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Abstract: There is no consensus in the literature regarding the potential toxicity of universal dental
adhesives (UDA). Being used in close proximity to the pulp, their biocompatibility should be an
important factor in dental research. The aim of the present study was to evaluate the biocompatibility
of UDA in an in vitro model. The study was performed using a monocyte/macrophage peripheral
blood SC cell line (ATCC CRL-9855) on four specific UDA, namely: All-Bond Universal (Bisco);
CLEARFIL Universal Bond Quick (Kuraray); G-Premio BOND (GC); Single Bond Universal (3M
ESPE). The cytotoxicity of the investigated UDA was measured using the XTT colorimetric assay.
The genotoxicity of the analyzed compounds was evaluated using an alkaline version of the comet
assay. Furthermore, flow cytometry (FC) apoptosis detection was performed using the FITC Annexin
V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was performed using propidium iodide
staining. The study observed significant differences in the toxicity of the UDA that were tested,
as G-Premio BOND showed significant in vitro toxicity in all of the tests performed, while All-
Bond Universal, CLEARFIL Universal Bond Quick and Single Bond Universal did not present
any significant toxic effects toward SC cell line. The in vitro toxicity of UDA should be taken into
consideration prior to in vivo and clinical studies. The flow cytometry could improve the accuracy of
dental materials research and should be incorporated into the standardization criteria.

Keywords: dental materials; universal dental adhesives; biocompatibility; flow cytometry; cytotoxic-
ity; genotoxicity

1. Introduction

Universal dental adhesives (UDA), despite not having a fixed definition in the lit-
erature, are commonly described as no-mix, single-bottle adhesives that can be utilized
in etch-and-rinse, self-etch, and selective enamel etching bonding strategies [1–4]. UDA
are versatile and can be used in both direct and indirect bonding to enamel and dentin
with different materials, such as composite resins, glass ceramics, zirconia and various
metals [5–7]. They allow the silanization step to be eliminated due to the incorporation of
silane in some of their compositions [8]. UDA may have a relatively low pH, which varies
from over 2.5 to 1.0, depending on the specific system [9].

UDA have similar a composition to older generation self-etch adhesives, with the
main difference being the incorporation of specific carboxylate and/or phosphate func-
tional monomers, such as 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP),
N-phenyl-p-phenylenediamine (Phenyl-P), 4-methacryloxyethyl trimellitic acid (4-MET)
and glycero-phosphate dimethacrylate (GPDM), as well as polyalkenoic acid copolymer
(PAC). These functional monomers enable the long term chemical bonding to dentin [10,11].
Additionally, UDA also contain other monomers promoting adhesion, such as dipentaery-
thritol pentaacrylate phosphoric acid ester (PENTA) and biphenyl dimethacrylate (BPDM),
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as well as hydrophobic decamethylene dimethacrylate (D3MA), hydrophilic hydroxyethul
methacrylate (HEMA), amphiphilic bisphenol A-glycidyl methacrylate (bis-GMA), ure-
thane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) [8]. The
composition of UDA is intended to improve adhesion to various surfaces, though it may
also impact the biocompatibility of the materials [12–15].

Reactions such as the inflammation of the pulp or adjacent gingiva can be observed
during the close proximity of dental materials, such as resin composites and adhesives [16].
We can also observe allergic reactions or localized lichenoid reactions to dental materials,
both intra- and extra-orally. In the 1970s and 1980s, the American Dental Association
(ADA), as well as the Fédération Dentaire Internationale (FDI), issued a set of tests for the
biocompatibility of dental materials [17]. In the following years, the safety regulations
defining dental materials as medical devices were implemented in the United States of
America in 1976 and in the European Union in 1993, and now exist worldwide [18].

A set of tests with various endpoints needed to be introduced to assess the biocompat-
ibility of the materials, including the in vitro cytotoxicity and genotoxicity/mutagenicity
tests, as well as sensitization tests based on in vivo animal models [19]. These proper-
ties may also be evaluated based on the amount of substances eluted from the dental
materials [20]. The in vitro studies regarding genotoxicity and cellular damage are typi-
cally performed using human leukocyte cell lines [21–24]. In the most recent literature,
apart from the cytotoxicity tests (such as Cell Proliferation Kit II (XTT), proposed by
ISO 10993 [19]), flow cytometry (FC) is introduced as a form of evaluating the biocompati-
bility of dental materials [25–28]. It allows apoptosis, necrosis and cell cycle progression to
be analysed [29,30].

Dental materials such as UDA should undergo a specific set of tests in order to
analyze their biologic impact. In our previous study, we provided a detailed analysis of
the toxicity of three other UDA: Prime&Bond Universal, Adhese Universal and OptiBond
Universal [31]. The main aim of the present study is to evaluate the biocompatibility of
UDA, in the highly standardized in vitro model, through the assessment of cytotoxicity
and genotoxicity.

2. Materials and Methods
2.1. Universal Dental Adhesives Used in the Study

The present study investigated four UDA, namely All-Bond Universal, CLEARFIL
Universal Bond Quick, G-Premio BOND and Single Bond Universal (Table 1).

Table 1. Universal dental adhesives used in the study.

Name Manufacturer Lot Number Composition

All-Bond Universal Bisco, Inc. Schaumburg,
IL 60193, USA 2000000048 bis-GMA (20–50%), Ethanol (30–50%), 10-MDP (5–25%), HEMA (5–25%) [14]

CLEARFIL
Universal Bond

Quick

Kuraray Europe GmbH,
65795 Hattersheim am

Main, Germany
CL0201

bis-GMA (10–25%), ethanol (10–25%), HEMA (2.5–10%), Other ingredients:
10-MDP, Hydrophilic amide monomers, Colloidal silica, Silane coupling agent,

Sodium fluoride, dL-Camphorquinone, Water [27]

G-Premio BOND GC EUROPE, 3001
Leuven, Belgium 1910251 ethyl alcohol (35–50%), 2,2’-[(4-methylphenyl)imino]bisethanol (5–10%) Other

ingredients: 4-MET, 10-MDP, MDTP [8]

Single Bond
Universal

3M ESPE Dental Products,
3M Center, St. Paul, MN

55144-1000, USA
00305A

bis-GMA (15–25%), HEMA (15–25%), D3MA (5–15%), silane treated silica
(5–15%), ethanol (10–15%), water (10–15%), 2-propenoic acid, 2-methyl-,
reaction products with 1,10-decanediol and phosphorous oxide (P2O5)

(1–10%), copolymer of acrylic and itaconic acid (1–5%),
dimethylaminobenzoat(−4) (<2%), (dimethylamino)ethyl methacrylate (<2%),

camphorquinone (<2%), methyl ethyl ketone (<2%) [32]



Polymers 2021, 13, 2653 3 of 11

2.2. Cell Line and Eluate Preparation

All in vitro analyses were performed with a commercially available monocyte/macrophage
peripheral blood cell line—SC (ATCC CRL-9855) (ATCC; Manassas, VA, USA). Cells were
maintained under standard conditions (37 ◦C; 5% pCO2; 95% humidity) according to the
manufacturer’s guidelines. Cells were cultured in Iscove’s Modified Dulbecco’s Medium
(IMDM) with 4-mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate (ATCC;
Manassas, VA, USA) and supplemented with 0.05-mM 2-mercaptoethanol (Sigma-Aldrich
Corp., St. Louis, MO, USA), 0.1-mM hypoxanthine and 0.016-mM thymidine (90%) (ATCC;
Manassas, VA, USA), fetal bovine serum (10%) (ATCC; Manassas, VA, USA) and 1%
penicillin/streptomycin solution (P/S) (ScienCell Research Laboratories, San Diego ad, CA,
USA). Cells were split every 2–3 days, when the cell culture reached 90–95% confluency. A
total of 50 µL of each investigated UDA was placed in Eppendorf tubes and polymerized
according to the manufacturer’s instructions (LED lamp intensity over 1000 mw/cm2, The
CURE-TC-01, Spring Health Products, PA, USA). Afterwards, 1 mL of cell culture medium
was added and the Eppendorfs were incubated for 24 h at 37 ◦C. The eluates obtained after
centrifugation for 5 min at the speed of 2000 rpm were used for further experiments.

2.3. Cytotoxicity Analysis

To evaluate the cytotoxicity of the UDA, 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-
2H-Tetrazolium-5-Carboxanilide (XTT) colorimetric assays were used (Thermo Scientific,
Waltham, MA, USA). This test is based on the cells’ metabolism and their ability to reduce
the tetrazolium salt (XTT) to an orange water-soluble formazan. Test samples were prepared
in 96-well plates by adding 50 µL (8 × 103 cells/well) of cell suspension and 50 µL of
the tested compounds’ eluate into the complete medium. The positive control cells were
suspended in 96% isopropyl alcohol, while the negative control cells were cultured in a
complete medium. After 24 h incubation, 25 µL of XTT/PMS mixture was added to each
well. Subsequently, after 4 h incubation, absorbance was measured at a wavelength of
450 nm using a spectrophotometer (Synergy HT, BioTek, Hong Kong, China). All of the
experiments were performed in triplicate, with similar results.

2.4. Genotoxicity Assessment

The genotoxicity of the tested UDA was evaluated by an alkaline version of the comet
assay that is used to analyze DNA damage in specific cells. Assays were prepared in 12-well
plates by adding 500 µL (5 × 104 cells/well) of complete medium and 500 µL of prepared
eluates. Cells suspended in highly toxic 10% DMSO (Sigma-Aldrich Corp., St. Louis, MO,
USA) constituted a positive control, whereas cells suspended in 1 mL of complete culture
medium constituted a negative control. The incubation lasted for 24 h. Cells suspended in
0.37% LMP agarose (Sigma-Aldrich Corp., St. Louis, MO, USA) were placed on microscope
slides that were previously coated with NMP agarose (Sigma-Aldrich Corp., St. Louis,
MO, USA). Preparations were incubated in lysis buffer at pH 10 (2.5-M NaCl, 10-mM Tris,
100-mM EDTA), containing TritonX-100 (Sigma-Aldrich Corp., St. Louis, MO, USA), at a
final concentration of 1% at 4 ◦C for 60 min. After 1 h incubation, the preparations were
then incubated in development buffer (300-mM NaOH, 1-mM EDTA) for 20 min at 4 ◦C,
followed by electrophoresis (32 mA, 17 V, 20 min) at 4 ◦C in electrophoretic buffer (30-mM
NaOH, 1-mM EDTA). Subsequently, the preparations were stained with a DAPI fluorescent
dye and analysed with a fluorescent microscope. The genotoxicity of the tested compounds
was indicated based on the percentage of DNA in the comet tail.

2.5. Apoptosis Detection

Apoptotic cell death induced by the eluates of the tested compounds was assessed
using an FITC Annexin V Apoptosis Detection Kit I (ApoAlert Annexin V, Clontech, CA,
USA). Assays were prepared in 12-well plates by adding 500 µL (1 × 106 cells/well) of
complete medium and 500 µL of prepared eluates, and incubated for 24 h. Cells treated with
staurosporine (Sigma-Aldrich Corp., St. Louis, MO, USA) at a concentration of 1 µM for
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16 h constituted a positive control, whereas cells suspended in the complete culture medium
and incubated for 24 h constituted a negative control. Subsequently, cells were washed
twice with cold PBS (Sigma-Aldrich Corp., St. Louis, MO, USA) and then double stained
with annexin V as a marker of early apoptosis, and propidium iodide (PI) as a marker of
cell membrane disintegration, necrosis and late apoptosis. The percentage of apoptotic
cells was acquired by FC using the CytoFLEX (Beckman Coulter, Brea, CA, USA). The
obtained data were analyzed using the Kaluza analysis 1.5 A software (Beckman Coulter).

2.6. Cell Cycle Analysis

The analysis of the cell cycle was performed by FC using PI staining. Assays were
prepared in 12-well plates by adding 500 µL (1 × 106 cells/well) of complete medium and
500 µL of prepared eluates, and incubated for 24 h. Cells treated with 1 µM of nocodazole
(Sigma-Aldrich Corp., St. Louis, MO, USA) for 16 h constituted a positive control, whereas
cells cultured in a complete medium for 24 h constituted a negative control. Cells were
washed twice with cold PBS (Sigma-Aldrich Corp., St. Louis, MO, USA) and then fixed
with ice-cold 70% ethanol at −20 ◦C for 20 min. Subsequently, cells were treated with
RNase A DNase&Protease-free (10 mg/mL) (Canvax Biotech, Spain) and incubated at
37 ◦C for 1 h before staining with PI solution (10 µg/mL) (Sigma-Aldrich Corp., St. Louis,
MO, USA). After a 30-min incubation at 4 ◦C, the percentage of cells in each cell cycle phase
was assessed using Kaluza analysis 1.5A software (Beckman Coulter). On the DNA content
histograms, the number of cells was plotted on the y-axis, whereas the DNA content, as
measured by PI fluorescence, was depicted on the x-axis.

2.7. Statistical Analysis

Statistical analysis was performed using the Sigma Plot (Systat Software, Inc., San
Jose, CA, USA). The normality test was performed using a Shapiro–Wilk test. All statistical
analyses, except the comet assay test, were normally distributed, therefore the statistical
analysis between the two groups was performed using Student’s t-test. In the comet
assay analysis, no normal distribution was obtained; therefore, the statistical analysis
of the two groups was performed using the Mann–Whitney rank sum test. Each of the
analyses in individual experiments were based on the results of three independent tests.
The differences were statistically significant on the graphs as follows: * p < 0.05; ** p < 0.01;
*** p < 0.001 versus negative controls.

3. Results
3.1. Analysis of the Cytotoxicity of the Universal Dental Adhesives

The obtained XTT assay outcomes showed significant differences in the cytotoxic
properties of the investigated compound eluates. The obtained results showed that only
the G-PREMIO Bond significantly decreased cell viability compared to the controls used
(Figure 1).

3.2. Analysis of the Genotoxicity of the Universal Dental Adhesives

A significant increase in DNA damage was observed after the 24 h incubation in the
cells treated with G-PREMIO Bond. The other systems used did not induce significant
DNA damage in the investigated SC cell line (Figure 2).

3.3. Apoptosis Detection by FITC Annexin V/PI Double Staining of the Universal
Dental Adhesives

After treatment with staurosporine, a significant number of SC cells underwent apop-
tosis in comparison to the control cells only incubated with the complete cell culture
medium. After a 24 h incubation, G-Premio Bond significantly induced apoptosis (approxi-
mately 39% of cells were at the early and late stages of apoptosis). The other UDA did not
significantly induce apoptosis in the SC cell line tested. Additionally, none of the tested
compounds evoked a significant increase in the level of necrotic SC cells (Figure 3).
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3.4. Analysis of the Cell Cycle Progression by PI Staining of the Universal Dental Adhesives

The cell cycle progression of the SC cells treated with the investigated compounds was
similar to the SC cells cultured in the complete medium, except that the obtained results
demonstrated an arrest in the G2/M phase of the SC cell cycle treated with nocodazole used
as a positive control. The G-Premio Bond triggered a significant increase in the percentage
of SC cells in the sub-G0/G1 phase and a significant decrease in the percentage of cells in
the G1 phase of the cell cycle as compared to the negative control. Moreover, we noticed a
decrease in the percentage of SC cells treated with All-Bond Universal in the S phase of the
cell cycle (Figure 4).
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4. Discussion

In the present study, all of the UDA tested showed significantly different toxicity.
While All-Bond Universal, CLEARFIL Universal Bond Quick and Single Bond Universal
showed no significant cytotoxicity and genotoxicity, according to the controls used, G-
Premio BOND significantly decreased the cell viability and presented significant DNA
damage in the comet assay. Additionally, similar results occurred in the apoptosis detection
test performed using FC. All-Bond Universal, CLEARFIL Universal Bond Quick and Single
Bond Universal did not show significant increases in apoptosis in the tested cell line, while
G-Premio BOND significantly increased the percentage of cells in the early and late stages
of apoptosis. The cell cycle analysis with FC showed a significant increase in the sub-G0/G1
phase in cells that were treated with the G-Premio BOND eluate, which indicates that there
was a higher number of dead cells compared to the controls used and the other UDA tested.

The results of the present study showed consistency in all the tests conducted and
were in line with the results we previously obtained for other UDA, namely: Prime & Bond
Universal (Dentsply Sirona, Charlotte, NC, USA); OptiBond Universal (Kerr, Brea, CA,
USA); Adhese Universal (Ivoclar Vivadent, Schaan, Liechtenstein) [31]. These differences
in toxicity could be the result of differences in the composition of the specific UDA, namely,
different monomers and the ratio of the compounds.

It was stated that dental adhesives may incorporate different concentrations of methacry-
late monomers, such as TEGDMA, UDMA, HEMA, PENTA and bis-GMA, into their com-
position, which may impact their toxicity. The synergistic interactions between them
may also result in the amplification of their toxic effect in comparison to the individual
monomers [33].

Conservative dental intervention is used to preserve the pulp and avoid the possible
adverse effects caused by restorative biomaterials in dentistry. Biocompatibility is one of
the most important properties of dental materials. It is especially crucial in materials that
have direct or indirect contact with the pulp or oral soft tissues. Dental adhesives should be
screened for biocompatibility using highly standardized techniques and tests that include
the different mechanisms of potential cytotoxicity, genotoxicity, apoptosis induction or cell
cycle arrest, as there is no consensus on their effects on human tissues.

Other studies have revealed that bis-GMA showed the highest cytotoxicity among the
methacrylate monomers in comparison to UDMA, HEMA and TEGDMA, which showed
less cytotoxicity according to the literature [33–37]. Among the monomers used in dental
adhesives, bis-GMA has relatively high cytotoxicity. This monomer has a low ability to
penetrate dentin because of its high molecular weight, but is susceptible to hydrolysis, and
its products may induce the loss of cell membrane permeability [38,39]. It was reported
that bis-GMA may provoke prostanoid production, leading to cytotoxicity in pulp cells,
which could result in inflammation or pulpal necrosis due to the production of reactive
oxygen species (ROS) [40]. Additionally, it was stated that in human gingival fibroblasts
treated with bis-GMA, there was a depletion of intracellular glutathione (GSH) and the
induction of apoptosis [41]. UDMA toxicity is induced via GSH depletion, cell cycle
arrest, apoptosis/necrosis induction and ROS production [42]. It also amplifies the mRNA
expression of carboxylesterase-2, heme oxygenase-1, cyclo-oxygenase-2 and in the cells
present in pulp [43].

HEMA is capable of rapid diffusion through dentin [44] and can result in toxicity in
the cells present in pulp tissue. It has been stated that it can induce morphological changes
in several types of cells, and can induce apoptosis and growth suppression [45,46].

Functional acidic monomers are an important part of UDA composition due to their
adhesive properties. As the most commonly used, 10-MDP showed suppressed odonto-
blastic differentiation of human pulp cells, as well as an inflammatory response [47]. It is
also capable of mineralization depression through direct interaction with odontoblast-like
cells [48].

In comparison, according to Nakagawa et al., testing 4-MET in luting materials contain-
ing resin showed biocompatibility in the cells present in dental pulp [49,50]. Additionally,
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it was reported that the lower pH values may result in higher toxicity of the dental adhe-
sives [51].

Apart from the monomers, the photo-initiators, such as camphorquinone or diphenyl
(2,4,6-trimethylbenzoyl) phosphine oxide, when added to the dental adhesives, may also
elute from the dental resin materials in vitro and result in cytotoxicity towards cells [52].

The limitations of the present study revolve around the in vitro character of the ex-
periments. The credibility of the methods used is high, as we acquired similar results in
different tests based on different molecular mechanisms of toxicity, cytotoxicity, genotox-
icity, apoptosis induction and cell cycle arrest, and the results were comparable to our
previous study based on different UDA using a similar methodology [31]. Light-curing
parameters, such as light intensity and type, distance and curing mode, may all influence
the polymerization of dental adhesives, and therefore the amount of residual monomers
and their toxicity [53,54]. Additionally, the absence of a dentin barrier, smear layer and
immune response, as well as the fact that UDA are present in the tooth structure for several
years, also means that the in vitro results cannot be freely compared to a clinical situation
present in a tooth cavity [55,56].

5. Conclusions

The results presented in this manuscript showed that the UDA that were investigated
have different impacts on the SC cell line. Indicated toxicity variation should be taken into
consideration in further clinical studies.

Moreover, we suggest that the methods used in dental materials research should be
extended to include different tests, such as comet assay and flow cytometry apoptosis
detection, as well as cell-cycle arrest evaluation. In particular, tests based on flow cy-
tometry could improve the accuracy of the research and should be incorporated into the
standardization criteria. The in vitro toxicity of the UDA should be taken into considera-
tion and monitored as a key safety marker for the assessment of dental materials prior to
clinical studies.
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