also plays a role in optimizing
motor behavior91,92. Here, the flexible application of gain on
sensory estimates modulates control efforts that are relevant to
completing the task12,93. Given the importance of gain control to
sensory-motor behaviors, it is perhaps not surprising that dedi-
cated pathways exist in neural circuits to learn and implement
context-specific sensory-motor gains30. Our findings suggest that
the flexibility afforded by independent gain control pathways
comes at a cost of increased variability not typically accounted for
by optimization models. Future models that include gain noise
may better capture sensory-motor policies implemented by the
brain67.

More generally, our results have broad applicability to models
that attempt to explain signal and noise in complex behaviors.
The brain’s computational power is achieved through numerous
pathways that process information in parallel before ultimately
driving motor output. Our results stress the importance of
understanding how noise in each of the processing pathways
contributes to behavioral variation. If we can characterize and
model the pathways in sensory decoders for movement and
identify noise specific to each neural pathway, then we can con-
strain the possible circuit implementations and generate specific,
experimentally-testable predictions for circuit function.

Methods
Two male rhesus macaques, aged 12 and 14 years and weighting between 12.0 and
16.8 kg, performed the pursuit task. All experimental protocols were approved by
the Institutional Animal Care and Use Committee at Duke University (protocol
number A085-18-04) and performed in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. Eye movements were
tracked with a scleral search coil while their heads were fixed by a restraint post94.
Implantation of experimental apparati was performed using sterile procedures
under general anesthesia with isoflurane. After implantation, animals were trained
to fixate and pursue visual targets for juice reward based on the analog signal from
the implanted search coil. Both animals had extensive experience performing
pursuit tasks before this experiment.

Stimuli and task. Visual targets were displayed on a 23″ CRT monitor with an 80
Hz refresh rate at a distance of 30 cm. At this distance the screen subtended 77 deg
of visual angle horizontally and 55 deg vertically. Stimulus presentation and timing
were controlled by custom software (Maestro).

Each trial began with the monkey fixating a white, 0.5 deg, circular fixation
point for a random interval selected from a uniform distribution between 300 to
400 ms. After the monkey maintained fixation within a 3.5 deg radius around the
target for the entire interval, the fixation point disappeared and was replaced by a
target for pursuit. Results were unchanged if we analyzed data from trials with gaze
directions within 2 (monkey R) or 2.5 (monkey X) deg of the fixation target.
Targets were dot patches presented in an invisible circular aperture with a diameter
selected each trial uniformly from one of three values: 2, 6, or 20 deg. All targets
were 100% contrast, white dots on a black screen, with dot density set to 2.55 dots/
deg2 and the placement of the dots randomized across trials. Upon presentation,
dot patches moved either to the right or left within their aperture for 150 ms before
continuing to move globally across the screen for 750 ms. This procedure reduced
the occurrence of catch up saccades during pursuit initiation22. Patches moved at a
speed selected for each trial from a discrete, uniform distribution with 5 speeds
linearly spaced from 4 to 20 deg/s. Monkeys were rewarded for maintaining their
eyes within 3.8, 3.8, or 10 deg of the center of the visual target throughout the
presentation of the 2, 6, and 20 deg diameter targets, respectively; trials were
aborted if the monkey’s eye strayed outside of this window. After either successful

completion or an aborted trial, the fixation point for the next trial was presented
immediately.

Data analysis. Horizontal and vertical eye position and speed for each trial was
stored for offline analysis. Monkey R and monkey X completed 4027 and 1442 total
trials, respectively. For each trial, we first detected the presence of saccades within a
250 ms window starting from motion onset. Any trial with a saccade was discarded
from future analysis. Both monkeys reliably initiated pursuit in these trials, with
monkey X and monkey R reaching 20% of target speed by 190 ms after motion
onset in 100% and 99.5% of trials, respectively. Visual inspection of the remaining
0.5% of trials from monkey R revealed pursuit was initiated with a long latency or
small gain. To eliminate variation due to trial-by-trial differences in pursuit latency,
we used a previously published algorithm to infer the time of pursuit onset relative
to the mean behavior31. Briefly, we averaged horizontal eye speeds, conditioned on
the target speed and size, across trials in a window 0 to 250 ms after motion onset.
We then shifted and scaled traces from each trial until they best matched the
conditional mean trace by searching a grid of time-lags between −40 and 50 ms,
gains between 0.2 and 1.9, and speed offsets between −2 deg/s and 2 deg/s. After
realigning the horizontal velocity trace for each trial to mean pursuit onset, we
averaged the speed on each trial within a window 110 to 190 ms relative to target
motion onset and then computed statistics across all trials with identical targets
and target motions. Subsequent analyses were performed using the time-
averaged data.

To test if Weber fractions associated with the initiation of pursuit changed with
target size we determined the mean and variance of pursuit speeds, conditioned on
target speed, patch size, and motion direction. We then fit the behavioral data to
two models to each motion direction, both of the form σ2prei;j ¼ w2

i μ
2
i;j , where μi,j

was the mean of the observed behavior, i indexes target sizes, and j indexes target
speeds. Under the null hypothesis we held wi fixed across target size. Under the
hypothesis that Weber fractions changed, we allowed wi to vary across target sizes.
For each model, we minimized the following equation:

SSE ¼ ∑
M

i¼1
∑
N

j¼1
ðσ2obsi;j � σ2prei;j Þ

2
; ð2Þ

where M is the number of different patch sizes in a training set, N is the number of
different target speeds in a training set, σ2obsi;j is the observed variance for the ith

patch size and jth target speed, and σ2prei;j is the corresponding variance predicted

by either hypothesis. For each model we minimized the sum of squared errors
across all patch sizes and target speeds of 4, 12, and 20 deg/s. To test which model
better fit the data, we computed the root mean squared error (RMSE) in the
predicted variance of each model across patch sizes for target speeds of 8 and 16
deg/s. RMSE was defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN
∑
M

i¼1
∑
N

j¼1
ðσ2obsi;j � σ2prei;j Þ

2

s
: ð3Þ

To evaluate the significance of the improvement of fit we sampled 50 percent of the
trials for each condition and used these data to fit each model. We then found the
differnce in RMSE between the models on the remaining trials. We repeated this
1000 times to generate a bootstrap distribution of RMSE differences and then
calculated the t-statistic as the mean divided by the standard deviation of the
bootstrap distribution. The t-statistic was used to perform a paired t-test to
determine the probability that the distribution of RMSE differences was consistent
with the null hypothesis that the models had equal RMSEs. We chose to use 50% of
trials to maximize the reliability of variance estimates for both training and
test data.

We performed a similar analysis to test if the data were consistent with gain
noise. We fit two models to the data: the gain noise hypothesis, Hσ > 0, or the null
hypothesis without gain noise, Hσ= 0. For each model, we minimized Eq. (2),
except we set

σ2prei;j ¼ w2
sμ

2
i;j þ

σ2 þ σ2w2
s

G2
i

G2
i s

2
j : ð4Þ

Because the term Gi cancels, ws and σ are the only free parameters for the gain
noise hypothesis. For the null hypothesis, ws was a free parameter and σ was set to
0. We followed the same procedure as above, fitting the data across patch sizes and
target speeds of 4, 12, and 20 deg/s and testing the fit by calculating the RMSE
according to Eq. (3) across patch sizes for target speeds of 8 and 16 deg/s. As above,
significance was determined through a bootstrap analysis. To estimate effective
Weber fractions under the gain-noise model, we used the fit values of ws and σ for
each model, and Gi was found via linear regression of the eye speed vs. target speed
data (i.e., Fig. 2b, c). Fitting a model which included an additional parameter for
motor noise (i.e., wm in the main text) did not change the results (Supplementary
Table 1), which was expected because motor noise will not change the effective
Weber fraction for different target sizes and the effect of wm and ws on predicted
variance is virtually identical in the model when ws and σ are less than 1.

Biomimetic circuit model of pursuit. Our circuit model of pursuit was based on a
population of model MT neurons with realistic tuning properties. Based on estimates
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of the cortical size of the representation as a function of eccentricity in mm251,52, we
modeled the density of neurons as a function of eccentricity as uniformly distributed
near the fovea (eccentricities between 0.25 and 1 deg) and as 6*eccentricy−0.9 for
eccentricities greater than 1. We than randomly sampled receptive field centers from
this density, assuming 180 foveal neurons and the remaining neurons spanning
eccentricities of 1 deg to 30 deg. Results reported in the main text model 1280 MT
neurons within this range. This number of neurons was chosen to balance com-
putational demands with the effect of population size on overall variance, changes in
Weber fractions, and MT-pursuit correlation strength. Our results do not critically
depend on the exact number of MT neurons simulated (Supplementary Fig. 6).

We modeled the response to a target of direction θ of each MT neuron, indexed
by i, as

f iθðθÞ ¼ e
�ðθ�θ0

i
Þ2

2τ2
θi ;

ð5Þ

where θ0i is the preferred direction, and τθi determines the width of the response
function. τθi was sampled at random for each neuron from a uniform distribution
between 20 and 90. The preferred direction was sampled from a uniform
distribution between −180 and 180 deg.

Each model neuron’s response to a target of speed s was

f isðsÞ ¼ e
�ðlog2 s=s0i Þ

2

2τ2si ;
ð6Þ

where s0i is the preferred speed, and τsi determines the width of the speed response
in logarithmic space. τsi was sampled from a uniform distribution between 0.64
and 2.8. The preferred speed was sampled from a uniform distribution over log2(s)
with s between 0.5 and 256 deg/s.

Finally, we modulated the response based on the overlap the dot stimulus had
with the receptive field of each neuron. Based on previous measurements53, we
assumed the receptive field diameter grew with the eccentricity according to
ð0:69 � eccentricity þ 1Þ= ffiffiffi

π
p

. We then determined the response based on
stimulation of the classical receptive field as

ricrf ¼
ffiffiffiffiffiffiffiffiffi
ziðρÞ

p
� ω

1� ω

" #þ !n

; ð7Þ

where zi takes a value between 0 and 1 that represents the fraction of the classical
receptive field overlapped by the stimulus of size ρ. The symbol [x]+ represents
positive rectification of the value x, allowing ω and n to model threshold
nonlinearities in receptive field summation by MT neurons95,96. Values of n near 1
will produce responses that are close to receptive field summation. Values
approaching 0 allow the response of a neuron to approach its maximum whenever
the stimulus partially overlaps with the classical receptive field.

Previous experiments have further documented that stimuli outside the classical
receptive field of MT neurons tend to suppress the response to stimuli within the
receptive field35,72,97. We assumed an extra classical surround with a radius three
times the size of the classical receptive field. After calculating the overlap of the
stimulus with the extra classical surround, zisur, the response of the surround was

risur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
zisurðρÞ

p � ω

1� ω

" #þ !n

ð8Þ

with the threshold nonlinearity identical to that used for the classical receptive
field. We then modeled surround suppression as divisive normalization such that
the response due to the receptive field properties was

f iρðρÞ ¼
ricrf

ð1� βÞ þ βðϵþ ½ricrf þ risur�=2Þ
; ð9Þ

where β determines the degree of surround suppression, and ϵ is a constant which
normalizes the response to be between 0 and 1 when β= 1. For each of the figures
presented in the main manuscript, we set ω= 0, n= 1, and β= 1.

Putting together the response due to direction, speed, and receptive field
position, the deterministic response of each neuron was then modeled as

f iðθ; s; ρÞ ¼ Aif
i
θðθÞf isðsÞf iρðρÞ ð10Þ

where Ai specifies the overall amplitude of responses in spikes/s and was sampled at
random for each neuron from a uniform distribution between 20 and 200.

To emulate the noise properties of MT neurons, we added Poisson noise that
was correlated across neurons. Following38, we modeled the correlated noise as

ri;j ¼ rmax e
�

ΔPD2
i;j

ΔPD2maxλ
2
θ

2
4

3
5 e

�
ΔPS2

i;j

ΔPS2maxλ
2
s

" #
e
�

ΔC2
i;j

ΔC2maxλ
2
C

2
4

3
5; ð11Þ

where i and j index neurons, ri,j is the noise correlation between the pair, rmax set
the maximum value of the correlation, ΔPDi,j is the difference in preferred motion
direction, ΔPSi,j is the difference in preferred speed, ΔCi,j is the distance between
receptive field centers, ΔPDmax is the maximum difference in preferred directions,
ΔPSmax is the maximum difference in preferred speeds, ΔCmax is the maximum
distance between receptive fields. λθ, λs, and λC set the rate of decay in correlation

with increasing difference in preferred distance, speed, and receptive field position,
respectively. We set λθ, λs, and λC to 0.40, 0.30, and 0.30, respectively and rmax to
0.55; all values based on those measured from physiology38. Correlated Poisson
noise, ηiMT, was then introduced as in ref. 39 to generate variable responses for each
trial according to

MTi ¼ f iðθ; s; ρÞ þ ηiMT; ð12Þ
where MTi is the firing rate of the ith model MT neuron.

Simulated pursuit initiation responses were generated according to the
following steps. Activity from the population of model MT neurons was read off
according to two pathways. The first calculated an estimate of the pursuit speed, ŝ,
according to

ŝh ¼ ∑N
i¼1 cos θ

0
iMTilog2s

0
i

ν þ∑N
i¼1 MTi

; ð13Þ

ŝv ¼
∑N

i¼1 sin θ
0
iMTilog2s

0
i

ν þ∑N
i¼1 MTi

; ð14Þ

and

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2h þ ŝ2v

q
; ð15Þ

where ν was set to 0.05. The second pathway sets the gain according to

GMT ¼ 1
c
∑
N

i¼1
MTilog2s

0
i; ð16Þ

where c was set to make the mean pursuit, across speeds, for the 20 deg patch size
equal to 10 deg/s. The simulated pursuit speed, m, for each trial was then set to

m ¼ ðGMT þ ηG Þ̂s; ð17Þ
where ηG was selected each trial from a Gaussian distribution with mean 0 and
variance σ2. Subsequent analysis of the simulated pursuit responses followed that
for the actual pursuit responses.

To compare the covariation between our model neurons and the behavior of the
biomimetic circuit to those recorded fromMT neurons during pursuit, we selected for
those neurons with preferred directions between −45 and 45 deg or 135 and 225 deg
of the target direction. This matches the differences between target and preferred
direction to the distribution studied in the data24. We then calculated the trial-by-trial
correlations between model neuron output and the output of the entire circuit.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data associated with this study are available at https://doi.org/10.5281/
zenodo.588916798. Source data are provided with this paper.

Code availability
Code for data analysis and implementation of our biomimetic circuit is available at
https://doi.org/10.5281/zenodo.594160799.
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