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Optimizing a neural network’s topology is a difficult problem for at least two reasons: the topology space is discrete, and the quality
of any given topology must be assessed by assigning many different sets of weights to its connections. These two characteristics
tend to cause very “rough.” objective functions. Here we demonstrate how self-assembly (SA) and particle swarm optimization
(PSO) can be integrated to provide a novel and effective means of concurrently optimizing a neural network’s weights and topology.
Combining SA and PSO addresses two key challenges. First, it creates a more integrated representation of neural network weights
and topology so thatwe have just a single, continuous search domain that permits “smoother” objective functions. Second, it extends
the traditional focus of self-assembly, from the growth of predefined target structures, to functional self-assembly, in which growth
is driven by optimality criteria defined in terms of the performance of emerging structures on predefined computational problems.
Our model incorporates a new way of viewing PSO that involves a population of growing, interacting networks, as opposed to
particles. The effectiveness of our method for optimizing echo state network weights and topologies is demonstrated through its
performance on a number of challenging benchmark problems.

1. Introduction

In this paper we demonstrate how two very different nature-
inspired methodologies, self-assembly (SA) [1] and particle
swarm optimization (PSO) [2], can be integrated to provide
a novel and effective means of concurrently optimizing a
neural network’s weights and topology. Such an approach
addresses two important challenges. The first challenge is
finding a more integrated representation of neural network
weights and topology, so that rather than having to search in
both a continuousweight space and a discrete topology space,
there is just a single, continuous search domain that permits
“smoother” objective functions. The second challenge is
extending the traditional focus of self-assembly research from
the growth of predefined target structures to functional self-
assembly, in which growth is driven by optimality criteria
defined in terms of the quality or performance of the
emerging structures on predefined computational problems.

Swarm intelligence systems, which consist of autonomous
agents interacting in a simple and local manner, exhibit

complex global behavior that emerges as a consequence of
local interactions among the agents [3–10]. Researchers have
created a wide range of new problem-solving algorithms
inspired by nature and based on the governing principles of
swarm intelligence [11–17]. Of particular importance to the
research presented in this paper is the powerful and broadly
applicable swarm intelligence based optimization method
known as particle swarm optimization (PSO) [18–23].

Particle swarm optimization has been applied exten-
sively to train neural network weights. A wide variety of
different adaptations and hybridizations of PSO have been
developed for this purpose [24–30]. Despite the success in
using PSO to optimize network weights, there has been
only limited success in applying it to topology optimiza-
tion, and such applications have largely been restricted to
feedforward networks. The methods that do exist implement
fairly complicated adaptations of the basic PSO algorithm
or enforce stringent restrictions on the domain of feasible
network topologies [31–33]. While the method presented
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Figure 1: Schematic of an echo state network (ESN). The solid
arrows represent connections with fixed weights, and the dashed
arrows represent connections with trainable weights. Connections
from the input layer to the output layer and from the output layer
to the reservoir are optional. As usual, input to the network enters
through the input layer and the network’s output is generated in the
output layer.The bias node and its connections with fixed weights to
the reservoir are not shown.

in this paper does not adapt the number of nodes in the
network, as some other algorithms do, it optimizes over
general, recurrent neural network topologies using one of the
most basic forms of PSO, which is a unique feature of our
approach. Furthermore, the form of the underlying model
of network growth that we present here does not place any
constraints on the type of PSO used to drive the optimization,
and therefore the user may readily swap in whatever version
of PSO is deemed most suitable for the learning task at
hand. Our method’s incorporation of basic PSO would be
particularly advantageous in cases where the topology of a
physical network was being optimized.

The work presented here involves the optimization of
a relatively recently developed class of recurrent neural
network models known as echo state networks (ESNs) [34].
Echo state networks have already been successfully applied to
a wide range of different problems [35–45].They consist of an
input layer, a hidden layer or “reservoir,” and an output layer
(shown in Figure 1). Typically, each neuron in the input layer
connects to every neuron in the reservoir; there is randomly
generated sparse connectivity among reservoir neurons; each
neuron in the reservoir connects to each neuron in the output
layer; a bias neuron may connect to the neurons in the
reservoir, and sometimes connections from the input layer to
the output layer and from the output layer to the reservoir
are present. The central innovation of the echo state network
approach is that only the weights on the connections from the
reservoir to the output neurons (output weights) are trained,
and the activation functions of the output neurons are linear
so all that is needed to train them is linear regression. The
remaining weights are typically assigned random values. For
an echo state network with 𝑁

𝑟
reservoir neurons and 𝑁

𝑜

output neurons, the output weights are trained as follows. A
sequence of training data of length 𝐿 + 𝑀 is chosen, where
𝑀 > 𝑁

𝑟
.The first 𝐿 values of the sequence are passed through

the network in order to remove the effects of the initial state
of the reservoir. Then, the remaining𝑀 values are input into
the network, and the resulting reservoir states ⃗𝑒

𝑖
∈ R𝑁𝑟 ,

for 𝑖 = 1, . . . ,𝑀, are assigned to the rows of the matrix
S ∈ R𝑀×𝑁𝑟 . For each network input, and resulting reservoir
state ⃗𝑒

𝑖
, there is a target network output ⃗𝑑

𝑖
.The target network

outputs are assigned to the rows of the matrix D ∈ R𝑀×𝑁𝑜

such that the 𝑖th rows of S and D are the corresponding
reservoir state and target output pair. LetW ∈ R𝑁𝑟×𝑁𝑜 be the
output weight matrix, where the 𝑗th column ofW represents
the weights on the connections from the reservoir to the
𝑗th output neuron. Training the output weights amounts to
finding an approximate solution W

𝑎
to the overdetermined

system

SW = D. (1)

The output weights W
𝑎
are determined by solving (1) in a

“least squares” sense.
Self-assembly involves the self-organization of discrete

components into a physical structure, for example, the growth
of connections between nodes in a physical network. Work
in this area has traditionally focused on what we will refer to
as the classic self-assembly problem, which entails the design
of local control mechanisms that enable a set of components
to self-organize into a given target structure, without indi-
vidually preassigned component positions or central control
mechanisms. Issues surrounding self-assembly have been a
very active research area in swarm intelligence over the last
several years, with recent work spanning computer simula-
tions [46–51], physical robotics [52–57], and the modeling of
natural systems [1, 12]. However, to the best of our knowledge,
there has been no work on using swarm intelligence methods
to extend the classic self-assembly problem to functional self-
assembly, in which components self-organize into a comput-
ing structure that is optimized for a predefined computational
problem.

The research presented in this paper is concerned with
the self-assembly of neural network architectures. Unlike
most past work on self-assembly, a major aspect of the
work presented here involves the growth of connections
between discrete, spatially separated nodes/components [58].
We recently demonstrated how swarm intelligence in the
form of collective movements can increase the robustness of
network self-assembly and enhance the ability to grow large,
topologically complex neural networks [50]. However, this
earlier work focused on the classic self-assembly problem
where a target network was prespecified, which is in contrast
to the more difficult problem of functional self-assembly that
we consider here.

Other related past works in computer science and
engineering, where research on artificial neural networks
is concerned with application-related performance, have
largely ignored the issues of neural network growth, devel-
opment, and self-assembly, with two exceptions. First, a
number of computational techniques have been created to
optimize neural network architectures by adding/deleting
nodes/connections dynamically during learning [59–63].
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Unlike the approach taken here, these past network construc-
tion methods do not involve growth or self-assembly in a
physical space and so are not considered further. Second, a
technique known as developmental encoding has been used
by researchers evolving neural network architectures with
genetic algorithms/programming [64–70]. Unlike the work
presented here, in these past techniques different individ-
uals within a population do not directly interact with one
another during the development process. Such interaction
occurs only indirectly through the processes of selection and
crossover.

Both weights and topology affect a neural network’s per-
formance. To date, substantially more focus has been placed
on techniques for optimizing a neural network’s weights as
opposed to its topology (the number and connectedness of
its nodes). One of the primary reasons for this discrepancy
is that the space searched by an optimization method for a
good set of weights (the “weight space”) is continuous.Thus a
good set of weights can be found using one of awide variety of
powerful and well-studied optimization techniques based on
local gradient information [71]. Additionally global optimiza-
tion techniques such as particle swarm optimization (PSO),
evolutionary computation (EC), and simulated annealing
have proven to be very effective at weight optimization.

When optimizing in continuous domains, specifically
multidimensional Euclidean space R𝑛, optimization algo-
rithms tend to operate under the basic heuristic (referred
to here as the continuity-heuristic) that, given two points in
a search space, each of which represents a good solution,
it is likely that a better solution exists somewhere between
or around these points. This heuristic has been found to be
generally useful in optimizing objective functions defined
on R𝑛. The “topology space,” however, is a discrete space.
The discrete nature of this search domain coupled with the
intrinsic interdependence between neural network weights
(parameters) and topology (structure) results in a variety
of additional challenges not encountered when optimizing
the weights of a network with a fixed architecture. First,
it is common for many of the nodes in a neural network
to be identical from a computational perspective, such as
the nodes in the hidden layer, which means that many
pairs of points in the topology space that are far apart will
represent identical or very similar topologies. Second, certain
connections may influence performance much more than
others. This effect depends on factors such as a network’s
topology, the learning algorithmused, and the computational
problem a network is tasked with solving. This means
that in typical representations of the topology space, where
a network that has an input-to-output connection would
have a nearly identical representation to one that does not
have such a connection (all other connections being the
same), many points (topologies) that are near each other
will represent network architectures that are associated with
vastly different fitness values.Third, the quality of a particular
topology is dependent on the set of weights associated
with it and vice versa. This interdependence means that,
rather than having a fixed fitness value, a point (topology)
in the topology space has a distribution of fitness values
generated by associating different sets of weights with its

connections.This fact increases the “roughness” of the fitness
landscape defined over the topology space. The first of the
above characteristics implies that the distance between two
points in the topology space often does not accurately reflect
the similarity/dissimilarity of the topologies represented by
the points. The second and third characteristics, coupled
with the discrete nature of the topology space, imply that
nearby points often represent topologies with very different
fitness values, which produces very rough fitness/objective
functions.Therefore, the properties thatmake the continuity-
heuristic useful in theweight space are largely absent from the
topology space.

If we could find a more integrated means of represent-
ing neural network weights and topology, such that the
search domain consisted of a single, continuous “weight-
topology space,” then this representation might preserve the
continuity-heuristic and permit smoother objective func-
tions. This is precisely what we have done. The integra-
tion involves representing weights and topology using self-
assembling neural networks that grow through a single, con-
tinuous three-dimensional space. Our approach makes use
of the fact that given two neural networks with different
topologies, if the connections that these networks do not
have in common have weights that are small enough in
magnitude, then the networks will have roughly the same
effective topologies in the sense that signals transmitted via
these connections will be highly attenuated and thus tend to
have very little influence on network dynamics. Therefore,
from the perspective of network performance, it is as if
the connections are not actually there. The idea of a neural
network having an effective topology is a key concept in
the work presented here. It explains why our approach can
simultaneously optimize both weights and topology while
operating over a continuous space. Specifically, as long as
the weight threshold that triggers the removal (addition) of
a connection is small enough, then traversing this threshold
in the direction that results in the removal (addition) of
a connection will yield a network with a new topology
but which has nearly identical dynamics compared to its
counterpart network. This is the case because the removed
(added) connection would have a weight with magnitude
near 0. Thus, if the objective function depends only on
network dynamics, then this newnetwork and its counterpart
will evaluate to nearly identical values under the objective
function.

The primary contributions of the work presented here
arise from addressing the challenges inherent in the simulta-
neous optimization of neural network weights and topology.
The first contribution is the development of a means of
using network self-assembly as a representation of the search
domain encountered in this optimization problem, thereby
simplifying the domain to a single, continuous space. Second,
our work puts forward a new way of viewing PSO that
involves a population of growing, interacting networks, as
opposed to particles. This adaptation is used to turn the
self-assembly process into an optimization process and, to
the best of our knowledge, is the first demonstration of
such a complimentary relationship between self-assembly
and particle swarm optimization. Third, the version of PSO
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that our work incorporates, which is a particularly elegant
form of the algorithm, has not been previously used to simul-
taneously optimize neural network weights and topology.
Lastly, we demonstrate the effectiveness of a software-based
implementation of the integration of self-assembly and PSO
by using it to grow high-quality neural network solutions
to a variety of challenging benchmark problems from the
domains of time-series forecasting and control.

2. Methods

In this section we introduce our model that represents an
extension of the traditional self-assembly problem in that the
growth of network structures is based on optimality criteria
and not on target structures that are specified a priori.

2.1. Integrating Self-Assembly and Particle Swarm Optimiza-
tion. We now present the details of our model for simultane-
ously optimizing neural network weights and topology. We
call this model SINOSA, which stands for Swarm Intelligent
Network Optimization through self-assembly. In this model
groups of growth cones that belong to different networks
simultaneously grow through the same three-dimensional
space. During the growth process the growth cones from dif-
ferent networks interact with one another through a mecha-
nism inspired by particle swarm optimization. Concurrently,
the networks receive input derived from a computational
problem that they must learn to solve. The combination of
this interaction, and the activity run through the networks
during the development process, leads to the self-assembly
of neural networks with weights and topologies that are
optimized for solving the problem at hand. An animation
that exemplifies the growth process can be viewed at sup-
plied URL (see Supplementary Material available online at
http://dx.doi.org/10.1155/2015/642429).

2.1.1. Objects and Relations. Throughout this section the
concrete example of the model illustrated in Figure 2 is
referenced for clarification. The SINOSA model consists of a
set of cellsCwith fixed positions in 3D space that are assigned
a priori. The cells represent neuron cell bodies. Each cell
𝑐
𝑖
∈ C has a set N

𝑐
𝑖

⊆ C, which may be empty, of “neighbor”
cells that it can connect to, where 𝑖 = 1, 2, . . . , |C|. In Figure 2
the three large grey spheres represent cells C, and each cell
is allowed to connect to any other cell, including itself. Thus,
N
𝑐
𝑖

= C, for 𝑖 = 1, 2, 3.
Each growing network consists of the same set of cells C

and a unique set of growth cones that guide the network’s
axons through the three-dimensional space. Given 𝑛 simul-
taneously growing networks, each cell 𝑐

𝑖
has 𝑛 sets of growth

cones G
𝑖𝑗
, where 𝑗 = 1, 2, . . . , 𝑛. Any given cell 𝑐

𝑖
contributes

the same number of growth cones to each growing network.
That is, for all 𝑗 and ℓ, |G

𝑖𝑗
| = |G

𝑖ℓ
|, ensuring that all of

the growth cone neighborhoods (explained below) among
the growth cones in G

𝑖
= ⋃
𝑗
G
𝑖𝑗
are of the same size.

If N
𝑐
𝑖

is empty, then so is G
𝑖𝑗
, for all 𝑗. The 𝑗th growing

network gnet
𝑗
consists of the set of cells C and the set

of growth cones G
𝑗
= ⋃
𝑖
G
𝑖𝑗
that produce the network’s

growth. That is, gnet
𝑗
is defined by the ordered pair ⟨C,G

𝑗
⟩.

Because each growing network consists of the same set of cells
C, they all have exactly the same number of growth cones
(|G
𝑗
| = |G

ℓ
|, where 𝑗, ℓ = 1, 2, . . . , 𝑛). In Figure 2 the small

circles represent growth cones, and the lines that connect
the cells and growth cones are axons. In this case there are
𝑛 = 3 growing networks, each having six growing axons.
The growing axons of any particular network are shown in
a unique line-style (solid, dotted, or dash-dot). To clarify
this, Figure 2(b) shows only the solid-line growing network.
Figure 2(c) shows the static network that is derived from
the solid-line growing network, which is described in the
next section. Figure 2(a) illustrates how all three networks
simultaneously grow through the same space and share the
same three cells.

Let 𝑐
𝑘
∈ N
𝑐
𝑖

be the 𝑘th neighbor cell of 𝑐
𝑖
. Then for

each 𝑐
𝑘
, the cell 𝑐

𝑖
contributes exactly two growth cones (𝑔𝑠

𝑖𝑗𝑘

for 𝑠 ∈ {“ + ”, “ − ”}) to each of the growing networks
𝑗 = 1, 2, . . . , 𝑛. When 𝑠 = “+” the growth cone represents
positively weighted connections, and when 𝑠 = “−” the
growth cone represents negatively weighted connections.The
positive-negative growth cone pair 𝑔+

𝑖𝑗𝑘
and 𝑔−
𝑖𝑗𝑘

may establish
connections to exactly one target cell, namely, 𝑐

𝑘
. Based on

these relations and since N
𝑐
𝑖

= C for 𝑖 = 1, 2, 3 in Figure 2,
each of the cells contributes three positive-negative growth
cone pairs to each of the three growing networks. However,
for the sake of clarity only 6 of the 18 growing axons per
network are shown.

2.1.2. Interpreting Network Growth as Self-Assembly. The
SINOSA model grows neural networks that, in their com-
pleted form, have fixed connections. Thus, it is necessary to
interpret the positions of a growing network’s growth cones
relative to their target cells so as to map a growing network
gnet
𝑗
, to a static network snet

𝑗
. In particular, if the positive-

negative growth cone pair 𝑔+
𝑖𝑗𝑘

and 𝑔−
𝑖𝑗𝑘

from cell 𝑐
𝑖
and

growing network gnet
𝑗
are both positioned so as to be able

to establish a connection to cell 𝑐
𝑘
, then the weight on the

connection from 𝑐
𝑖
to 𝑐
𝑘
in the static network snet

𝑗
is the

sum of the individual weights contributed by the growth cone
pair.

In the SINOSA model the function from the space of
growing networks to the space of static networks is designed
around the need to create a neural network representation
that more closely integrates the concepts of topology and
connection weight so that the canonical PSO algorithm can
be used to optimize these network characteristics effectively.
This function is implemented as follows. Each growth cone
is considered to be at the center of its own spherically
symmetric “weight field” that is finite in extent, and its
corresponding weight has a magnitude that decreases to zero
as the distance from the growth cone increases. A growth
cone establishes a connection with a target cell if the cell
is within the boundary of its weight field; otherwise no
connection is created. The spacing between cells is such that
no more than one cell can be within a growth cone’s weight
field at any given time. The weight on the connection is
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Figure 2: Three growing neural networks and their interpretations as static neural networks based on the SINOSA model. The three large
spheres represent cells, the smaller circles represent growth cones, and the lines between cells and growth cones denote connections (axons).
The growth cones that are drawn with a “+” symbol have a positive weight field, and those that are drawn with a “−” symbol have a negative
weight field. (a)The growth cones and axons that belong to a particular growing network are all shown with the same line-style (solid, dotted,
or dash-dot). The straight dashed lines between growth cones indicate two of the six growth cone neighborhoods. Growth cones within a
neighborhood interact with one another according to the canonical PSO algorithm. All three growing networks share the same three cells.
(b) The solid-line growing network is shown without the other two. (c) The corresponding static network to which the solid-line growing
network is mapped based on the proximity of its growth cones to their target cells. The numbers represent connection weights.

the value of the field at the target cell’s center. Formally, a
weight field is a function from R to R with the form

𝑤 (𝑟) =
{

{

{

𝑎𝑟
𝛼

+ 𝑏, if 𝑟 < 𝑟
0

0, if 𝑟 ≥ 𝑟
0
,

(2)

where 𝑎, 𝑏 ∈ R, 𝑟 ≥ 0 is the distance of the target cell from the
center of the growth cone, 𝑟0 > 0 is the extent of the weight
field, and 𝛼 > 0. In the SINOSA model it is assumed that
𝑤(𝑟) → 0 as 𝑟 → 𝑟0. Thus 𝑤(𝑟0) = 𝑎𝑟

𝛼

0 + 𝑏 = 0, which
implies that 𝑎 = −𝑏/𝑟𝛼0 = −𝑤(0)/𝑟

𝛼

0 . Figures 2(b) and 2(c)

illustrate how one of the three interacting, growing networks,
shown together in Figure 2(a), is mapped to a static network
based on the weight field interpretation of the growth cones’
positions relative to their target cells. The growth cones that
are drawn with a “+” symbol have a positive weight field
represented by the function

𝑤
+
(𝑟) =

{

{

{

−
1
2
𝑟 + 1, if 𝑟 < 2

0, if 𝑟 ≥ 2,
(3)
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where 𝑟 is the distance between a growth cone and one of
its target cells. The growth cones that are drawn with a “−”
symbol have a negative weight field expressed by the function

𝑤
−
(𝑟) =

{

{

{

1
2
𝑟 − 1, if 𝑟 < 2

0, if 𝑟 ≥ 2.
(4)

Thus, in this scenario the weights are restricted to the interval
[−1, 1]. Figure 2(b) shows the solid-line network’s growing
axons, along with the distance between each growth cone and
its nearest target cell. Figure 2(c) shows the static network
derived from the solid-line growing network. The numbers
here are the connection weights. This mapping occurs as
follows. The cell shown in the lower left hand corner of
Figures 2(b) and 2(c) establishes a connection with weight
𝑤
−
(1.5) = −0.25 to the upper cell but does not establish

a connection with the cell in the lower right hand corner
because 𝑤

+
(2.2) = 0. The upper cell makes a connection

to the lower left hand cell with weight 𝑤
+
(0.5) + 𝑤

−
(1.3) =

0.4. The lower right hand cell makes a connection to the
lower left hand cell with weight 𝑤

+
(1.3) = 0.35, and it

makes a connection to the upper cell with weight 𝑤
−
(0.7) =

−0.65. The other two growing networks are mapped to their
corresponding static network representations in an analogous
manner.

The function that maps growing networks to static net-
works is formulated so that a small change in the position
of a growth cone produces a small change in the weight
on a connection, or if the change in position results in the
addition or removal of a connection, then the added or
removed connection has a weight that is small in magnitude.
In other words, a small change in the physical configuration
of a growing network will produce a small change in the
weights and topology of the static network to which it
is mapped. This characteristic, coupled with the fact that
network optimization via the SINOSA model occurs in a
single, continuous weight-topology space, results in much
smoother objective functions.

2.1.3. Incorporating PSO. Using network self-assembly as our
representation scheme yields a single, continuous weight-
topology space that needs to be searched during the opti-
mization process. In other words, we need to extend the
classic self-assembly problem to functional self-assembly.
Given that we have a single, continuous search domain, a
wide variety of different optimization algorithms could be
used for this purpose. However, we chose to use the PSO
algorithm because it is intuitive and effective, and our model
incorporates a version of the algorithm for which application
to the concurrent optimization of neural networkweights and
topology has not previously been explored. Specifically, we
utilize one of the most basic formulations of PSO, which will
be referred to as canonical PSO. Canonical PSO specifies that
the particles velocities are governed by

V⃗
𝑖
(𝑡 + 1) ← 𝜒 (V⃗

𝑖
(𝑡) + 𝑎

𝑝
�⃗�1 ⊗ (�⃗�𝑏𝑒𝑠𝑡,𝑖 − ⃗𝑟𝑖) + 𝑎𝑛�⃗�2

⊗ ( ⃗𝑛
𝑏𝑒𝑠𝑡,𝑖
− ⃗𝑟
𝑖
)) ,

(5)

where ⃗𝑟
𝑖
(𝑡) is the position of the 𝑖th particle at time 𝑡, V⃗

𝑖
(𝑡)

is its velocity, �⃗�
𝑏𝑒𝑠𝑡,𝑖

is the current best position of the 𝑖th
particle, ⃗𝑛

𝑏𝑒𝑠𝑡,𝑖
is the best position among any of its neighbor

particles, 𝜒 is a scaling factor known as the constriction
coefficient, 𝑎

𝑝
and 𝑎

𝑛
are positive constants, �⃗�1 and �⃗�2 are

vectors whose components are drawn from the uniform
probability distribution over the unit interval, and the ⊗
symbol represents the component-wise vector product (i.e.,
[𝑎1 𝑎2] ⊗ [𝑏1 𝑏2] = [𝑎1𝑏1 𝑎2b2]). It is standard practice to
update the positions of the particles using a Forward Euler
step with a step-size of 1.0; that is, ⃗𝑟

𝑖
(𝑡 + 1) ← ⃗𝑟

𝑖
(𝑡) + V⃗

𝑖
(𝑡 + 1).

The appeal of this version of PSO lies in its simplicity and
in its proven effectiveness on a wide range of optimization
problems.

In order to integrate particle swarm optimization and
self-assembly the particles in PSO are viewed as being part
of a larger structure. Almost all implementations of PSO
consider the particle to be the fundamental type of object
capable ofmovement and interaction during the optimization
process. In the research presented here, the growing network
plays the role of the fundamental type of object involved
in the optimization process. That is, instead of a population
of moving particles, there is a population of growing net-
works. The transition from particles to networks is achieved
by having growth cones play the role that particles do in
traditional PSO. Growth cones occur at the leading tips of
growing axons (connections) and guide their movements
through the physical space. The growth cones’ movements
are dictated by the canonical PSO equation (5), and because
growth cones occur at the leading tips of growing axons, their
movements generate network growth. Unlike in traditional
PSO, the position of a growth cone (particle), however it is
interpreted, is only meaningful when the axon/neuron that it
is a part of is taken into account.

Since the growth cones from different growing networks
interact with one another according to the canonical PSO
algorithm, during the self-assembly process each growth cone
must be assigned a quality (fitness) value that indicates the
usefulness of the best solution component (connection) the
growth cone has found, and it must remember its personal
best position, which represents the best connection found by
the growth cone up to the current point in the growth process.
Specifically, at each discrete time-step 𝑡 ∈ N the performance
of each static network snet

𝑗
(𝑡) on some set of training data is

determined, where 𝑗 = 1, 2, .., 𝑛. For each growing network
gnet
𝑗
(𝑡), if the performance of snet

𝑗
(𝑡) is better than the

performance of snet
𝑗
(𝑡 − 𝜏) for all 𝜏 ∈ N such that 0 <

𝜏 ≤ 𝑡, then the fitness value of gnet
𝑗
(𝑡), or more specifically

its growth cones 𝑔𝑠
𝑖𝑗𝑘
∈ G
𝑗
, is set to the performance value

of snet
𝑗
(𝑡), and the personal best position of each growth

cone 𝑔𝑠
𝑖𝑗𝑘

is set to its current position. In theory, it is possible
to determine the fitness of each growth cone in a network
individually, rather than collectively at the network level. To
do this one would need to determine a fitness value propor-
tional to E[Network Performance | Growth Cone Weight],
the expected value of the network’s performance as a function
of the growth cone’s weight. We chose the former approach
for two reasons. First, computing such an expectation value
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requires averaging network performance over a very large
number of possible growth cone positions that constitute
instantiations of different networks. Second, each individual
connection has only minimal influence on network perfor-
mance, and thus optimizing them individually tends to lead
to convergence on suboptimal solutions.

Any growth cone 𝑔𝑠
𝑖𝑗𝑘

must have a set of neighbor growth
cones N

𝑔
𝑠

𝑖𝑗𝑘

that influence its movements. As in most imple-
mentations of PSO, the research presented here adheres to the
condition that the neighbor relation is symmetric. That is, if
𝑔
𝑠

𝑖ℓ𝑘
is a neighbor of𝑔𝑠

𝑖𝑗𝑘
, then𝑔𝑠

𝑖𝑗𝑘
is a neighbor of𝑔𝑠

𝑖ℓ𝑘
.There is

a wide variety of different ways that a growth cone’s neighbors
could be selected. However, certain characteristics of the self-
assembly/optimization process limit the number of useful
choices. It is an underlying assumption of the PSO algorithm
that the closer two neighbor particles get to one another, the
more similar the solutions or solution components that their
positions represent are. It is essential for the effectiveness
of the PSO algorithm that if two growth cones 𝑔𝑠

𝑖𝑗𝑘
and

𝑔
𝑠

𝑖ℓ𝑘
are neighbors, and they occupy the same position, then

they represent exactly the same weighted connection in their
respective static networks snet

𝑗
and snet

ℓ
.

In the SINOSA model, if two growth cones occupy the
same position but are guiding axons from different cells, then
they represent two completely different connections (solution
components). Likewise, if two growth cones occupy the same
position but do not have exactly the same set of target cells,
then they may represent different connections. These two
scenarios, and the need for growth cones that are neighbors
to avoid circumstances where they occupy the same position
and yet represent different weighted connections, lead to
three necessary growth cone neighborhood properties. First,
if a pair of growth cones are neighbors, then they must
be guiding axons from the same cell. Second, if a pair of
growth cones are neighbors, then they must have exactly
the same set of target cells. Third, if a pair of growth cones
are neighbors, then their weight fields must be expressed by
the same function. The following is a simple and effective
way of choosing a growth cone’s neighbors such that these
properties are satisfied. For any cell 𝑐

𝑖
and growing network

gnet
𝑗
, the neighbor growth cones of the growth cone 𝑔𝑠

𝑖𝑗𝑘
∈

G
𝑖𝑗
with target cell 𝑐

𝑘
and sign 𝑠 are members of the set

N
𝑔
𝑠

𝑖𝑗𝑘

⊂ {𝑔
𝑠

𝑖ℓ𝑘
∈ G
𝑖ℓ
| ℓ = 1, 2, . . . , 𝑛}. In Figure 2(a) the

dashed lines between growth cones explicitly show two of
the 18 growth cone neighborhoods (only 6 of the 18 growing
axons per network are shown). Because each growth cone
neighborhood consists of three growth cones connected in
a ring topology, N

𝑔
𝑠

𝑖𝑗𝑘

= {𝑔
𝑠

𝑖ℓ𝑘
∈ G
𝑖ℓ
| ℓ = 1, 2, 3 ∧ ℓ ̸= 𝑗}.

When the SINOSA model is used to grow a network
that is optimized for a computational problem, on every
time-step of the growth process, the performance of each
static network is evaluated and used to update the fitness
values of the growth cones. The positions of the growth
cones are then updated according to the canonical PSO
algorithm. Then, on the next time-step, the new physical
configurations of the three growing networks are mapped
to their corresponding static networks, and the evaluation

Mackey-Glass time-series
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Figure 3: An example of the time-series generated by (6) with
parameters 𝛼 = 0.2, 𝛽 = 10.0, 𝛾 = 0.1, and 𝜏 = 17.

process repeats. The growth process terminates, and the best
performing static network found during the growth process
is returned, after a predefined number of time-steps, or once
one of the static networks satisfies a prespecified performance
criterion.

2.2. Experimental Methods. Here, we cover the implemen-
tation details of the SINOSA model when it is used to
optimize neural networks for the Mackey-Glass time-series
forecasting problem and the double pole balancing problem.
These problems were selected because they are challenging
and widely used benchmark tasks in the domains of time-
series forecasting and control, and a wide variety of different
neural network training/optimization algorithms have been
used in solving them.

2.2.1. Computational Test Problems. The first problem is
forecasting the chaotic Mackey-Glass time-series [39, 72, 73].
The time-series is generated by the delay differential equation

𝑑𝑦

𝑑𝑡
=
𝛼𝑦 (𝑡 − 𝜏)

1 + 𝑦 (𝑡 − 𝜏)𝛽
− 𝛾𝑦 (𝑡) , (6)

where 𝛼, 𝛽, 𝛾, and 𝜏 ∈ R+. When 𝜏 > 16.8 the time-series is
chaotic. Figure 3 shows a sample of the time-series.

The second problem is the double pole balancing prob-
lem (see Figure 4), which is a classic benchmark control
problem, particularly for neural network controllers (neural
controllers) [74–76]. The double pole balancing problem
consists of using a controller to balance two poles with
different lengths that are hinged to the top of a cart thatmoves
along a track of finite length. The controller attempts to keep
the poles up-right by applying a force 𝐹

𝑐
to either side of the

cart in a direction parallel to the track. To be successful, the
controller must keep the cart within a specified distance 𝑥limit
from the center of the track, and itmust keep each pole within
a specified angular limit 𝜃limit from the vertical.The equations
governing the dynamics of a cart with𝑁 poles can be found
in [76].

2.2.2. Implementation Details. The SINOSA model is imple-
mented as a simulation environment written in Java. The
computational experiments presented in Section 3 each ran
on a computer with two quad-core 2.33GHz Intel Xeon
processors, 8 GB of shared RAM, and 12MB of L2 cache
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Figure 4: The cart-pole system used in the double pole balancing
problem. The state of the system is defined by the position 𝑥 of the
cart relative to the center of the track and the angular positions 𝜃1
and 𝜃2 of the large and small poles relative to the vertical.The control
force 𝐹

𝑐
is applied to the side of the cart, in a direction parallel to the

track.

per processor. The computational requirements listed here
are for the growth of echo state networks using collective
movements, unless stated otherwise. The environment in
which networks grow was unbounded and no particular
units were assigned to time and distance. The components of
growing networks (cells, axons, and growth cones) were not
able to collide with one another.The cells’ positions remained
fixed throughout the growth process. Unless stated otherwise,
in every experiment the positions of the cells were fixed on a
centered rectangular lattice with 8.0 distance-units between
adjacent lattice points; there were 16 growing networks, and
the growth cone neighborhoods adhered to a von Neumann
topology (square lattice with periodic boundary conditions).

The dynamics of the growth cones are governed by the
canonical PSO equation (5), where 𝑎

𝑝
= 𝑎
𝑛
= 2.0,𝜒 = 0.65 for

the Mackey-Glass experiments, and 𝜒 = 0.725 for the double
pole balancing experiments. For all of the experiments, each
growth cone’s weight field was linear (𝛼 = 1) and had a radius
𝑟0 = 2.0. By convention, one time-step in the SINOSAmodel
is equivalent to 1.0 unit of time.

Many of the experimental results presented in Section 3
are compared to control cases that incorporated random
growth conemovements, as opposed to collectivemovements
driven by the canonical PSO equation, generated as follows.
At every time-step of the growth process each growth cone
is placed at a unique, randomly selected position that is less
than a distance 𝑟0 from the center of its target cell, where 𝑟0
is the extent of the growth cone’s weight field. This way, the
weights on the connections are randomly generated.

For each of the computational problems discussed in
Section 2.2.1, the SINOSA model was used to grow echo
state networks as solutions. The computational experiments
described in the Results were designed to test the optimiza-
tion capabilities of the SINOSA model.

3. Results

3.1. Mackey-Glass Time-Series. In all of the experiments that
involve the Mackey-Glass time-series the parameters of (6)
were set to the following commonly used values: 𝛼 = 0.2,
𝛽 = 10, 𝛾 = 0.1, and 𝜏 = 17. These values yield a
“mildly” chaotic time-series. The time-series was generated
by solving (6) using the Matlab delay differential equation
solver dde23 with a maximum step-size of 1.0, a relative
error tolerance of 10−4, and an absolute error tolerance of
10−16. For every time-series generated from (6), an initial
sequence of data points was randomly generated from the
uniform probability distribution over the interval [0, 1], and
(6) was integrated for 1000 time-steps before collection of
the time-series data began. This initial run-off period was
necessary to remove the effects of the randomly generated
initial condition. Consecutive data points in the sequences
generated by the Mackey-Glass system were separated by
1.0 units of time. Data from the Mackey-Glass system was
made more appropriate for processing by neural networks
by mapping it into the interval [−1, 1] using the hyperbolic-
tangent function tanh(𝑥) = (𝑒2𝑥−1)/(𝑒2𝑥+1). Network output
was mapped back to the original range using the inverse of
tanh(𝑥) for testing, validation, and analysis. Each reservoir
neuron used 𝑓(𝑥) = tanh(𝑥) as its transfer function and had
an internal state governed by the leaky integrator differential
equation [34]. The output neuron used the linear transfer
function, 𝑓(𝑥) = 𝑥, and did not have an internal state.

The ESNs grown for the Mackey-Glass time-series con-
sisted of a single input neuron, a bias neuron, a single
output neuron, and 50 neurons in the reservoir. The growth
cones were permitted to establish connections from the input
neuron to the reservoir neurons, from the bias neuron to the
reservoir, and from the reservoir back to the reservoir. Addi-
tionally, each reservoir neuron had a permanent connection
to the output neuron because the weights on the reservoir-to-
output connections were derived using linear regression.The
“Echo State Property,” which is a necessary condition on the
reservoir dynamics for achieving good performance and in
past work has typically been attained by manually scaling the
spectral radius of the reservoir weight matrix to be less than
one [34], was derived entirely through the network growth
process.

The input neuron’s set of neighbor neurons was the entire
reservoir, as was the case for the bias neuron. Each reservoir
neuron’s set of neighbor neurons consisted of 5 randomly
selected neurons in the reservoir. The output neuron did
not have any neighbor neurons, because it did not have any
growing axons. For each one of the 16 simultaneously growing
networks, each neuron contributed one positively weighted
growth cone (𝑏 = 1 in (2)) and one negatively weighted
growth cone (𝑏 = −1), per neighbor neuron. Each of these
positive-negative growth cone pairs had the same, single
target neuron.

On every time-step each growing networkwasmapped to
the static network represented by its current physical config-
uration. Before applying input to a network, the internal state
and/or output of each neuron was set to zero. For each static
network, the weights on the connections from the reservoir
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neurons to the output neuron were trained using teacher-
forcing [39] with a sequence generated from the Mackey-
Glass system that had 2100 data points. The first 100 data
points of this sequence were fed into a network prior to any
training with the purpose of removing the effects of the initial
state of the reservoir. The next 2000 data points were then
fed into the network, and linear regression in the form of the
least squares method was performed between the resulting
reservoir states (activities of the reservoir neurons) and the
desired network outputs. The topology and weights of the
connections from the input neuron to the reservoir, from the
bias neuron to the reservoir, and from the reservoir neurons
back to the reservoir were determined by the growth process.

The performance of an ESN on the data used to train
the output weights is typically not a good measure of the
network’s ability to generalize to new data [77]. Thus, during
the growth process the generalization performance of each
static network was computed on every time-step and used
to update the fitness values of the growing networks. The
generalization performance measure was the normalized
root mean square error computed over a set of 84-step
predictions (NRMSE84) [34]. Specifically, on every time-
step, after training the output weights, the NRMSE84 was
computed for each static network on a group of 20 randomly
selected sequences from the Mackey-Glass system. Each of
these sequences consisted of 184 data points. In order to
prevent overgeneralization, every 10 time-steps a new set
of 20 sequences was randomly pulled from a pool of 200
different sequences. At the end of the growth process, which
lasted for 3600 time-units, the best positions of the growth
cones in each growing network represent the best performing
networks found over the course of the entire growth process.
There is one best performing network per growing network
and it is instantiated by translating the best positions of
the network’s growth cones into the corresponding static
network. The performances of the best static networks were
validated by computing the NRMSE84 of each network using
100 new sequences, each of a length of 2084. The best
performing network on this validation data was taken as the
solution. Towards the end of a growth process the growing
networks tend to converge on a particular configuration and
this final validation step ensures that the solution network has
the best generalization performance.

For the SINOSA model, 37 trials were run with collec-
tive movements generated by canonical PSO, and 38 trials
were run with random movements. In the Mackey-Glass
experiments, on average, one epoch of growth (explained
in Section 3.1) of an ESN with 50 neurons in its reservoir
requires 2 hours of CPU time. One epoch of growth of an
ESNwith 100 neurons in its reservoir requires 5 hours of CPU
time. One epoch of growth of an ESN with 400 neurons in its
reservoir requires 3 days of CPU time. The networks grown
using collective movements have a mean NRMSE84 that is
68% smaller than those grown with randommovements with
95% confidence.

Once the growth process had finished (after 3600 time-
units) the grown networks were further optimized by refining
the search process and running it for an additional 3600
time-units. This refinement was implemented by continuing

Table 1: Mean NRMSE84 values on the Mackey-Glass time-series
for networks grown with the SINOSA model.

Epoch Collective movements Random movements
1 5.89 ⋅ 10−3 ± 3.3 ⋅ 10−4 1.84 ⋅ 10−2 ± 8 ⋅ 10−4

2 4.98 ⋅ 10−3 ± 3.2 ⋅ 10−4 1.48 ⋅ 10−2 ± 7 ⋅ 10−4

the growth (search) process with new growth cones that
had weight fields that were smaller in maximum magnitude.
Specifically, for each connection in the best performing static
network found during the first epoch, except the connections
from the reservoir to the output neuron, a fixed connection
with the same weight was created between the corresponding
cells in the setC.When a static networkwas instantiated from
a growing network during the second epoch, the weights on
the connections in the static network were the sum of the
weight values contributed by the growth cones and the fixed
connections.

The network growth process generated by the SINOSA
model was extended by one epoch, for a total of two
epochs of growth. Table 1 compares the results obtained using
collective movements, with those obtained using random
movements, when the growth process was extended. Each
numeric value represents the mean NRMSE84 and the 95%
confidence interval for the corresponding epoch of growth
and class ofmovements. It can be seen that, for both collective
and random movements, there is a small but statistically
significant reduction in the mean NRMSE84 with each epoch
of growth. Furthermore, for each epoch, the mean NRMSE84
of the networks grown using collective movements is smaller
than that of the networks grown using randomly generated
movements.

Further evidence of the effectiveness of the SINOSA
approach can be gained through comparison with the studies
presented in [34, 39], which represent state-of-the-art perfor-
mance forMackey-Glass time-series prediction. In [34], echo
state networks with 400 neuron reservoirs were optimized to
forecast the Mackey-Glass time-series (𝜏 = 17.0). The best
performing of these networks, which was hand-designed by
an expert, had an NRMSE84 of 2.8 ⋅ 10

−4. In [39], using the
same parameter values for the Mackey-Glass time-series as
used here, an echo state networkwith a 1000-neuron reservoir
was hand-designed by an expert that had an NRMSE84 of
6.3 ⋅ 10−5. The SINOSA model was used to grow echo state
networks with 400 neurons in their reservoirs to forecast the
Mackey-Glass time-series. The grown networks produced an
averageNRMSE84 of 3.86⋅10

−5, and the best of these networks
had an NRMSE84 of 2.73 ⋅ 10−5. On average, the grown
networks with 400 neurons outperformed the best hand-
designed 400-neuron ESN by about an order of magnitude,
and they also performed better than the 1000-neuron ESN.
These results provide strong evidence of the effectiveness
of using the SINOSA model to grow echo state networks,
as opposed to the standard approach of optimizing them
through trial and error.

3.2. Double Pole Balancing Problem. In all of the experi-
ments that dealt with the double pole balancing problem,
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the parameters were set to the most commonly used values
[75] as follows: mass of the cart 𝑚

𝑐
= 1 kg, mass of the

1st pole 𝑚1 = 0.1 kg, mass of the 2nd pole 𝑚2 = 0.01 kg,
coefficient of friction between the cart and the track 𝜇

𝑐
=

5 ⋅ 10−4 Ns/m, coefficients of friction between the poles and
their hinges 𝜇1 = 𝜇2 = 2 ⋅ 10−6 Nms, length of the 1st pole
𝑙1 = 0.5m, and length of the 2nd pole 𝑙2 = 0.05m. The
control force was restricted to the interval𝐹

𝑐
∈ [−10N, 10N].

The parameters defining the domain of successful control
were set to 𝑥limit = 2.4m and 𝜃limit = 36∘. As is the case
in most past work, the equations governing the dynamics
of the system were solved numerically using a fourth-order
Runge-Kutta method with a step-size of 0.01 s. During a
simulation, a portion of the state of the cart-pole system
was given to a neural controller every 0.02 s, at which point
the control force was updated. In the experiments presented
here, a neural controller was not given velocity information
as input; rather, it only received the current positions of the
cart and two poles (𝑥, 𝜃1, and 𝜃2). This was done in order
to make the task of controlling the cart more difficult. These
values were scaled to be in the interval [−1, 1] prior to being
input into a neural controller.This was done so that the values
were in a range that was more appropriate for processing
by neurons with hyperbolic-tangent transfer functions. The
network output (control signal), which was in the interval
[−1, 1], was multiplied by 10.0N in order to produce the
control force. Reservoir neurons and the output neuron used
the hyperbolic-tangent function as their transfer function.
None of the neurons had an internal state.

The SINOSAmodel was used to grow echo state networks
as controllers for the double pole balancing problem. These
networks had three input neurons, one for each type of infor-
mation; the network was given regarding the state of the cart-
pole system (cart position, position of pole #1, and position of
pole #2). The reservoir always consisted of 20 neurons. One
output neuron was present, which produced the control sig-
nal. No bias neuronwas used due to the symmetry of the cart-
pole system. The growth cones were permitted to establish
connections from the input neurons to the reservoir and from
the reservoir neurons back to the reservoir. Additionally, each
reservoir neuron had a permanent connection to the output
neuron. The weights on the reservoir-to-output connections
were fixed and drawn randomly with uniform probability
from the interval [−30, 30]. The network architecture was
otherwise identical to that of the Mackey-Glass network (see
third paragraph of Section 3.1) except that in this case each
reservoir neuron had only 4 neighbor neurons.

During the growth process the performance of each static
networkwas computed on every time-step.The function𝑓pole
was evaluated to determine the performance of the echo state
networks grown as controllers for the double pole balancing
problem and is given by

𝑓pole = 10−4𝑛
𝐼
+ 0.9𝑓stable + 10

−5
𝑛
𝐼𝐼
+ 30

𝑛
𝑆

625
. (7)

Equation (7) was introduced in [75] and is based on per-
formance (fitness) functions presented in past works on the
double pole balancing problem. To compute the first term
in (7) the cart-pole system is set to the initial state (𝜃1(0) =

4.5∘, ̇𝜃1(0) = 𝜃2(0) = ̇𝜃2(0) = 𝑥(0) = �̇�(0) = 0). The network
is then allowed to control the system for up to 1,000 time-
steps. The number of time-steps 𝑛

𝐼
that the controller keeps

the cart and poles in the success domain (𝑥 ∈ [−2.4m, 2.4m]
and 𝜃1, 𝜃2 ∈ [−36

∘

, 36∘]) is counted. If the system leaves the
success domain at any time prior to time-step 1,000, then the
simulation stops.The second term is ameasure of the stability
of the system during the last 100 time-steps while under
neural network control and is expressed by the function

𝑓stable =
{{

{{

{

0, 𝑛
𝐼
< 100

0.75
∑
𝑛
𝐼

𝑖=𝑛
𝐼
−100 𝜌𝑖

, 𝑛
𝐼
≥ 100,

(8)

where

𝜌
𝑖
= (|𝑥 (𝑖)| + |�̇� (𝑖)| +

𝜃1 (𝑖)
 +

̇𝜃1 (𝑖)

) . (9)

The third and fourth terms are measures of a neural con-
troller’s ability to generalize. If 𝑛

𝐼
= 1000 after computing the

first term, then the neural controller is allowed to control the
system for up to additional 100,000 time-steps. The number
of additional time-steps 𝑛

𝐼𝐼
that the controller keeps the

cart and poles in the success domain is counted, and the
simulation stops if the system leaves the success domain or
𝑛
𝐼𝐼
= 100, 000. The fourth term is computed by putting

the cart-pole system in 625 different initial conditions and
allowing the network to control it for up to 1,000 time-steps
from each starting configuration. The variable 𝑛

𝑆
represents

the number of different initial conditions from which the
neural controller was able to keep the system in the success
domain for 1,000 consecutive time-steps. The 625 unique
initial conditions are defined in [74].

On every time-step of the growth process each growing
network was mapped to the static network represented by its
current physical configuration so that its performance could
be computed by evaluating (7). Before applying input to a
network the output of each neuron was always set to zero.
Before a network was permitted to control the cart and poles
the dynamics of the cart-pole system were evolved for 0.2 s,
and the resulting sequences of 10 system states were input
into the network. The neural network growth process lasted
for 600 time-units, after which the static network with the
best performance (largest value of 𝑓pole) was taken as the
solution.

A total of 51 trials were run starting from different,
randomly generated initial conditions. In the double pole
balancing experiments 200 time-steps of growth require
approximately 0.3 hours of CPU time, 400 time-steps require
1.4 hours, and 600 time-steps require 3.3 hours. Table 2
compares the performance of networks grown using col-
lective movements to the performance of networks grown
using random movements. The comparison of performance
is made every 200 time-steps during the growth process.
Each of the numeric values in the tables is shown with
its 95% confidence interval. The values in Table 2 were
computed as follows. For each trial, and at each of the three
predefined time-steps (200, 400, and 600), two measures of
the best performing network at that point in the growth
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Table 2: Performance values on the double pole balancing problem
for networks grown with the SINOSA model.

Time-step Collective, MeasureII Random, MeasureII
200 0.667 [0.530, 0.780] 0.026 [0.005, 0.135]
400 0.961 [0.868, 0.989] 0.053 [0.015, 0.173]
600 1.0 [0.930, 1.0] 0.053 [0.015, 0.173]
Time-step Collective, Measure

𝑆
Random, Measure

𝑆

200 372 ± 29 10 ± 5
400 462 ± 10 28 ± 15
600 478 ± 7 41 ± 17

process were recorded. The first measure was whether or
not the network succeeded in achieving 𝑛

𝐼𝐼
= 100, 000

when computing (7). The second measure was the value of
𝑛
𝑆
. In Table 2 the term Measure

𝐼𝐼
refers to the fraction of

best performing networks that achieved 𝑛
𝐼𝐼
= 100, 000. The

term Measure
𝑆
refers to the average value of 𝑛

𝑆
taken over

all of the best performing networks. From these results it
is clear that the networks grown with collective movements
vastly outperform those grown with randomly generated
movements on both performances measures.

A study that lends itself to comparison is presented
in [75], which represents state-of-the-art performance on
the double pole balancing problem. In this case echo state
networks were optimized as controllers for the double pole
balancing problem via a state-of-the-art form of evolutionary
strategies that uses covariance matrix adaptation (CMA-ES).
In this study CMA-ES was used to optimize the output
weights and the spectral radius of the reservoir weightmatrix.
The experiments discussed in this section, in which the
SINOSA model was used to grow ESNs as controllers for
the double pole balancing problem, adhered to the same
experimental setup and methods used in [75], except that
in our study the grown neural controllers received only 10
inputs from the cart-pole system prior to beginning control
instead of 20. Because evaluating the fitness/performance
of the networks during the optimization process is the
computational bottleneck, the number of such evaluations
during an optimization run is a good measure of the overall
computational cost of the process. On average it required
19,796 evaluations for the CMA-ES approach to find a neural
controller capable of successfully controlling the cart for at
least 200 out of the 625 initial configurations (the average was
224), and of these networks 91.4% were able to successfully
control the cart for the additional 100,000 time-steps when
it was started in the standard initial configuration. These
results are very good with respect to past work on the double
pole balancing problem. The SINOSA model was able to
growmuch better performing neural controllers and at much
less computational expense. After only 9600 evaluations,
on average, the best performing grown networks were able
to successfully control the cart for 478 of the 625 initial
configurations, and of these networks 100% of them were
able to successfully control the cart for the additional 100,000
time-steps.

4. Discussion

The SINOSA model incorporates an integrated representa-
tion of a network’s weights and topology. The objects in
this representation are cells (neurons), axons, and growth
cones. The cells have fixed positions, but the growth cones
are able to guide the cells’ axons through a continuous,
three-dimensional space, producing a mature network with
fixed connections and weights. As a result of the integrated
representation, it is possible to incorporate the simplest,
canonical form of PSO into the model for the purpose of
simultaneously optimizing network weights and topologies.
In effect, the SINOSAmodel treats the network self-assembly
process as an optimization or search process, in which the
simultaneous growth ofmultiple neural networks is driven by
their interactions with one another and with problem related
network input.

The ability of the SINOSA model to optimize neural
networks for computational tasks was tested using two differ-
ent very challenging and widely used benchmark problems
from the domains of time-series forecasting and control. For
each of the computational problems the echo state networks
grown using collectivemovements generated via PSOoutper-
formed those grown using randomly generated movements,
and in most circumstances the performance gap was very
large. Specifically, compared to the networks grown with
random movements, those grown using the SINOSA model
with collective movements performed 3 times better on the
Mackey-Glass time-series forecasting problem and 19 times
better and 12 times better on two generalization measures of
the double pole balancing problem. Furthermore, the large
improvements in network performance gained over random
search come at very little additional computational cost
because evaluation of network performance is the bottleneck.

Comparison with control cases that involve random
search provides a base level of support for the optimization
capabilities of the SINOSA model and demonstrates the
feasibility of functional self-assembly as a means of network
optimization. Further evidence of the effectiveness of the
model at optimizing networks can be found by comparing
the results presented here with studies that involve different
methods of optimizing networks for the Mackey-Glass time-
series forecasting problem and the double pole balancing
problem. For example, the 400-neuron echo state networks
grown using the SINOSA model perform nearly an order
of magnitude better than the best performing 400-neuron
ESN presented in [34] with the Mackey-Glass time-series.
Furthermore, they even outperform the 1000-neuron ESN
presented in [39] by an average factor of 1.6. As a point of
further comparison, the networks grown via the SINOSA
approach outperform those in [75] by an average factor of 2.1.
Moreover, our ESNs were optimized with an average of 52%
less computational expense. These results are also interesting
in that they represent one of the comparatively small number
of studies where echo state networks have been successfully
trained as neural controllers using reinforcement learning.

It is worth pointing out that the SINOSA model can be
cast in a more abstract representation by foregoing the self-
assembly component. Imagine we are optimizing a network
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with 𝑀 possible weighted connections. Then, according to
(2) there are two distinct one-dimensional Euclidean spaces
associated with each possible connection. Furthermore, there
is a unimodal function 𝑤

+
(𝑟) that is nonnegative and sym-

metric defined over the first space and a function 𝑤
−
(𝑟) =

−𝑤
+
(𝑟) that is defined over the second space. Each one

of these spaces would contain a set of particles (growth
cones) that was restricted to move within it. Only those
particles within a given space would interact according to
the PSO algorithm. A network would be created based on
the positions of the particles in exactly the same manner
described in Section 2.1.2.We chose to integrate self-assembly
into our model from a desire to illuminate the processes by
which physical networks might optimize their own weights
and topology via self-assembly.

5. Conclusions and Future Directions

The concurrent optimization of neural network weights and
topology is a challenging task due in large part to the
roughness of the objective functions encountered when the
search domain consists of both a continuousweight space and
a discrete topology space. Through the SINOSA model we
have demonstrated how network self-assembly can provide
a useful means of representing this search domain in that the
representation simplifies the domain to a single, continuous
search space over which smoother objective functions can
be defined. Furthermore, by using swarm intelligence in the
form of collective movements to drive the network growth
process, we were able to turn the self-assembly process into
an optimization process.

The four primary contributions of our research are as
follows:

(i) The SINOSA model constitutes a new and effective
means of simultaneously optimizing the weights and
topologies of neural networks. The model was used
to grow echo state networks that performed substan-
tially better on benchmark problems than networks
optimized via random search. More importantly, the
grown networks also outperformed the echo state
networks presented in two different past studies, one
in which the networks were hand-designed by an
expert and the other in which they were optimized
using a state-of-the-art form of evolutionary strate-
gies (CMA-ES).

(ii) There has been little past work on using PSO for the
concurrent optimization of neural network weights
and topology. The examples that do exist tend to
involve fairly complicated adaptations of the method,
significant constraints on permissible topologies, or
hybridizations with other classes of methods such
as evolutionary algorithms. In contrast, the SINOSA
model uses the elegant canonical form of PSO to
govern the growth/optimization process.

(iii) In the vast majority of past work on PSO, the par-
ticles are embedded in a high dimensional abstract
space, such as the domain of a function, they are
the fundamental class of “objects” in the space, and

the position of a particle represents a solution or
solution component to the problem being solved. In
contrast, the SINOSAmodel incorporates a novel way
of viewing PSO in which growth cones (particles) are
embedded in a continuous, three-dimensional space
that is intended to model physical space, and growing
networks are the fundamental class of objects in the
space.

(iv) Most past work on self-assembly has focused on
the classic self-assembly problem, which entails the
design of local controlmechanisms that enable a set of
components to self-organize into a given target struc-
ture. The SINOSA model represents an extension of
the classic self-assembly problem to functional self-
assembly, which includes the self-assembly of network
structures with growth driven by optimality criteria
defined in terms of the quality or performance of the
emerging structures, as opposed to growth directed
towards assembling a prespecified target structure.

There are a variety of potential future research directions
for the SINOSA model. Here we mention three possibilities.
First, it would be useful to extend this work to allow the
number of neurons in the physical space to be able to
increase or decrease during network assembly depending
on the computational requirements of the problem being
solved. Inspiration could likely be drawn from the fairly large
number of past studies that involve dynamically modifying
the number of nodes in a neural network. Second, further
studies are needed to determine towhat extent the parameters
of the SINOSA model are problem dependent, and what
values work well on a wide variety of different problems.
Lastly, since its inception, the canonical form of particle
swarm optimization has undergone a vast array of adapta-
tions and hybridizations. Many of these enhancements could
be incorporated into the SINOSA model without having to
alter its fundamental constructs.
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