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Abstract

Aortic aneurysms are defined as dilations of the aorta greater than 50 percent. Currently, the only 

effective treatment for aortic aneurysms is surgical repair, which is recommended only to those 

that meet criteria. There is no available pharmaceutical therapy to slow aneurysm growth and thus 

prevent lethal rupture. The development of a number of murine models has allowed in depth 

studies of various cellular and extracellular components of aneurysm pathophysiology.

The identification of key therapeutic targets has resulted in several clinical trials evaluating 

pharmaceutical candidates to treat aneurysm progression. In this review, we focus on providing 

recent updates on developments in murine models of aortic aneurysm. In addition, we discuss 

recent studies of the various cellular and extracellular components of the aorta along with the 

abutting aortic structures that contribute to aneurysm development and progression.
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1. Introduction

Aortic aneurysms are defined as dilations greater than 50 percent of the normal aortic 

diameter. Formation of aneurysms can occur anywhere along the length of the aorta, but 

infrarenal abdominal aortic aneurysms (AAAs) are the most common. The annual incidence 

of a new AAA is approximately 0.4 to 0.7 percent, predominantly affecting men older than 

65 [1]. A feared complication of aneurysms is rupture, which has an associated mortality 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
4.0
*Corresponding author: Bo Liu, Department of Surgery, Division of Vascular Surgery, University of Wisconsin-Madison, 1111 
Highland Avenue, WIMR 5137, Madison, WI 53705-2151, United States, Tel: (608) 263-5931; liub@surgery.wisc.edu.
Author Contributions
Manuscript Preparation: MK, AS, BL; Critical Revision: MK, AS, BL

Conflict of Interest
The authors report no proprietary or commercial interest in any product or concept discussed in this article.

HHS Public Access
Author manuscript
Cardiol Cardiovasc Med. Author manuscript; available in PMC 2020 September 22.

Published in final edited form as:
Cardiol Cardiovasc Med. 2020 August ; 4(4): 498–514. doi:10.26502/fccm.92920146.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rate of 80 percent [2]. Therefore, preventing aneurysm rupture has been the primary goal of 

AAA management. Current treatment strategies include open and endovascular repair of 

aneurysms. Surgical interventions are effective in preventing aneurysm rupture; however, are 

only recommended to AAAs that meet size criteria (>5.5cm for men and >5.0cm for 

women), expand rapidly, or are symptomatic. Aneurysms that do not meet these criteria are 

typically surveilled via ultrasound or computed topography (CT). The unmet clinical need 

for pharmaceutical agents capable of attenuating aneurysm growth and rupture has 

motivated a wide range of clinical and basic investigations. Another area of active research 

is aneurysm etiology. Several risk factors for developing an aneurysm have been identified. 

Tobacco use is a modifiable risk factor that is most strongly associated with aneurysm 

development [3]. Studies analyzing human aortic tissue showed that patients who smoke 

have significant reductions in the elastin matrix within the aortic wall [4]. These patients 

have increased levels of matrix degrading proteases, inflammatory cells, and evidence of 

mitochondrial stress within the aortic wall, as well as dysfunctional repair mechanisms that 

ultimately lead to aneurysm formation [5]. Other potentially modifiable risk factors for 

aortic aneurysms are hypertension [6] and atherosclerosis [7]. Non-modifiable risk factors 

include familial predisposition [8] and male sex [9]. Thoracic aortic aneurysms are 

frequently found in patients with rare genetic diseases, such as Marfan syndrome (fibrillin-1 

defect), Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. However, a positive family 

history alone is a significant risk factor for developing aneurysms independent of the 

aforementioned syndromes [10].

2. Murine Models of Aortic Aneurysms

Mouse models of aortic aneurysms are instrumental to studying aortic aneurysm and to 

identify potential therapeutic targets for this disease. Many of the models recapitulate the 

major characteristics of human aortic aneurysm formation, such as medial degeneration, 

vascular smooth muscle cell (VSMC) death, and inflammation. These models, particularly 

when used in conjunction with gene knockout, gene editing, or transgenic technologies, have 

contributed significantly to our understanding of the pathophysiology of aortic aneurysm. 

Creation of aortic aneurysms in mice can be categorized by three major methods: genetic, 

chemical, or hybrid of both approaches. Genetic approaches consist of creating genetic or 

spontaneous mutations, whereas, chemical approaches include intraluminal perfusion, 

periaortic application, or subcutaneous infusion of various molecules.

2.1 Genetic approaches to aortic aneurysm induction

Several genetically modified mice develop spontaneous aortic aneurysms, including blotchy 

(mutation on the X chromosome); Lox−/− mice, and mice with deficiencies in 

metalloproteinases or their inhibitors (Mmp3−/− and Timp1−/−). The blotchy and Lox−/− 

mice are rarely used as they have inherent problems with viability and significant vascular 

pathology outside of the aorta [11, 12]. The Mmp3−/− and Timp1−/− mice develop small 

spontaneous dissecting aneurysms along the entire length of the aorta as well as in other 

segments of the arterial system [13, 14]. Thus, this model has been criticized for reflecting 

systemic arterial extracellular matrix destruction and lacking specificity to aortic aneurysms. 

Marfan syndrome is an autosomal dominant connective tissue disease that results from 
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mutations in Fbn1 encoding the protein fibrillin 1. Fibrillin 1 is critical in maintaining the 

integrity of the extracellular matrix. As a result, patients with Marfan syndrome often 

experience aneurysms and/or dissections of their aorta, specifically the thoracic segment. 

Several mouse models have been generated to mimic this disease process via homozygous 

mutations in the fibrillin-1 gene [15]. Similar to humans, mice with fibrillin-1 mutations 

develop aneurysms at or near the aortic root and die from either rupture or dissection. Thus, 

this disease model has been useful in studying mechanisms and effectiveness of various 

therapeutic strategies in Marfan syndrome.

2.2 Angiotensin II (Ang II) model

One of the most commonly used mouse models of aortic aneurysm is the Angiotensin II 

(Ang II) model [16]. This model typically consists of utilizing either Ldlr−/− or Apoe−/− 

mice and subjecting them to Ang II infusion via a subcutaneous pump [17–19]. Aorta are 

typically harvested 14–28 days after pump insertion and are localized to the thoracic and 

suprarenal abdominal aorta. Further, this model generally creates dissecting aneurysms and 

have a high mortality rate due to rupture. While the purpose of utilizing the Ldlr−/− or Apoe
−/− mice is to generate hypercholesterolemia, other variations of this model have allowed 

investigators to use mice of different backgrounds. Recently, Lu et al. reported successful 

induction of aortic aneurysm via Ang II in C57BL/6 mice with hypercholesterolemia that 

was induced by an adeno-associated viral vector expressing a gain-of-function mutation of 

PSCK9 [20]. This modified approach provides an alternative method of generating 

hypercholesterolemia in knockouts of interest without crossbreeding with Ldlr−/− or Apoe
−/−mice. Experimentally, degeneration of the elastic lamina can be induced via 

administration of ß-aminopropionitrile (BAPN). BAPN is an inhibitor of lysyl oxidase, 

which plays a critical role in cross-linking elastin and collagen fibers [21]. Lysyl oxidase 

activity significantly decreases with age [22]. and; therefore, administration of BAPN is 

thought to mimic human aging [23]. Kanematsu et al. used a combination of Ang II and 

BAPN infusion to induce aortic aneurysms in C57BL/6J mice and found that both thoracic 

and abdominal aortic aneurysms were created [24]. Interestingly, they found that 

amlodipine, but not captopril, was able to reduce both hypertension and aneurysm formation 

in mice under this model. Thus, the authors concluded that aneurysm formation in this 

model was dependent on hypertension and not on the direct effects of Ang II on the aortic 

wall. Lastly, a unique benefit of this version of the Ang II model is that it does not require a 

hypercholesterolemic state. Most chemically induced aneurysm models, including the Ang 

II model, are criticized for its acuity when, in reality, human aortic aneurysms are chronic in 

nature. To this end, Rateri et al. created a two-pump model to mimic a chronic disease [25]. 

Male Apoe−/− mice were subjected to Ang II pump infusion for 27 days and then either 

subjected to a second Ang II infusion or to saline for additional 28 days. Rateri et al. found 

that mice subjected to saline infusion did not experience any further dilatation or aneurysm-

related deaths. In contrast, mice subjected to a second pump of AngII infusion had continued 

aneurysmal dilation, ruptures, and aortic remodeling. Thus, the continued Ang II infusion 

model provides investigators a way to study chronic aneurysmal changes. However, a 

significant drawback of this method is the length of time required to complete in vivo 
studies.
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2.3 Calcium chloride

Perivascular application of calcium chloride was first conducted by Gertz et al. who applied 

0.5M CaCl2 to the commom carotid artery of rabbits, which led to aneurysm formation [26]. 

Subsequently, CaCl2 was applied to the abdominal aorta in rabbits [27] and then rodents [28] 

to induce AAAs. T+o induce AAA formation. The application of periaortic CaCl2 results in 

various cellular effects within the aortic wall that mimic human aortic aneurysms. A large 

inflammatory reaction occurs with infiltration of neutrophils, macrophages, and monocytes 

which is accompanied by changes in cytokine and proteinase profiles [29]. Further, the 

CaCl2 model leads to VSMC death and extracellular matrix remodeling [30]. Traditionally, 

this model consists of applying 0.5M CaCl2 soaked gauze around the infrarenal abdominal 

aorta for 10 minutes. Our lab expanded this model by introducing an additional application 

of phosphate buffer following CaCl2 application [31]. We found that when mouse aortae are 

treated with 0.5M CaCl2 for 10 minutes, followed by phosphate-buffered saline for 5 

minutes, they developed a more robust aneurysm compared with those treated with CaCl2 

alone.

2.4 Elastase

Infusion of porcine pancreatic elastase via a catheter within the lumen of the infrarenal 

segment of the aorta was first introduced in rats and subsequently adapted to mice by 

Thompson and colleagues [32]. In this robust and reproducible model, aneurysms usually 

develop by day 14 and are accompanied by elastin degradation and inflammatory infiltrate 

[33]. However, this model can be very technically challenging. Bhamidipati et al. generated 

a variation of this model in which they subjected mice to periadventitial application of 

porcine pancreatic elastase [34]. Aneurysms were generated in 82% of mice and were 

accompanied by elastin degradation, macrophage infiltration, and matrix 

metalloproteinase-9 expression. Thus, periadventitial application of porcine pancreatic 

elastase appears to be a good alternative that avoids the technical challenges associated with 

the intraluminal approach. However, the elastase model has been scrutinized due to its 

acuity, lack of sustained aneurysmal dilation, and inability for transmural rupture of the 

aortic wall, which are characteristics of human aneurysms. Therefore, modifications of the 

elastase model have been sought in order to better mimic human aneurysms. TGFβ activity 

is well-known for its importance in maintaining aortic wall integrity. Studies have shown 

that disruption of TGFβ signaling leads to substantial increase vascular wall inflammation 

and ECM degradation [35–36]. Therefore, Lareyre et al. conducted a periadventitial 

application of elastase on the aortic wall of mice along with injections of mouse anti-mouse 

TGFβ [37]. They found that this model led to sustained aneurysmal growth, the development 

of intraluminal thrombus, and aortic wall rupture. Further, TGFβ blockade enhanced 

leukocyte infiltration both in the aortic wall and intraluminal thrombus, which is a classical 

characteristic of human aortic aneurysms. Another modification addressing the limitations of 

the original elastase model was created by Lu et al. utilizing the Lox inhibitor BAPN [38]. 

BAPN was added to the water of mice 2 days prior to periaortic application of the aorta until 

the end of the study. Mice given BAPN demonstrated continued long-term growth, thrombus 

formation, and aortic rupture for as long as 100 days. Thus, these modifications of the 

elastase model are thought to closely resemble the chronic degenerative nature seen in 

human aneurysms.
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3. Cellular Responses of the Aortic Wall

The primary cellular components of the aortic wall consist of endothelial cells, smooth 

muscle cells, and fibroblasts. These cells are organized in three layers: intima, media, and 

adventitia. The vessel wall also contains inflammatory cells such as residential 

macrophages. Additional inflammatory cells can be recruited from the circulation during 

vascular injury. Human aneurysmal tissues exhibit substantial abnormalities that affect 

cellular components and the extracellular matrix of the aortic wall. Experimental evidence 

obtained from animal studies suggests that the complex changes in primary vascular cells, 

extracellular matrix, and inflammatory cells are critical to the development of an aortic 

aneurysm. Below we discuss the major cellular components and their contribution to the 

pathogenesis of aortic aneurysms.

3.1 Inflammatory cells

It is well established that human aortic aneurysms contain leukocytes of multiple 

populations [39]. Localized structural deterioration is frequently accompanied by 

accumulation of macrophages within aneurysmal tissues. Targeting the inflammatory 

process has been a major focus of therapeutic development aiming to halt aneurysm 

progression. Umebayashi et al. highlighted the therapeutic benefit of reducing inflammation 

in the aortic wall by treating mice with cilostazol, a phosphodiesterase III inhibitor 

commonly used in patients with peripheral vascular disease [40]. They found that cilostazol 

treatment attenuated aortic aneurysm progression via reduction in expression of 

inflammatory cytokines within the endothelium, which subsequently led to a significant 

decrease in macrophage accumulation as well as matrix metalloproteinase activities. It is 

generally believed that macrophages exist in a spectrum of functional phenotypes [41]. The 

two polarizing ends are the proinflammatory (M1) and anti-inflammatory (M2) 

macrophages. M1 macrophages are traditionally thought to be the driving force of aneurysm 

formation, whereas M2 macrophages are thought to be protective of aneurysms. This 

concept was supported by Batra et al. who demonstrated in a mouse model of AAA that 

TNFα-deletion inhibited M1 macrophage polarization and aneurysm formation [42]. 

Further, infusion of M1 polarized TNFα−/− macrophages inhibited growth of aortic 

aneurysms. However, a study by Sharma et al. using Il12p40−/− mice countered the 

traditional concept that M2 macrophages are beneficial in aortic aneurysm formation [43]. 

Interleukin 12 (Il12), a heterodimeric cytokine composed of p35 and p40 subunits, has been 

shown to be a key regulator of macrophage polarization. Previous studies have reported that 

macrophages deficient in IL12p40 are biased towards an M2 profile [44]. Sharma et al. 

found that IL12p40 depletion promoted the development of abdominal aortic aneurysm by 

facilitating the recruitment of M2-like macrophages. Thus, the concept of M2 macrophages 

as beneficial in aneurysms may not be as clear as once thought.

Other leukocyte populations including T-cells and neutrophils have been implicated in the 

pathophysiology of aortic aneurysms [45]. CD4+CD25+Foxp+ regulatory T cells (Tregs) 

account for a minority of the total T cells, but have important functions in regulating 

autoimmunity [46]. Previous reports have found that Treg depletion significantly increased 

aortic aneurysm development [47–48]. Similarly, Li et al. found that exogenous treatment of 
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interleukin 33 (IL-33) reduced aneurysm progression and aortic wall inflammation [49]. 

Treatment with IL-33 increased Tregs within the aorta and suppressed vascular smooth 

muscle cell (VSMC) chemokine expression. Suh et al. also explored the role of Tregs in 

aneurysm development by using a humanized murine model of AAA by irradiating Rag1−/− 

mice at 7 weeks of age and supplementing them with human CD4+ T-cells [50]. Rag1−/− 

mice are resistant to aneurysm formation in the CaCl2 model; however, when supplemented 

with human CD4+ cells, they became susceptible to AAA formation. Furthermore, 

augmentation of human Tregs via interleukin-2 led to decreased aneurysm progression in 

this model. This study suggests that expansion of Tregs may be a potential therapeutic target 

in AAAs. In a study by He et al., the investigators explored the role of FAM3D (family with 

sequence similarity 3, member D), a recently identified chemokine, in neutrophil recruitment 

and aneurysm development [51]. He and colleagues found that FAM3D induced Mac-1-

mediated neutrophil recruitment and aggravated aneurysm formation through formyl peptide 

receptor-related Gi protein and β-arrestin signaling. This finding highlighted the importance 

of the chemokine-leukocyte interaction in the development of aortic aneurysms. IL-1β has 

long been known to play an important role in promoting the inflammatory processes of 

various diseases. As such, IL-1β has been an intriguing therapeutic target for various 

diseases [52]. Johnston et al. found that IL-1β mRNA and protein levels were significantly 

higher in aortas of mice that underwent elastase perfusion [53]. Similarly, genetic deletion of 

IL-1β or IL-1R demonstrated protection against AAA formation in the elastase model. 

However, this contradicts Batra et al. who found that genetic deletion of IL-1β or IL-1R did 

not block aneurysm formation in the CaCl2 model [42]. Batra and colleagues postulated that 

the lack of effects was primarily because of a skewing to M1 macrophages secondary to 

IL-1β deficiency. Consistently, a clinical trial evaluating the effect of monthly subcutaneous 

injections of canakinumab, an IL-1β inhibitor, was terminated due to its lack of efficacy in 

treating aortic aneurysms (NCT02007252).

3.2 Extracellular matrix remodeling

The extracellular matrix (ECM) is the acellular component of the aorta that provides 

structural support and regulates the bioavailability of various cytokines and growth factors. 

Loss of proper ECM structure and homeostatic maintenance is thought to be a significant 

contributor to the pathophysiology of aortic aneurysms [54]. Inflammation and remodeling 

of the extracellular matrix are thought to be closely linked, which leads to profound 

inflammatory responses, matrix degeneration, and elastin fragmentation. Therefore, major 

research efforts have been devoted to understanding ECM remodeling during aneurysm 

development. Interleukin-10 (IL-10) is a well-known cytokine with anti-inflammatory 

properties. Mice deficient in IL-10 develop larger aortic aneurysms, raising the possibility 

that its administration may be of therapeutic benefit [55]. Adam et al. subsequently used 

IL-10 minicircle transfection into ApoE−/− mice to increase bioavailability [56]. Minicircles 

are episomal DNA vectors that are used for genetic modification of mammalian cells. 

Minicircles typically have higher transfection and survival rates in target cells compared to 

plasmids [57–58]. Using this method, Adam and colleagues demonstrated a significant 

reduction in aortic diameter, markers of inflammation, and improved aortic remodeling in 

the Ang II model [56]. The study highlighted not only that IL-10 can be a potential 

therapeutic option to improve aortic option, but minicircles may be an intriguing vector for 
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gene therapy. Yin et al. found that glycosylation of microfibril-associated glycoprotein 4 

(MFAP4) significantly differed in patients with Marfan syndrome [59]. Further, these ECM 

changes were accompanied by an abundance of proteases from the ADAMTS (a disintegrin-

like and metalloprotease domain with thrombospondin-type motifs) family. The ADAMTS 

family of proteases are the main enzymes responsible for cleaving large aggregating 

proteoglycans. Interestingly, both Fava et al. and Dupuis et al. recently demonstrated the 

importance of ADAMTS-5 in maintaining ECM homeostasis via its action on various 

proteoglycans [60–61]. Fava and colleagues demonstrated regional differences in ADAMTS 

expression in murine aortas and showed that ADAMTS-5, not ADAMTS-1, was the key 

protease for versican regulation in thoracic aortic aneurysms. Similarly, Dupuis and 

colleagues found that disruption of ADAMTS-5 cleavage during development was 

associated with ascending aortic anomalies. Together, data from these two studies suggest 

that while dysregulation of the ADAMTS family leads to aortic aneurysms via disruption of 

the ECM, ADAMTS-5 may be specific to the thoracic region.

Clinically, as well as experimentally, aortic dissections may undergo remodeling that 

subsequently leads to aneurysms. Angiotensin converting enzyme inhibitors are found to 

prevent cardiac remodeling after myocardial infarctions; for this reason, the drugs are often 

prescribed in patients with coronary artery disease [62]. The renin-angiotensin signaling 

system has an established role in the development of aortic aneurysms [63]. Ang II has been 

shown to play a role in aortic aneurysms in mice and functions through two main receptors: 

Ang II Type 1 receptor (AT1R) and Ang II type 2 receptor (AT2R). In the context of aortic 

aneurysm, AT1R is likely to be the predominant receptor responsible for disease formation 

[64]. In contrast, AT2R appears to have a protective role in aortic aneurysm formation [65]. 

However, a recent study tested the effect of compound 21 (C21), a selective nonpeptide 

AT2R agonist, on aortic root enlargement in a Marfan mouse model (Fbn1C1039G/+) and 

found no effect on aneurysm growth or remodeling [66]. Zhou et al. used a transverse aortic 

constriction (TAC) model to further elucidate the role of AT2R and MasR on aortic 

remodeling by using various combinations of losartan (AT1R inhibitor), captopril (ACE 

inhibitor), C21, and PD123319 (AT2R inhibitor) [67]. They found that there was a beneficial 

effect of AT1R blockage following TAC-induced aortic remodeling, which is dependent on 

AT2R activation. This finding suggests that ACE inhibitors may not be as effective as 

losartan in preventing aortic remodeling.

3.3 Vascular smooth muscle cells

Medial VSMC death is integral to the development of aortic aneurysm formation as 

depletion of VSMC is a major pathological characteristic of human aortic aneurysm. 

Traditionally, both apoptosis and necrosis were thought to be essential for VSMC death [68–

69]. However, as knowledge of cell death expands, other forms of cell death are found to 

play a role in VSMC depletion. Necroptosis is a form of regulated necrosis that is mediated 

by receptor interacting protein kinase 3 (RIPK3). Levels of RIPK3, along with its partner in 

death RIPK1, were found to be elevated in human aortic aneurysm samples [70]. 

Experimental data from our lab showed that deletion of Ripk3 prevented AAA formation by 

protecting against loss of VSMCs and by impairing inflammatory gene expression. Further, 

we demonstrated, in principle, that inhibition of this necroptotic pathway may attenuate 
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aneurysm formation and block disease progression using small chemical inhibitors to RIPK1 

and RIPK3 [70–73]. Emerging evidence suggests that VSMCs contribute to aneurysm 

pathophysiology through mechanisms beyond cell death. VSMCs express unique contractile 

proteins, ion channels, and signaling proteins that are essential to proper contraction and 

relaxation of blood vessels [74]. Contrary to skeletal and cardiac myocytes, VSMCs have 

remarkable plasticity and can undergo a variety of phenotypic changes including loss of 

contractile proteins [75]. These phenotypic changes are typically a response from signaling 

molecules in the local environment. Bogunovic et al. studied the in vitro contractility via 

electric cell-substrate impedance sensing (ECIS) of biopsied healthy human and aneurysmal 

aortas [76]. They found that VSMCs from AAA patients had impaired contraction compared 

to controls. This was consistent with Muratoglu et al. who reported that the VSMC-specific 

deletion of Lrp1 (low-density lipoprotein receptor-related protein 1) led to spontaneous 

aortic aneurysms [77]. Subsequently, Au et al. discovered that LRP1 is responsible for 

maintaining the contractile phenotype in VSMCs by regulating calcium signaling events that 

protect against aortic aneurysm [78]. These studies suggest that loss of the contractile 

VSMC phenotype is an important phenomenon in AAA pathophysiology.

The relationship between chronobiological patterns and vascular disease has recently 

attracted research interest [79]. Traditionally, it was thought that neurons in the 

suprachiasmatic nucleus were solely responsible for circadian rhythmicity. However, it is 

now widely accepted that cells in the cardiovascular system are able to maintain their own 

circadian rhythmicity. Brain and muscle ARNT-like 1 (BMAL1) is a well-known 

transcription factor and obligatory clock gene that maintains circadian rhythmicity in 

peripheral tissues [80]. Interestingly, Lutshumba et al. found that VSMC-specific deletion of 

BMAL1 protected mice from aneurysm induction in two different models [81]. Further, they 

found that VSMC deletion of BMAL1 led to upregulated levels of tissue inhibitor of 

metalloproteinase 4 (TIMP4), which revealed an intriguing interaction between these two 

proteins in the pathogenesis of aortic aneurysms. VSMCs have also been shown to be a 

major contributor to the progression and remodeling of aortic dissections into aneurysms 

[82]. However, it has been challenging to identify VSMCs in diseased tissues due to 

phenotypic switching. Clément et al. used multicolor lineage tracing in Myh11-CreERt2/
Rosa26-Confetti mice to track the fate of VSMCs upon induction of the Ang II model [83]. 

VSMCs were labeled via tamoxifen injections prior to aneurysm induction. They found that 

medial-VSMCs undergo clonal expansion and are primarily observed in the adventitia and 

borders of the false lumen in those that developed dissecting aneurysms. These VSMCs 

underwent phenotypic switching as evidenced by their upregulation of phagocytic markers, 

which correlated with increased severity of aortic disease. Deletion of autophagy protein 5 

(Atg5) enhanced VSMC death and promoted inositol-requiring enzyme 1α-dependent 

inflammation, which was associated with increased severity of aortic disease. These results 

suggested that VSMC proliferation and autophagy promote aortic wall repair and limit the 

development of dissecting aortic aneurysms.

3.4 Endothelial cells

The endothelium is in direct contact with blood flow and acts as a barrier to the rest of the 

aortic wall. Although it was originally thought that the endothelial layer compromises 
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homogenous population, Kalluri et. al utilized single-cell RNA sequencing to identify 

functionally distinct endothelial cell populations in mice [84]. Gene set enrichment analysis 

of the endothelial cells revealed a lymphatic cluster and two subpopulations that were more 

specialized in lipoprotein handling, angiogenesis, and extracellular matrix production, which 

persisted when mice were given a Western diet. Thus, this provided further insight into the 

complexity of the endothelial cell layer. Clinical studies have demonstrated that circulating 

biomarkers of endothelial dysfunction are closely related to the incidence of aortic 

aneurysms [85]. In addition, strong associations were found between the use of endothelial 

protective medications such as statins, angiotensin-converting enzyme inhibitors, and 

angiotensin receptor blockers and inhibition of aneurysm rupture or growth [86]. Along 

these lines, Rateri et al. discovered that attenuation of aortic aneurysms via AT1R is 

endothelial-specific. Mice lacking AT1a receptor (AT1AR) in endothelial cells, not those 

lacking AT1AR in VSMCs, were protected from Ang II-induced aortic aneurysm [87]. 

Consistent with Rateri et al., Galatioto and colleagues found, via computational analyses of 

differentially expressed genes, that improper AT1AR activity in the vascular endothelium 

was a significant determinant of aneurysms in mice [88]. Therefore, angiotensin receptor 

blockers appear to be an excellent pharmaceutical candidate to repurpose for aortic 

aneurysm treatment.

4. Abutting Aortic Wall Entities

4.1 Perivascular adipose tissue

Other structural components outside of the vascular wall have been shown to have a 

significant impact on the pathogenesis of aortic aneurysms. Perivascular adipose tissue 

(PVAT) has been shown to have a role in vascular function and disease [89]. PVAT is in 

direct contact with the adventitia of the vessel and can regulate arterial homeostasis via 

autocrine/paracrine effects, tuning dilation and contractile functions, and regulating aortic 

wall inflammation [90]. Piacentini et al. compared the transcriptome of PVAT from the 

dilated portions of aortic tissue to the non-dilated portions in patients with aortic aneurysms 

[91]. The group found that the transcriptional landscape of PVAT of the dilated aorta was 

associated with dysfunctional immune/inflammatory response, which was highly suggestive 

of autoimmune mechanisms. This work highlighted the importance of PVAT in the 

pathogenesis of aortic aneurysms and suggested an immunomodulation strategy may be an 

effective treatment in these patients. However, it is still unclear whether the changes seen in 

the PVAT is a consequence or cause of aortic aneurysm development.

4.2 Intraluminal thrombus

While PVAT influences aortic aneurysm formation via its outer anatomic location, 

intraluminal thrombus (ILT) can affect aneurysm progression from its inner location. ILT 

was originally thought to be protective of rupture in aortic aneurysms by cushioning the 

effect of blood pressure on the aortic wall [92]. However, it is now well understood that the 

constituents of the ILT actually interact with the aortic wall and contribute to the 

pathophysiology of aortic aneurysms via secretion of biologically active molecules [93–94]. 

To further investigate the interaction between these two entities, Andersen et al. performed a 

proteomic analysis of human tissue samples collected from abdominal aortic aneurysms and 
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thrombus at the time of operative repair [95]. The authors demonstrate that ECM proteins 

within the aorta and ILT were negatively associated with aneurysm growth rates. They found 

a positive correlation between growth rates and plasma proteins both within the ILT and 

aortic wall. This suggested that increased porosity of ILT may have led to plasma proteins 

diffusing into the aortic wall contributing to the pathology.

5. Conclusion

Maintenance of aortic health requires a delicate balance between the ECM, cellular 

components of the vascular wall, immune system, and abutting structures. Alterations in any 

of these entities initiates cascades of events that subsequently lead to the development of 

aortic aneurysms. Current management strategies rely on open or endovascular repair of 

these aneurysms. Thus, great potential exists for a pharmaceutical agent that may halt or 

hinder aneurysm progression. Although our understanding of this complicated disease 

process continues to grow, much has yet to be learned.
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