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Abstract

Circadian clocks are molecular timekeepers that synchronise internal
physiological processes with the external environment by integrating light and
temperature stimuli. As in other eukaryotic organisms, circadian rhythms in
plants are largely generated by an array of nuclear transcriptional regulators
and associated co-regulators that are arranged into a series of interconnected
molecular loops. These transcriptional regulators recruit chromatin-modifying
enzymes that adjust the structure of the nucleosome to promote or inhibit DNA
accessibility and thus guide transcription rates. In this review, we discuss the
recent advances made in understanding the architecture of the Arabidopsis
oscillator and the chromatin dynamics that regulate the generation of rhythmic
patterns of gene expression within the circadian clock.
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Introduction

The daily rotation of the Earth generates predictable diurnal
changes in light and temperature. Circadian clocks act as endog-
enous timekeepers to co-ordinate internal physiological responses
to match the predicted environmental condition. The plant circadian
clock directly regulates a range of output pathways, which includes
hormone signalling, hypocotyl development, metabolism, the floral
transition, photosynthesis, and the response to biotic and abiotic
stress'~. Accordingly, plants with an internal clock that matches the
external environment (~24 hours) have enhanced photosynthesis
and survival compared to plants with a clock that does not match
the external environment".

Endogenous circadian rhythms are generated through a series
of interconnected transcriptional-translational feedback loops,
collectively termed the oscillator. Light and temperature signals dif-
ferentially converge on the plant oscillator through multiple input
pathways to provide timing cues in a process termed entrainment™.
In plants, light signals at dawn are thought to act as the major
entraining signal’. This review will discuss the recent advances
made in understanding the transcriptional architecture of the plant
oscillator and the chromatin dynamics driving rhythmic gene
expression.

Overview of the oscillator

At the core of the plant oscillator are the morning-expressed, par-
tially redundant MYB domain transcription factors (TFs) CIRCA-
DIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED
HYPOCOTYL (LHY)*'"°. CCAI/LHY directly antagonise most
clock gene expression through binding to the evening element (EE)
motif within the promoter''"*. One target of CCA1/LHY-repressive
activity is the PSEUDO-RESPONSE REGULATOR (PRR)
TIMING OF CAB EXPRESSION (TOCI)**"*. CCAI/LHY-
repressive activity restricts TOC! expression to a window around
dusk. At dusk, TOC1 accumulates and reciprocally represses
CCAI/LHY expression in addition to other clock genes'™'°. This
mutual antagonism between CCA1/LHY and TOC1 defines the

central loop of the Arabidopsis oscillator’!".

Additional interconnected loops subsequently regulate the activ-
ity of the core loop”'®. At dawn, the TFs TEOSINTE BRANCHED
CYCLOIDEA-PCF20/22 (TCP20/22) recruit the co-activator
LIGHT REGULATED WD 1 (LWDI) to activate CCAI/LHY
expression'’. LWD1 and its homolog LWD2 are also required to
activate the expression of TOCI and the related PRRS5, PRRY7,
and PRR9". PRR5, PRR7, and PRRY directly associate with the
CCAI/LHY promoter and repress CCAI/LHY expression’' .
PRRY, PRR7, and PRR5 are sequentially expressed, generating a
wave of repressive activity. PRR9Y expression starts at dawn, fol-
lowed by PRR7 in the late morning and PRRS5 in the afternoon”.
This repressive sequence is re-enforced by the CCAl-related MYB
TF REVEILLE8 (RVES) and its associated homologs, RVE6
and RVE4”. RVES binds to the EE within the PRRS5, TOCI, and
EARLY FLOWERING 4 (ELF4) promoter and activates gene
expression by recruiting the co-activators NIGHT LIGHT-INDUC-
IBLE AND CLOCK REGULATED 1/2 (LNK1/LNK2)**. In
the evening, the GARP TF LUX ARRYTHMO (LUX) and the
unrelated proteins ELF3 and ELF4 associate to form the evening
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complex (EC)**". The EC represses the morning-expressed PRR7
and PRR9 and evening-expressed GIGANTEA (GI) and LUX>,
LUX and ELF3 have also been recently shown to associate
with the promoter of LNKI/2, highlighting another potential
target of the EC¥. Together, this interconnected network of
activators and repressors drives rhythmic gene expression
within the plant oscillator.

Chromatin dynamics of the circadian clock

The structure of nucleosomes has a fundamental role in regulat-
ing gene expression. A nucleosome is a complex of DNA wound
around the histone octamer (two H2A-H2B dimers and a H3-H4
tetramer)™. Each histone unit can be post-translationally modi-
fied through a suite of chromatin-remodelling enzymes to generate
what is collectively called the histone code’. These modifications
regulate the accessibility of the DNA through opening or compact-
ing the histone octamer or by providing a binding site for other
chromatin-modifying enzymes’. Modifications associated with
transcriptional activation include the acetylation of H3 lysine resi-
dues (H3Ac) or tri-methylation of H3K4 (H3K4me3), while repres-
sive markers include the tri-methylation of H3K9 (H3K9me3) and
H3K27 (H3K27me3)**.

The promoter regions of CCAI, LHY, TOCI, GI, PRRY, and LUX
all display diurnal changes in histone modifications. The levels
of H3K9Ac, H3KI14Ac, H3K56Ac, and H3K4me3 within the
gene promoter peak at the time of maximum gene activation’'~*.
Conversely, as gene expression declines, there is a reduction
in H3Ac and demethylation of H3K4me3 and an increase in
H3K36me2, modifications associated with transcriptional repres-
sion*. It has also recently been shown that there are global diurnal
changes in H3K9Ac, H3K27Ac, and H3S28P in the promoters of
genes associated with the circadian clock and sugar signalling®.
Additionally, the association of RVES to the TOC!I promoter is
associated with hyperacetylation while the association of CCA1
to the TOC1 promoter correlates with hypoacetylation”*'. Diurnal
post-translational modification of histones thus has a fundamental
role in generating the rhythmic patterns of gene expression within
the oscillator.

The factors regulating these histone modifications are beginning

to be understood. PRRS5, PRR7, and PRRY directly recruit the
Groucho/Tupl co-repressor TOPLESS (TPL) through an ethyl-
ene amphiphilic repression (EAR) domain to repress CCAI/LHY
expression”’. TPL belongs to a multi-gene family of co-repressors
that recruit the histone deacetylase (HDA)19 and/or the closely
related HDAG to facilitate gene silencing”’. Unlike the other PRRs,
TOCI lacks an EAR domain and cannot directly interact with
TPL*. The mechanisms mediating TOCI repression are there-
fore unknown. Alongside the PRRs, the EC has also recently been
shown to interact with chromatin-remodelling enzymes. ELF3 can
co-precipitate with MUT9-like kinase 1-4 (MLK1-4), which pro-
motes the phosphorylation of H3T3**, H3T3P is associated with
heterochromatin formation and gene silencing”. milkI—4 single
and combination loss-of-function mutants displayed a longer
circadian period*. In contrast, loss of function in ELF3, ELF4, or
LUX all display circadian arrhythmicity”~’. Thus, the EC may
recruit other co-repressors to repress gene expression.
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Other chromatin-remodelling enzymes have also been associated
with the plant oscillator. The histone acetyltransferase (HAT) TAF1
and the HDA HDI regulates the acetylation and de-acetylation of
the TOC1 and CCAI promoter, respectively”’. However, TAF1 and
HDAT loss-of-function mutants had only a small effect on TOC1
and CCAI expression. Arabidopsis has 12 HATs and 18 HDAs,
and within each respective class functional redundancy has been
observed™°. HATs and HDAs are therefore likely to be acting
redundantly within the clock. Alongside HATs and HDAs, histone
methylases and demethylases have also been implicated within the
clock. The H3K4me3 methylase SET DOMAIN GROUP 2 (SDG2/
ATRX3) aides clock gene expression and the ability of TOCI1
to associate with DNA*. The histone demethylase JUMONIJI
DOMAIN CONTAINING 5 (JMJDS5, also referred to as JMJ30)
displays diurnal regulation with expression peaking in the evening®’.
JMIJD5 mutants have a shortening of circadian period, suggesting
that JMJD5 has a regulatory role within the oscillator’”*. Remark-
ably, Arabidopsis JMJIDS has retained conserved functional activity
with its human orthologue, which functions within the mammalian
clock’. However, the mammalian JMJD5 lacks canonical demethy-
lase activity™. Further work is needed to understand the functional
activity of JMJD5 and its role within the Arabidopsis clock. It has
also been recently shown that 17 different chromatin-remodelling
enzymes display diurnal patterns of expression®, further intertwin-
ing the relationship between the clock and chromatin remodellers.
In summary, the concerted activities of a broad range of histone-
modifying enzymes are required within the clock to facilitate the
transcriptional regulatory activity of the plant oscillator.

Conclusions and perspectives

In recent years, much progress has been made in connecting the
individual components of the oscillator into an interconnected
transcriptional network. However, many questions still persist over
the mechanisms of transcriptional regulation. The association of
RVES to the TOC1 promoter correlates with hyperacetylation, but
neither RVE8 nor LNK1/2 have domains that could recruit HAT
directly”>”’. The repressive mechanisms of the core components
CCAI1/LHY and TOCI1 are also poorly understood. TOC1 has
been recently shown to co-occupy PHYTOCHROME
INTERACTING FACTOR 3 (PIF3) target promoters and
inhibit PIF3-mediated gene activation®’. However, whether this
is achieved by passively inhibiting HAT recruitment or by
actively recruiting co-repres-sors through an unidentified
repression domain is unknown. It also remains unclear whether
CCAI1/LHY repress gene expression passively or actively, with
both mechanisms being proposed in a temporal-dependent
manner'**!. Furthermore, CCAl and LHY are often grouped
together and viewed as a joint operator within the clock.
However, CCA1 and LHY have been shown to have distinct roles
within the clock'”*>. Future work could investigate the extent of
functional overlap between CCA1/LHY.

One noticeable shortage in the plant clock when compared to
the mammalian or fungal circadian clock are transcriptional
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activators®**. CCAI/LHY, TOCI, and the plant-specific pro-
tein GI were all proposed to act as transcriptional activators
within the oscillator'***. However, these have now been shown
to be an indirect relationship or an effect caused by the mutant
background used'>'*'%%. In eukaryotes, the default state of gene
expression is often one of a repressive nature’, so transcriptional
activators would be expected within the oscillator.

The discovery of the RVE8/LNKs**’ and the TCP/LWD complex '’
has provided some answers to the mechanisms of transcriptional
activation within the oscillator. However, recent mathematical mod-
elling of the oscillator that incorporated RVES has shown a non-reli-
ance of the oscillator on transcriptional activation'®. The activation
of the oscillator genes could be sourced externally. The
transcript induction of CCAI, LHY, GI, PRR9, PRR7, LNKI,
LNK2, ELF3, and ELF4 are all positively regulated by light**">
Additionally, the expression of LUX, PRR7, and PRRY is
activated in a temperature-dependent manner’*’*. Thus, external
environmental signals may participate in gene activation within
the clock, while the repressive circuitry of the clock acts to
antagonise and attenuate these external gene activation pathways.
What is notable in this is the finding that a large proportion of
transcription factors are rhythmic and a subset of those can
modulate clock parameters”. Together, it appears that known
activators within the clock act to fine-tune prevailing envi-
ronmental antagonism as a form of signal integration.

Transcriptional regulators and the associated chromatin landscape

governing transcriptional regulation are only one level
nestled within a multi-layered regulatory network. Post-
translational modi-fications, nucleocytoplasmic partitioning,

RNA splicing, and pro-tein degradation all have their own
essential role in aiding rhythm generation’*"*. It is only through
the integration of all of these layers of activity that the plant
clock can generate and sustain robust rthythms and facilitate the
response to diurnal changes in the environment.
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