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	 Background:	 Fundamental and clinical interest in mesenchymal stem cells (MSCs) has risen dramatically over the past 3 
decades. The immunomodulatory and differentiation abilities are the main mechanisms in vitro and in vivo. 
However, increasing evidence casts doubt on the stemness and immunogenicity of MSCs.

	 Material/Methods:	 We conducted a high-throughput 10x RNA sequencing and Smart-seq2 scRNA-seq analysis to reveal gene expres-
sion of Wharton jelly MSCs (WJ-MSCs) at a single-cell level. Multipotent differentiation, subpopulations, mark-
er genes, human leucocyte antigen (HLA) gene expression, and cell cluster trajectory analysis were evaluated.

	 Results:	 The WJ-MSCs had considerable heterogeneity between cells in terms of gene expression. They highly, partially, 
and hardly expressed genes related to mesodermal differentiation, endodermal differentiation, and ectodermal 
differentiation, respectively. Some cells seem to be bipotent or unipotent stem cells. Further, Monocle and cell 
cluster trajectory analysis demonstrated that 1 of the 3 divided clusters performed as stem cells, accounting 
for 12.6% of the population. The marker genes for a stem cell cluster were CRIM1, GLS, PLOD2, NEXN, ACTR2, 
FN1, MBNL1, LMOD1, COL3A1, NCL, SEC62, EPRS, COL5A2, COL8A1, and VCAN. In addition, the MSCs also high-
ly, partially, and hardly expressed HLA-I antigen genes, HLA-II genes, and the HLA-G gene, respectively, indicat-
ing that MSCs probably have immunogenicity. A Kyoto Encyclopedia of Genes and Genomes pathway analy-
sis of the 3 clusters demonstrated that they were mainly connected with viral infectious diseases, cancer, and 
endocrine and metabolic disorders. The most expressed transcription factors were zf-C2H2, HMG/HMGY, and 
Homeobox.

	 Conclusions:	 We found that only a subpopulation of WJ-MSCs are real stem cells and WJ-MSCs probably do not have im-
mune privilege.
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Background

The therapeutic and regenerative potential of mesenchymal 
stem cells (MSCs) has been widely and successfully investi-
gated from basic research to clinical trials since the first re-
port on bone marrow cells in 1961 [1]. Bone marrow, the um-
bilical cord (UC), and adipose tissue are the main sources of 
MSCs [2]. At present, there are almost 10 000 records related 
to MSCs in the Web of Science core database. Overall, MSCs 
play a positive role through 2 mechanisms, namely immuno-
modulatory effects and regenerative abilities [3,4]. Various 
types of cytokines secreted by MSCs regulate the inflamma-
tion process, and MSCs can directly interact with immune cells 
for immunomodulation [5,6]. In vitro, MSCs are expected to 
differentiate into osteocytes, adipocytes, and chondrocytes 
(mesodermal cells). They can also differentiate into neuronal 
cells/peripheral glia cells (ectodermal cells) and pancreatic 
cells/hepatocytes (endodermal cells) under specific induction 
conditions and restore damaged functions [7,8]. Remarkably, 
MSCs do not express ACE2 and TMPRSS2 genes, and trans-
plantation of ACE2– MSCs was found to improve the outcome 
of patients with COVID-19 pneumonia [9]. MSCs have attract-
ed great attention in regenerative medicine in the past 3 de-
cades. Among all types of MSCs, UC-MSCs have been the most 
commonly used in research for several reasons. First, UCs are 
easily accessible without any invasive procedures. Second, 
Wharton jelly (WJ) of the UC has more abundant MSCs than 
any other source. Third, UC-MSCs are reported to have lower 
immunogenicity and better cytokine secretion function [10].

Although the short-term safety and effectiveness of MSC-based 
cell therapy has been extensively evaluated, 2 challenges re-
main. First, MSCs are a heterogenous cell population rather 
than a clonal population [11]. As a group, MSCs exhibit trip-
loblastic differentiation ability under specific induction condi-
tions, but the efficiency is low. For example, only 3% of MSCs 
can differentiate into microtubule-associated protein 2-posi-
tive neurons (ectoderm) [12], and approximately 5% can dif-
ferentiate into insulin-positive b cells (endodermal) [13]. As 
for the expected differentiation, only 10% to 25% of MSCs 
differentiate into alkaline phosphatase-positive osteocytes 
(mesoderm) [14]. These reports suggest that not all MSCs can 
participate in triploblastic differentiation; hence, only a small 
subpopulation of MSCs may have pluripotency. Another hy-
pothesis is that MSCs are composed of various types of bipo-
tent/unipotent stem cells, and each type promotes ectodermal, 
mesodermal, or endodermal lineage differentiation, respec-
tively. Individual cells may not be pluripotent, but the popu-
lation as a whole is pluripotent. Second, the administration 
of allogeneic MSCs in regenerative medicine has usually been 
impaired by a very low survival rate in vivo (<3%) [15]. Most 
engrafted MSCs are immunologically rejected in 1 month in a 
severe stress environment, leading to the impairment of the 

functional recovery that appeared at the early stage through 
the immunoregulation effect of MSCs [16]. Thus, the immuno-
genicity of MSCs needs further exploration at the gene level.

To reveal the individual characteristics of MSCs fundamentally, 
we conducted a 10x Genomics high-throughput RNA sequenc-
ing clustering analysis of UC-MSCs to reveal gene expression 
at the single-cell level. In addition, Smart-seq2 single-cell RNA 
sequencing (scRNA-seq) analysis was used to quantify gene 
expression. To the best of our knowledge, this report is the 
first 10x scRNA-seq survey providing comprehensive, unbi-
ased analysis of all MSC types and states based on individual 
gene activity. This study provides some new clues for the ba-
sic properties of MSCs.

Material and Methods

Umbilical Cord, Supplies, and Reagents

This study involved 4 umbilical cords donated by materni-
ty patients who provided informed consent. Before collect-
ing the cord, we tested the patients’ blood for infectious vi-
ruses and other conditions. This study was approved by the 
Ethics Committee of the First Affiliated Hospital of Zhengzhou 
University (2021-KY-0275-002).

Cell Culturing

WJ tissue was dissociated from the cord, and WJ-MSCs were 
collected according to a previously reported process [17]. Briefly, 
the vein and artery vessels were removed, and then the mesen-
chymal tissue was removed from the WJ using a scalpel. After 
grinding, the tissue fragment was centrifuged down at 250×g 
for 5 min, treated with 2 mg/mL collagenase type Ⅰ solution 
at 37°C for 16 h, washed, and then treated with 2.5% trypsin 
(10×) for 30 min. Finally, the cells were seeded in the culture 
medium supplemented with 10% fetal bovine serum at 37°C 
with 5% CO2, which was regarded as the first passage. The 
third passage was used for the Smart-seq2 scRNA-seq anal-
ysis (3 samples) and the 10x scRNA-seq survey (1 sample).

Smart-seq2 scRNA-seq Analysis

The Smart-seq2 protocol was applied for the single-cell tran-
scription amplifications, and 1× Agencourt XP DNA beads 
(Beckman) were used to purify the cDNA products. Quality 
control was conducted, including the detection of CD3D by 
quantitative polymerase chain reaction (qPCR) and Fragment 
Analyzer (Advanced Analytical Technologies, Inc.). Multiplex 
libraries were built, and purified libraries were analyzed by 
Illumina HiSeq 4000 sequencer with 150-bp paired-end reads. 
The sequencing data were filtered with SOAPnuke (v1.5.2). 

e934660-2
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Leng Z. et al: 
Stemness and immune privilege of Wharton jelly MSCs

© Med Sci Monit, 2022; 28: e934660
LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



Bowtie2 (v2.2.5) was applied to align the clean reads to the 
reference coding gene set, and then the expression level of 
each gene was calculated by RSEM (v1.2.12) based on human 
genome reference GRCh38. The relative gene expression lev-
el and other data are presented as mean±standard deviation.

10x scRNA-seq Survey

Following the process used in our previous work [9], we found 
that the viability of the analyzed cells was more than 80%. 
A library was constructed by the Chromium controller (10x 
Genomics, Pleasanton, CA). GemCode technology was used 
for the nanoliter-sized GEMs (gel beads in emulsion). Lysis 
and barcoded reverse transcription of polyadenylated mRNA 
from single cells were performed inside every GEM. cDNA was 
fragmented and fragment ends were repaired. Quality control-
pass libraries were sequenced. The final library was quanti-
tated in 2 ways, namely the Agilent 2100 bioanalyzer instru-
ment and real-time qPCR.

The libraries were then sequenced on an X-ten platform (BGI-
Shenzhen, China). The single-cell 3’ v2 16-bp 10x barcodes were 
encoded at the start of Read 1, while sample index sequenc-
es were incorporated as the i7 index read. Read 1 was used 
to sequence 16-bp 10x barcodes and 10-bp randomers, while 
Read 2 was used to sequence the cDNA fragments.

Analysis of 10x Single-Cell Transcriptomics Data

The analysis of 10x single-cell transcriptomics data was done 
according to our previous work [9]. Briefly, the raw reads were 
analyzed using the Cell Ranger Single Cell Software Suite [18] 
and R package Seurat [19]. The number of genes and unique 
molecule identifier (UMI) counts were examined to identify 
outliers, and UMI was standardized through log10 transforma-
tion to evaluate gene expression. Dimensionality reduction was 
dealt with by principal component analysis, followed by cluster-
ing with a graph-based clustering approach. U-MAP was then 
used for 2-dimensional visualization of the resulting clusters. 
The marker genes and differentially expressed genes (DEGs) 
were identified with the Find Conserved Markers function in 
the Seurat package [20], and cells expressing similar DEGs 
were divided into the same cluster. Pseudo-time cell trajecto-
ry analysis was conducted with R package Monocle 2 [21]. In 
this analysis strategy, the top 1000 genes with the most sig-
nificant differences between every 2 clusters were selected 
as the data set, and the cell quasi-temporal change trajectory 
was constructed through data dimensionality reduction and 
cell sequencing. String analysis was performed using DIAMOND 
(v 0.8.31) to obtain the interactions between DEGs encoding 
proteins [22,23]. According to the DEG results, we classified 
the Gene Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes analysis (KEGG) in 3 dimensions: biological 
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Figure 1. �Identification of the isolated and cultured mesenchymal stem cells by flow cytometry.
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Cell cycle              10x  scRNA          Smart-seq2 scRNA-seq
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Figure 2. �Gene expression of mesenchymal stem cells related to cell proliferation and collagen secretion. The data in the columns with 
color were from the 10x single-cell RNA sequencing (scRNA-seq) according to the unique molecular identifier (UMI) counting 
formulated by log10 for standardization. The Smart-seq2 scRNA-seq analysis results quantifying the gene expression are 
shown as mean±standard deviation. The 10x scRNA-seq survey matched the Smart-seq2 scRNA-seq very well.
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Figure 3. �Gene expression related to mesodermal, endodermal, and ectodermal differentiation. Genes related to the ectodermal 
differentiation were scarcely expressed.

processes, cellular components, and molecular functions. GO 
analysis and KEGG pathways with a false discovery rate £0.05 
were significantly enriched. The significant levels of terms and 
pathways underwent Bonferroni correction with a rigorous 
threshold (Q value £0.05).

Results

Cell Culturing and Flow Cytometry Analysis

WJ-MSCs were successfully obtained from the cords and ad-
hered well to the plastic dishes. Flow cytometry analysis was 
carried out on the third passage. The results showed that 93% 
of the total cell population was alive confirmed by propidium 
iodide staining, and over 99.00% of the cells were CD105+, 
CD90+, CD73+, CD44+, CD29+, CD14–, and CD45– (Figure 1).

The Overview of the RNA Sequencing Survey

A total of 12 469 cells were sequenced in the 10x survey, re-
sulting in 881 215 280 raw reads. The median number of 
genes and UMIs per cell were 3224 and 14 985, respective-
ly. In the Smart-seq2 scRNA-seq analysis, the clean reads 
number was 22 773 973±13 483, with a clean reads ratio of 
95.9%, and the total mapping gene ratio was 83.2% based 
on the reference genome. The 10x survey showed that the 
WJ-MSCs highly expressed CD105, CD90, and CD73, but rare-
ly expressed CD45, CD34, CD14, CD19, and HLA-DR, and the 
Smart-seq2 scRNA-seq revealed that the relative expression of 

these genes was 66.8±8.1, 330.8±50.5, 77.4±14.8, 0.30±0.02, 
0.10±0.04, 0.21±0.13, 0.02±0.03, and 0.02±0.05, respectively. 
The results were in accordance with the flow cytometry anal-
ysis and met the standards set by the International Society 
for Cellular Therapy.

Gene Expression Related to Cell Proliferation, Collagen 
Secretion, and Multipotent Differentiation

Genes related to cell proliferation were highly expressed, in-
cluding CCNB1, CCND1, CCNG1, CDC20, CDK4, CDKN1A, and 
GADD45A. Genes related to collagen secretion were also high-
ly expressed and included COL1A1, COL1A2, COL3A1, COL6A2, 
COL6A1, COL5A2, COL4A1, COL4A2, COL5A1, and COL8A1. 
Figure 2 shows more information about the expression of these 
genes. In particular, the fibroblast-related genes were highly 
expressed. Genes related to endodermal and mesodermal di-
rection differentiation were more highly expressed than those 
related to ectodermal differentiation. CD44, CDH2, CTNNA1, 
CTNNB1, FN1, ITGB1, NRP2, and THY1 (CD105) were the main 
genes connected with endodermal differentiation that were 
highly expressed. CEBPB, CEBPD, ADIPOR, AP2B1, FOS, and 
JUN were the main genes related to mesodermal differentia-
tion that were highly expressed. Figure 3 depicts the expres-
sion of many other genes.

Expression of Human Leucocyte Antigen Genes

Generally, allogeneic transplantation of MSCs does not require 
major histocompatibility complex match. Here, our survey 
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Figure 4. �The 10x single-cell RNA sequencing showed the expression of human leucocyte antigen (HLA) genes: (A) HLA-A, (B) HLA-B, 
(C) HLA-C, (D) HLA-DPA1, (E) HLA-DPB1, and (F) HLA-G. The bar code in the upper left corner shows the intensity of the gene 
expression. One point represents 1 cell, and gray and red colors indicated low and high expression, respectively.
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revealed that WJ-MSCs highly expressed human leucocyte anti-
gen (HLA) type I antigens, namely HLA-A, HLA-B, and HLA-C genes. 
Meanwhile, WJ-MSCs partially expressed HLA type II antigens, 
namely HLA-DPA1 and HLA-DPB1 genes (Figure 4). There was 
scant expression of HLA-II gene family members, such as HLA-
DRA, HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-DQA2, HLA-DQB1, 
and HLA-DQB2. Moreover, HLA-G was not expressed at all; this 
gene encodes the HLA-G protein, which is the key factor in re-
sistance to immunological rejection. The Smart-seq2 scRNA-seq 
analysis matched those results, and the levels of relative gene 
expression were 98.14±30.76 (HLA-A), 35.84±11.20 (HLA-B), 
58.50±5.26 (HLA-C), 2.80±2.46 (HLA-DPA1), 1.68±1.64 (HLA-DPB1), 
0.01±0.01 (HLA-DRA), 0.09±0.09 (HLA-DRB1), 0.00±0.00 (HLA-
DRB5), 0.17±0.11 (HLA-DQA1), 0.00±0.00 (HLA-DQA2), 0.00±0.00 
(HLA-DQB1), 0.02±0.02 (HLA-DQB2), and 1.03±0.32 (HLA-G).

Cell Cluster Analysis

This survey first showed the cell cluster analysis on WJ-MSCs 
with the Monocle 2 method by X Ten RNA sequencing. When 
gene expression was similar between 2 cells, they would be 
close to one another, as shown in Figure 5A. Finally, 12 469 
cells were divided into 3 clusters by a graph-based method, 

namely Cluster 1 (12.6%), Cluster 2 (61.1%), and Cluster 3 
(26.3%). There were 6964 DEGs belong to Cluster 1, which 
had significant differences compared with the other 2 clus-
ters. Similarly, there were 8355 and 8218 DEGs in Clusters 2 
and 3, respectively (Figure 5B). Upon analysis and calculation 
of unique DEGs in each cluster, we determined cell markers 
for each. Marker genes for Cluster 1 were CRIM1, GLS, PLOD2, 
NEXN, ACTR2, FN1, MBNL1, LMOD1, COL3A1, NCL, SEC62, EPRS, 
COL5A2, COL8A1, and VCAN. Marker genes for Cluster 2 were 
RPL31, SCRG1, RPS10, ID3, SERPINE2, SPARC, CDKN1A, S100A6, 
RPSA, C6orf48, EEF1A1, COX7A2L, SPON2, RPS18, and TPD52L1. 
Marker genes for Cluster 3 were HMGN2, EBNA1BP2, SERBP1, 
ENO1, NUDC, CDC20, DIRAS3, MRTO4, CLSPN, KIF2C, DEPDC1, 
STMN1, CDCA8, NASP, and PSRC1. Figure 5C presents a gene 
heatmap of the top DEGs of the whole population based on 
the each top 10 DEGs unique to each cluster.

Cell Cluster Trajectory Analysis

Cell cluster trajectory analysis can provide a clear view of both 
branched and linear differentiation. As shown in Figure 6, all cells 
could be set in 5 states marked by 5 different colors, with points 
1 and 2 being the quasi-differentiation branch nodes. Cluster 1 
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Figure 5. �Monocle cell cluster analysis. (A) Three clusters were divided according to the differentially expressed genes (DEGs): Cluster 1 
(), Cluster 2 (), and Cluster 3 (). (B) The number of DEGs in each of the 3 clusters. (C) Gene heatmap of the top DEGs of 
the whole population based on the each top 10 DEGs unique to each cluster.
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was present in all states but mainly in states 1, 4, and 5. Cluster 
2 was present in state 5. Cluster 3 was present in states 1, 2, and 
3 (Figure 6A, 6B). Moreover, the top 6 related genes in the pseu-
do-time analysis were AURKAIP1, ENO1, HNRNPR, MRTO4, SRM, 
and STMN1. Considering the matching relationship, Cluster 1 ap-
peared in most periods (Figure 6C). In the form of a heat map, 
the top 50 genes of the 3 clusters most related to the change 
of quasi-time series over time are shown in Figure 7. Cluster 1 
had many more genes that were more highly expressed later 
in time, indicating that these cells had a greater capacity to be-
come different functional cells. However, Cluster 2 seemed to be 
inactive over time and Cluster 3 seemed to be stable.

GO and KEGG Analyses

For all 3 clusters, the top 2 fields related to biological process-
es, cellular components, and molecular functions, respectively, 

were cellular process and metabolic process, cell and cell part, 
and binding and catalytic activity. KEGG pathway analysis of 
the 3 clusters demonstrated that they were mainly connected 
with viral infectious diseases, cancer, and endocrine and met-
abolic disorders. Organismal systems mainly pointed to en-
docrine and immune systems (Figure 8). Moreover, the most 
expressed transcription factors were zf-C2H2, HMG/HMGY, 
and Homeobox.

Discussion

The concept of MSCs was first named by the biologist Arnold 
Caplan in 1991 [24], with numerous reports about these cells 
emerging afterward. The basic characteristics in vitro and appli-
cations in vivo were explored. However, the concepts of MSCs 
and mesenchymal stromal cells gradually became confused [25]. 
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In 2006, the International Society for Cellular Therapy advised 
naming the cells “mesenchymal stromal cells” rather than 
MSCs and established 3 standards for identifying the cell pop-
ulation [26]. In addition, increasingly more researchers grew 
to doubt that these cells were real stem cells [27,28]. In 2010, 
Caplan [29] first proposed calling them “medicinal signaling 
cells” to more accurately reflect the fact that the cells home 
in on an injury and secrete bioactive factors that are immu-
nomodulatory and trophic (regenerative), but are in fact not 
stem cells. In 2017, he urged this again [30]. To reveal this bet-
ter, omics approaches, such as those designed to analyze the 
gene expression patterns of a cell, help to discover their true 

basic characteristics. To the best of our knowledge, the current 
study is the first high-throughput gene expression resolution 
of mesenchymal signaling cells at a single-cell level paired with 
Smart Seq2 scRNA-seq to quantify the gene expression level.

MSCs have powerful immunomodulatory functions through 
modulating innate immunity (monocytes/macrophages and 
dendritic cells) and adaptive immunity (T cells and B cells). 
MSCs impair the maturation of dendritic cells that can acti-
vate T cells. In addition, MSCs can secrete several types of an-
ti-inflammatory cytokines, such as tumor necrosis factor-a, 
stimulated gene-6, nitric oxide, interleukin-10, prostaglandin 
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Figure 8. �Gene ontology analysis (A) and Kyoto Encyclopedia of Genes and Genomes analysis (B).
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E2, indoleamine 2,3 dioxygenase, Fas ligand, and Jagged1 [3]. 
Indeed, in our RNA sequencing, MSCs highly expressed genes 
of anti-inflammatory and trophic factors, such as transform-
ing growth factor-b, vascular endothelial growth factor, epi-
dermal growth factor, hepatocyte growth factor, leukemia in-
hibitory factor, galectin, nitric oxide associated 1, fibroblast 
growth factor, nerve growth factor, and brain-derived neuro-
trophic factor. Therefore, MSCs have been regarded as a useful 
treatment alternative for inflammatory disorders such as graft-
versus-host disease, Crohn disease, systemic lupus erythema-
tosus, and type 1 diabetes. However, most of the transplant-
ed cells do not survive longer than 1 month in animal models. 

Our work suggests that MSCs highly express HLA-A/B/C, indi-
cating that the HLA matching may be necessary to evade this 
risk in clinical transplantation. However, another hypothesis 
suggests that once the MSCs differentiate into the target func-
tional cells, they lose immunogenicity and are rejected by the 
host. More research is needed to confirm these possibilities.

MSCs exhibit considerable heterogeneity that is not only from 
the different tissue sources of MSCs, different ages, and dif-
ferent cell culturing methods [6], but also from the cells them-
selves at the gene expression level, as shown in the current 
analysis. Obviously, the MSCs are not from 1 clone, and our 
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work showed that even 2 cells from 1 sample could display 
much different gene expression maps. To an extent, all the 
genes mentioned above were differentially expressed in the 
10x scRNA-seq survey. Nevertheless, our newest data show 
that the whole gene expression map of a population of MSCs 
seems to remain stable from passage 1 to 7, especially for the 
first 3 passages (data not shown). As for the multipotent dif-
ferentiation, endodermal differentiation (expected for MSCs) 
is the main direction, and MSCs have scant expression of the 
genes related to ectodermal differentiation. Furthermore, some 
cells expressed genes related to endodermal and mesodermal 
differentiation simultaneously, while others only one type or 
the other; that is, some cells were bipotent, while others were 
unipotent. The following cell cluster and trajectory gene analy-
sis also confirmed that only Cluster 1 (12.6% of all cells) acted 
as stem cells. In brief, our work provides meaningful new clues 
about the nature of MSCs at a single-cell gene level. More re-
search about the subpopulations of MSCs is necessary in future.

There are 2 limitations in this work. First, there was only 1 bi-
ological repetition for the 10x scRNA-seq survey because of 
funding limitations, which may result in bias. Fortunately, we 
used the Smart-seq2 scRNA-seq method to quantify the tar-
get genes, which was less expensive as well as useful. The 10x 
scRNA-seq survey gave us a direct view of the gene expres-
sion map, and the quantified results in the Smart-seq2 scRNA-
seq analysis matched with those results. The second limita-
tion of our work is that it only involved in vitro analysis. The 

properties of cells functioning in vivo and those of their de-
scendants that undergo expansion in culture in vitro can differ 
significantly, although some properties of parental cells can un-
doubtedly be inherited by daughter cells. In addition, our work 
focused on WJ-MSCs. Whether MSCs from other sources have 
the same characteristics needs to be explored. More well-de-
signed in vitro and in vivo research is necessary in the future.

Conclusions

This high-throughput scRNA-seq survey and the Smart-seq2 
scRNA-seq analysis provided a comprehensive gene expres-
sion analysis of WJ-MSCs. Overall, we conclude that only a sub-
population of WJ-MSCs may be real stem cells and the MSCs 
probably do not have immune privilege.
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