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Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers.
Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs
and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are
associated with poor prognoses. The presence of tumour-infiltrating lymphocytes (TILs) within pUM and surrounding
mUM – and some evidence of clinical responses to adoptive TIL transfer – strongly suggests that UMs are indeed
immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are
unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive
immune responses, some of which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further,
single-cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing impor-
tant functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour-associated
macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1
loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural
fibrotic areas surrounding mUM, with increased expression of IDO1, PD-L1, and β-catenin (CTNNB1), suggesting
tumour-driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding
of how the immune response is organised in BAP1−mUM, which will further enable functional validation of detected
biomarkers and the development of focused immunotherapeutic approaches.
© 2020 The Authors. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Uveal melanoma (UM) is the most common primary
intraocular cancer in adults, accounting for 5% of all mel-
anomas [1]. Treatment options for primary UM (pUM)
include radiotherapy and surgery [2], and usually achieve
excellent local tumour control. Despite this, about 50% of
UM patients develop metastatic disease, mainly in the
liver [1]. The average survival of patients with metastatic
UM (mUM) is �12 months, as there are currently no
proven effective treatments [3]. Resection of isolated liver
metastases may be attempted in selected cases, otherwise
liver-directed therapy (e.g. percutaneous perfusion with

melphalan) or systemic chemotherapy. Recently, follow-
ing the striking benefits in metastatic skin melanoma,
immunotherapy using immune checkpoint inhibitors
(ICIs) has been more widely used in cancer. However,
in marked contrast to cutaneous melanoma, mUM is
almost universally refractory to ICIs, mostly against
CTLA-4 and PD1/PDL-1, with responses to single agents
in the range of 3–8% [3].

While UMs have been partly ascribed to a low
mutational burden [4,5], evidence of specific TCR
gene expression in tumour-infiltrating lymphocytes
(TILs) [6], promising responses to adoptive cell ther-
apy using TILs [7], and encouraging results on
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targeting the melanocyte-specific gp100 with the bis-
pecific molecule tebentafusp (IMCgp100) [8] all sug-
gest a specific immune response and that mutational
burden is not the sole reason for the lack of response
to ICI.

Monosomy 3 (M3) has long been known to be associ-
ated with increased risk of UM metastasis [9–11], and
more recently, it has become apparent that this is primar-
ily due to inactivating mutations of the BAP1 gene,
which has been reported to be a stronger prognosticator
than M3 [12,13]. The Cancer Genome Atlas (TCGA)
study of 80 pUMs demonstrated that patients with
pUM at high metastatic risk [i.e. with UM characterised
by M3 and loss of function of the tumour suppressor
gene BAP1 (Chr 3p21.1)] could be further stratified, accord-
ing to the presence of CD8+ T-cell immune infiltrates and an
altered transcriptional immune profile [4]. The latter
included elevated levels of HLA-I molecules, which leads
to natural killer (NK) cell suppression [14], TAM markers
and expression of immune checkpoint regulators (ICRs),
such as PD-L1, indoleamine 2,3-dioxygenase (IDO)-1, and
T-cell Ig and ITIM domain (TIGIT) [4,15].

Interestingly, previous work showed that loss of
BAP1 in turn affects the expression of genes that impact
the immune response [16]. In this study, a comprehen-
sive immune profiling of the 80 pUMs from the
TCGA-UM study revealed that several immune-
suppressive genes are significantly upregulated follow-
ing BAP1 loss. We provide a novel and comprehensive
understanding of UM immune evasion by profiling pri-
mary and metastatic UM at the transcriptomic and pro-
tein level using cutting-edge approaches, including
mass cytometry, NanoString, and digital spatial profiling
of human patient tissues. Our findings suggest that UM
cells, particularly those of BAP1-negative (BAP1−)
UM, shape the immune profile at both primary and meta-
static sites, harnessing the expression of particular path-
ways and molecules to drive regulatory functions of
myeloid cells and lymphocytes, and thus immunosuppres-
sion and immunotherapy resistance in advanced
UM. These findings provide new insight for the functional
validation of detected biomarkers for the further develop-
ment of novel adjuvant immunotherapeutic approaches.

Materials and methods

Human subjects
This work was underpinned by the University of Liverpool
(UoL)OcularOncologyBiobank (OOB) and the Liverpool
Bioinnovation Hub Biobank. Project specific approvals for
work with pUM and mUM samples were obtained (REC-
18/LO/1027). Four fresh enucleated pUMs were included
in this study for the CyTOF analyses.

TCGA analysis
mRNA expression and clinical data of The Cancer
Genome Atlas (TCGA) GDC Ocular Melanomas dataset

(UVM) were downloaded from the Xena Functional
Genomics Explorer of University of California, Santa
Cruz (https://xenabrowser.net/heatmap) [17]. To provide
understanding of the biological pathways involved in
pUMpathogenesis via the expression of different immune
genes, the nCounter PanCancer Immune Profiling gene
set of 730 genes (NanoString Technologies, Seattle,
WA, USA) was applied in the UCSC Cancer Genomics
Browser to analyse the enrichment of immune genes
sorted byBAP1mRNAexpression or chromosome3 copy
number variations. Generated data were extracted in
comma-separated values (CVS) format and analysed in
GraphPad Prism 6 (GraphPad Software, Inc, San Diego,
CA, USA) for correlation studies. Supervised clustering
of immune genes of the TCGARNA-seq dataset was per-
formed among those with significant Spearman’s correla-
tion to BAP1 expression or chromosome 3 copy number
variation and sorted from the lowest rank (negative corre-
lation) to the highest rank (positive correlation). The list of
sorted genes was then uploaded in the Xena Browser for
generation of heatmaps. Each of these genes was individ-
ually analysed as a prognosticator marker in Kaplan–
Meier curves at the Xena Browser along the TCGA-UM
cohort. Those genes predicting significant survival differ-
ences (p < 0.05) were selected for further immune net-
work analysis using the nCounter immune category list
(NanoString Technologies) complemented by a custom-
built leukocyte functional immune response network col-
lated by literature review (supplementary material,
Table S1). Network plots were generated using the
NodeXL Basic add-in to Excel. In brief, immune genes
were assigned to different immune categories in separated
columns. In our analysis, we also considered the low- and
high-variance state of these genes along the TCGA-UM
cohort. This, in part, helped to define our hypothesis that
the degree of variation in the expression of the genes asso-
ciatedwith a particular network is indicative of the plastic-
ity of that network [18]. Therefore, high variance is
associated with increased plasticity (higher thickness of
network lines) and low variance with diminished plastic-
ity (lower thickness of network lines) in response to
BAP1 expression changes. We calculated the expression
variance (σ2) of genes across the TCGA-pUM cohort to
predict how BAP1 loss impacts upon the expression of a
particular gene by applying the following formula:
σ2 = Σ(X − μ)2/N, where X represents the RNA-seq
expression value of a particular gene, μ is the mean of
the entire RNA expression for this particular gene in the
cohort, and N is the distribution number (TCGA-UM,
N = 80). Therefore, the higher the effect of BAP1 on the
gene expression, the higher the σ2 value of this particular
gene in the cohort. In the network analysis, the highest
variance value was limited to 5 units, assuming the
CCL24 gene as reference for the highest variance
(σ2 = 35.7). Sphere size represents the number of genes
assigned to a given immune category (supplementary
material, Tables S2 and S3). Box and whiskers analysis
of specific genes according with different BAP1 expres-
sion levels was performed. RNA levels of BAP1 were
defined as high (n = 27), mid (n = 26), or low (n = 27)
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according to a Kaplan–nMeier survival analysis of three
groups in the TCGA-UM cohort generated in the Xena
Browser for BAP1 gene expression (p = 0.004843 and
log-rank test statistic = 10.66).

Immunohistochemistry
FFPE pUM and mUM samples were sectioned at 4 μm
thickness and underwent antigen retrieval using the
Dako pretreatment module (Agilent Technologies UK
Ltd, Stockport, UK); slides were then incubated in a
high-pH bath containing Tris/EDTA buffer, pH 9.0
(Dako EnVision™ FLEX, Agilent) at 96�C for 20 min.
IHC was performed using a Dako Autostainer PLUS
machine, using the Dako Envision™ FLEX Kit
(Agilent) according to the manufacturer’s instructions.
Slides were incubated with the following antibodies for
30 min: BAP1 (cat. No sc-28 383/C-4, dilution 1:200;
Santa Cruz Biotechnology, Dallas, TX, USA), CD3
(cat. No IR503/polyclonal, ready to use; Dako Cytoma-
tion, CA, USA), CD4 (cat. No NCL-L-CD4/368, dilu-
tion 1:20; Leica Biosystems, Lincolnshire, IL, USA),
CD8 (cat. No M7103/ C8/144B, dilution 1:200; Dako),
CD163 (NCL-L-CD163/10D6, dilution 1:400; Leica
Biosystems), and CD38 (NCL-L-CD38-290/SPC32,
dilution 1:100; Leica Biosystems).
The sections were counterstained with haematoxylin.

Additional sections were treated with isotype controls
at the same concentration as the primary antibodies.

Mass cytometry antibodies and reagents
All metal-chelated optimised antibodies and reagents
were purchased from Fluidigm (San Francisco, CA,
USA). Full information for the antibodies and reagents
used are provided in supplementary material, Table S4.
The Maxpar Human Immune Monitoring Panel Kit
was used as a reference antibody panel to immune profile
primary uveal melanoma tumours, which includes the
immune markers recommended by the Human Immuno-
Phenotyping Consortium (HIPC) [19], with some modi-
fications. The antibodies used cover the phenotype and
functions of different subpanels of B cells, T cells,
monocytes, dendritic cells, and NK cells. The MaxPar
Panel Designer browser (Fluidigm) was used to predict
and avoid metal spillover among tagged metals of the
following additional markers included in the customised
panel: CD74, LAG-3, CD56, CD16, CTLA-4, CD11b,
and CD62L. The following markers were removed from
the panel design in order to avoid spillover: CD194,
TCRγδ, CD185, CD45RO, CD24, CD197, and CD20.
Final spillover results were considered low between
channels and this is shown in supplementary material,
Figure S1A, top. The final wheel-heatmap of the custo-
mised antibody panel shows the function that determines
the best antibody–tag combinations to minimise back-
ground among channels, which ultimately contains targets
with low tolerance of signal overlap (yellow-green).

Mass cytometry of pUM
Four fresh histopathologically-phenotyped BAP1−

pUMs were manually minced prior to enzymatic diges-
tion using collagenase A (cat. No C9722, 2 mg/ml;
Sigma Aldrich, St Louis, MO, USA) and 40 units/ml
DNase-I (cat. No 79254; Qiagen, Germantown, MD,
USA) in DMEM and incubated with agitation at 37�C
for 60 min in a thermal mixer (Thermo Fisher, Waltham,
MA, USA). Following incubation, digests were passed
through a 70 μm filter to remove residual particulates.
Cells were then pelleted (centrifugation at 1500 rpm
for 5 min), washed in PBS, and viable cells were quanti-
fied using a Trypan Blue exclusion viability dye. Live
cells were then washed twice with ice-cold cell staining
buffer (ic-CSB; Fluidigm) and total cell concentration
was determined using a Neubauer chamber. Up to three
staining reactions of a maximum of 2.0 × 106 cells per
sample were analysed. All samples were then incubated
with 50 μl of 2%mouse serum in PBSwith human TruS-
tain FcX solution (Biolegend, San Diego, CA, USA) at
4 �C for 15 min. Samples were then processed for sur-
face and intracellular staining with the panel described
in supplementary material, Table S4 using the following
protocol: 50 μl of a 2X surface antibody solution was
made in ic-CSB (final antibody dilution 1:100) and left
on ice for 30 min. Cells were washed and fixed in
5 mM BS3 (Sigma) for 30 min, followed by fixation
using 1x Fix-I buffer according to the manufacturer’s
protocol (Fluidigm), and permeabilised in ice-cold
methanol for 10 min. Cells were washed and incubated
with internal antibody cocktail (final dilution 1:100) for
30 min in ice. Then cells were washed and resuspended
in intercalator-Ir at 1:8000, and processed to be analysed
using a Helios mass cytometer (Fluidigm).

Analysis of human tumour mass cytometry datasets
Data from mass cytometry were normalised to the EQ
4-element bead signal using normalisation software ver-
sion 2 (Fluidigm). Live Ir+CD45+ cells were manually
gated as previously described [20] (supplementary mate-
rial, Figure S1A, bottom), and FCS files were down-
loaded for concatenated analysis using Cytosplore
V.2.2.1 for further downstream analysis by hierarchical
stochastic neighbour embedding (HSNE) using a coeffi-
cient of 4 [21], or individually processed for visualisa-
tion of t-distributed stochastic neighbour embedding
(viSNE) analysis in Cytobank. For accurate clustering
and frequency calculations, a cut-off of 1000 events
was considered for the final gate. Eventually, Irhi

CD45+ tumour infiltrated cells are detected among sin-
glets and exhibit specific TAMmarkers, but not lympho-
cytic markers, excluding the possibility of doublets.
These cells may often carry tumour-derived DNA and
melanin content given to phagocytosed tumour cells
and are often observed in primary uveal melanoma
tumours, classified as melanophages [22].

Mass cytometry and NanoString data (transcriptomic
and DSP data) have been deposited at Flow CyTOF data,
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https://flowrepository.org/id/FR-FCM-Z2FD and GEO
(gene datasets, GSE145782).

mRNA expression analysis using NanoString
technology
For RNA immune gene expression analysis, four pUMs,
six mUMs, and one normal liver (NL) formalin-fixed,
paraffin-embedded (FFPE) samples were used. Only
the tumour areas were selected for RNA extraction, or
the entire normal liver tissue. The RNeasy FFPE Kit
(Qiagen) was used for tissue dissociation, RNA extrac-
tion, and purification according to the manufacturer’s
instructions (Qiagen), as described in supplementary
material, Supplementary materials and methods.

The NanoString nSolver 2.6 software was used for nor-
malisation of expression counts using housekeeping genes
following the manufacturer’s recommendations [23]. Data
are displayed in expression count units of individual gene
per patient compared with normal liver tissue, and inter-
nally normalised within each immune category (e.g. CTL
suppression, M2 macrophage regulation, and immune
checkpoint regulators). A full range of immune categories
is displayed in supplementary material, Table S1.

Digital spatial profiling of mUM tissues
Digital spatial profiling analysis of one BAP1− mUM
case was performed by NanoString’s DSP technology
platform to enable digital characterisation of protein dis-
tributed on the surface of FFPE tissue sections using the
Human Immune Oncology panel (NanoString Technolo-
gies). In brief, 4- to 6-μm-thick FFPEmUMsections were
stained for lymphocytes (CD3, red), macrophages (CD68,
magenta), S100B (green), and DNA (blue) in order to
detect the regions of interest (ROIs). The following work-
flow was used: deparaffinisation of FFPE unstained sec-
tions, antigen retrieval, antibody staining, ROI selection,
DSP technology processing, nCounter analysis system.
Data analysis and quality control were processed and nor-
malised using positive and negative anti-mouse and anti-
rabbit hybridisation control antibodies. S6 ribosomal pro-
tein and histone 3 were used as reference proteins. Area
normalisation was applied between different ROI sizes
varying from 100 to 650 μm in diameter. Results are dis-
played as absolute expression counts normalised with
negative IgG controls.

Quantification and statistical analysis
All data were analysed using GraphPad Prism 6.0 and are
presented as the means � SD. Significant differences in
the immunegene expressionbetween theBAP1lo,BAP1mid,
and BAP1hi groups were estimated using one-way anal-
ysis of variance followed by Bonferroni’s multiple
comparisons test. Survival analysis was performed in
the Xena Browser using the Kaplan–Meier assay and
was compared using the log-rank test. The correlation
between different mRNA expressions and overall sur-
vivals (OS) of TCGA-UM patients was evaluated by
non-parametric Spearman’s correlation, two-tailed,

where *0.01 < p < 0.05, **0.001 < p < 0.01;
***0.0001 < p < 0.001, and ****p < 0.0001 were con-
sidered to indicate significant differences.

Results

BAP1 loss significantly correlates with the
modulation of immune genes and patient
survival in UM
In the previous TCGA-UM analysis, Robertson et al
reported that the M3 phenotype in UM is associated with
the upregulation of 30 immune genes [4,24], and we
therefore first sought to investigate whether this associa-
tion could be the result of BAP1 loss. We found that an
absence or reduced expression of BAP1 mRNA (cut-off
19.54 for BAP1 expression and 2500 days as the default
end-point) also significantly correlated with decreased
survival, similar to M3 status (cut-off −0.3649 for Chr3
copy number and 2500 days as the default end-point)
(Figure 1A). Using Spearman’s correlation analysis, we
demonstrate that most of the investigated immune genes
have a better expression correlation with BAP1 mRNA
loss than with M3 (Figure 1B). In addition, only about
50% of these genes are significantly associated with
patient survival, indicated by blue squares representative
of Kaplan–Meier statistical test results (Figure 1B and
supplementary material, Table S5).
We further expanded this analysis by interrogating the

TCGA-UM RNA-seq data with a panel of 730 immune
genes defined by the nCounter PanCancer immune panel
(NanoString Technologies). One hundred and forty-two
immune genes exclusively correlated with BAP1 expres-
sion, but not with chromosome 3 copy number variation
(supplementary material, Table S6); the expression of
117 genes negatively and another 25 genes positively
correlated with BAP1 expression (r scores varying from
−0.53 to 0.46). Among 181 immune genes that signifi-
cantly correlated with both BAP1 expression and chro-
mosome 3 copy number variation, 151 genes were
negatively correlated and 30 genes were positively cor-
related, all with a higher correlation score to BAP1
expression than to chromosome 3 (r scores varying from
−0.60 to 0.67) (supplementary material, Table S7).
Among BAP1 correlated genes (n = 323), 168 genes that
were negatively correlated with BAP1 expression were
significantly associated with decreased survival, while
15 genes positively correlated with BAP1 expression
were significantly associated with improved survival
(Figure 1C and supplementary material, Table S8).
Independent of BAP1 expression, the M3-UM geno-

type exclusively correlates with 43 immune genes and
with 82 immune genes that also correlate with BAP1 to
a lower degree (supplementary material, Tables S9 and
S10), from which 48 are upregulated immune genes
and 17 are downregulated immune genes, all signifi-
cantly associated with patient survival (Figure 1C and
supplementary material, Table S11). Supervised cluster-
ing analysis based on BAP1mRNA expression is shown,
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including the P value profile of each gene related to sur-
vival outcome (Figure 1D). These findings suggest that
loss of BAP1 expression is strongly associated with
immune modulation of the microenvironment in pUM.

BAP1 loss correlates with immunosuppressive
networks in pUM
We next analysed the group of immune genes upregulated
following BAP1 loss, to predict the likely effects on the
microenvironment. A scatter plot shows the gene expres-
sion and variance of 168 upregulated immune genes fol-
lowing BAP1 loss along the TCGA-UM cohort,

highlighting important immune genes involved in
immune-suppressive pathways, including LGALS3,
CD74, CD38, PDCD1, IDO1, and HLA-DR (Figure 2A).
Differential expression analysis revealed thatmost of these
immune genes are significantly upregulated in the TCGA-
UM cohort following BAP1 loss, as shown in the second
quadrant of the volcano plot (Figure 2B and supplemen-
tary material, Table S8). PDCD1 and IDO1 have high sig-
nificance with −log P values higher than 1.5 and log2FC
lower than 0.2, and for that reason are not visible in the
volcano plot.

Importantly, all BAP1 significantly correlated immune
genes simultaneously integrate different subcategories of

Figure 1. BAP1 loss significantly correlates with the modulation of immune genes and patient survival in pUM. (A) Decreased mRNA expres-
sion of BAP1 is significantly correlated with a poor survival of primary UM patients similarly to the monosomy 3 (M3) status in the TCGA
cohort. (B) Spearman’s correlation analysis of specific immune genes compared to BAP1 expression and to chromosome 3 (Chr3) copy number
variation. (C) Venn diagram depicting immune genes with significant correlation to Chr3 and BAP1 and with predictive survival significance.
(D) Heatmap cluster analysis sorted by BAP1 expression showing upregulated and downregulated immune genes, including the P value profile
of Kaplan–Meier survival scores.
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Figure 2. BAP1 loss correlates with increased regulatory immune networks in primary uveal melanoma. (A) Gene expression profile of the
TCGA-UM cohort (n = 80) sorted from genes with the highest (left) to the lowest (right) gene variance expression. (B) Volcano plot depicting
the most significantly upregulated immune genes with BAP1 loss (black arrows), which have potential immunosuppressive functions.
(C) Immune network subcategory integrations with upregulated genes following BAP1 loss. The left panel shows general immune response
networks and the right panel shows an expanded leukocyte effector immune response network. (D) Box and whiskers plots of selected upre-
gulated and downregulated immune genes according to BAP1 expression levels (high, mid, and low). One-way ANOVA was used for statistical
analysis with Bonferroni’s multiple comparisons test. ****p < 0.00001, ***p < 0.0001, **p < 0.001, *p < 0.05.
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the immune response, which were used to build an inter-
active transcriptomic network for visualisation of the pre-
dominant immune profile driven by pUM with BAP1
loss. Therefore, we performed a gene network analysis
using two classification systems: a general immune
response network based on major immune categories,
and an amplified leukocyte functional immune network.
In this analysis, the variance of gene expression (σ2) is
represented by the thickness of the network lines, indicat-
ing the plasticity of the network toward BAP1 loss.
This analysis demonstrated that most of modulated

immune genes correlate with leukocyte functions, and
some of them with chemokine, interleukin, and cytokine
expression; B-cell functions; TLR and TNF superfam-
ilies; and antigen presentation processes (Figure 2C).
Within the leukocyte network, a dominance of
immune-suppressive pathways was observed, repre-
sented by red lines predominantly with higher expres-
sion variance (higher thickness), including Treg
functions, Th1 suppression, Th2 activation, T-cell toler-
ance responses, homing of Tregs, M2 macrophage func-
tions, and ICRs (Figure 2C). Immune networks related to
effective anti-tumour immune responses are represented
by green lines, predominantly with lower expression
variance (lower thickness).
Importantly, some of the few immune genes that are

downregulated following BAP1 loss (MICA, TNFSF13,
and CD44) are important for the activation of anti-tumour
immune responses [25–27], as shown in box and whisker
plots together with other immunosuppressive and
exhaustion-related genes (i.e. HLA-DOB, CD74, CD38,
LGALS3, IDO1, TIGIT, LAG3, and CD96) (Figure 2D).
Although HLA-DR has been classified as an immune
response activation gene in disease given its importance
in peptide presentation to CD4+ T cells [28], many regu-
latory functions have been attributed to HLA-DR expres-
sion in the context of cancer [29]. For that reason, in the
network analysis, HLA-DRwas classified as immunosup-
pressive, although the generic immune activation classifi-
cation was kept in Figure 2D. Immune genes that have a
significant correlation with M3 status but do not correlate
with BAP1 expression are probably regulated by different
mechanisms that exclude BAP1 involvement. Among
these genes, those related with immune response activa-
tion are downregulated, including IL12RB12, TLR1, and
TLR5, and those involved with suppression of immune
response are upregulated, including FN1, CD70, and
CD73 (NTFE) (supplementary material, Figure S2A,B).
All together, these findings show how different immune
genes may integrate similar immune-suppressive catego-
ries in high-risk BAP1− pUM, suggesting an importance
in regulating the immune profile of mUM.

Transcriptomic analysis of mUM reveals a similar
gene expression profile to BAP1− pUM
In order to compare the transcriptomic immune profiles
of the primary and metastatic sites of UM, we performed
a NanoString assay interrogating the expression profile

of the nCounter PanCancer Immune Profiling panel
using four pUMs and six mUMs, all lacking nuclear
BAP1 expression. Unsupervised cluster analysis was
performed revealing a high correlation between most
pUM and mUM cases, with the exception of one mUM
(mUM-06). No significant correlation was observed
between a normal liver control and tumour tissues
(Figure 3A).

Spearman’s correlation test of the total gene expression
counts revealed significant similarity between the gene
expression of both primary and metastatic groups
(r = 0.92, p < 0.0001) for BAP1 correlated immune genes
(supplementary material, Table S8) (Figure 3B, left). A
similar correlation score was also observed for one patient
with matched primary and metastatic samples (Figure 3B,
middle). Importantly, because the expression of samples
of the same cancer generated using the same methodology
and normalisation are often very similar, we also evaluated
the correlation between our NanoString dataset (normal-
ised counts) and the different samples of the TCGA-UM
cohort by applying the same genes. We observed that the
normalised RNA-seq data from the TCGA-UM cohort
are still highly correlative with the NanoString data, for
both the primary and the metastatic tumours (Figure 3B,
right).

Strikingly, when comparing the gene expression of
six mUM patients with that of one human disease-free
liver normal biopsy (normal liver, NL), most mUM
patients displayed upregulation of specific immune
genes related to suppression of cytolytic T cells (CTLs)
(Figure 3C), including HLA-DRA, LGALS3, and
CD38 partially [30–38]; ICRs such as TIM-3
(HAVCR2), HMGB1, IDO1, LAG3, and CD73 (NT5E)
[39–44]; and TAM functional markers, such as ANXA1,
CD74, CD9, INFAR2, MIF, PLA2G6, and CD163
[36,45,46]. In addition, transcript levels of NOS2, a pre-
dominant M1 macrophage marker [47], were similar to
the levels found in normal liver without tumours. We
also found high expression levels of CD74 and the mac-
rophage migration inhibitory factor (MIF) across mUM
tissues compared with normal liver. RNA levels of
CD38 were increased compared with the levels found
in normal liver. At the protein level, we found that
CD38 was also positively expressed among regions of
T-cell infiltrates in one BAP1−mUM case, as evidenced
by IHC staining (supplementary material, Figure S3H).
B cells are nearly absent (low numbers of CD20+ cells)
in mUM, and cytolytic effector cells seem to be at low
activation states, given a paucity of TIA1+ cells among
the TILs.

These findings suggest that the immune profile of
BAP1− pUM is similar to mUM at the transcriptome
level, suggesting an important role of CTL suppressive
molecules, including HLA-DRA and CD38, and TAM-
related pathways, where the CD74/MIF axis seems to
play an important role driving the M2-like phenotype
and potential local tolerogenic responses. Therefore,
some of these markers were further evaluated at the pro-
tein level of BAP1− pUM.
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High-resolution single-cell analysis reveals regulatory
T-cell phenotype and a mixed macrophage phenotype
within pUM with nuclear BAP loss
In order to phenotypically and functionally characterise
pUM at the protein level, we performed a high-
resolution single-cell analysis using mass cytometry in

five pUMs, four of which showed nuclear BAP1 loss
and one with normal nuclear BAP1 expression. Among
infiltrating CD45+ cells, we observed a predominant
cluster of macrophages, T lymphocytes (CD8+ and
CD4+ T cells), B cells, and DCs, as evidenced in HSNE
plots of all samples clustered together (Figure 4A,B).

Figure 3. Transcriptomic analysis of BAP1-negative metastatic uveal melanoma reveals similar immune profiles to BAP1-negative primary
tumours. (A) Heatmap of unsupervised clustering of all the samples [mUM (n = 6), pUM tissues (n = 4), and one normal liver] and all the tran-
scripts (nCounter 730 immune genes panel). (B) Spearman’s correlation analysis of gene expression between unmatched tumours from four
pUMs and five mUMs (left), two matched tumours from one UM patient using Spearman’s correlation rank (r = 0.92, p < 0.0001) (middle),
and pUM/mUM NanoString data correlation analysis with TCGA-UM Fpkm-uq + 1 normalised RNA-seq data (right). (C) Heatmap views of
normalised RNA expression counts from six mUMs and one normal liver depicting the expression profile of CTL/NK suppression markers,
immune checkpoint regulatory markers, and M2macrophage regulation markers. Asterisks highlight selected highly expressed immune genes
across the tissues.
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The frequency of each cell subtype was calculated for
samples. The breakdown of the CD45+ infiltrating
immune cells in BAP1− samples was as follows: CD4+

T cells (12%), CD8+ T cells (37%), DCs (10%), macro-
phages (30%), and B cells (11%) (Figure 4C, left). For
one BAP1+ case, the breakdown of the CD45+ infiltrat-
ing immune cells was as follows: CD4+ T cells (14%),
CD8+ T cells (59%), DCs (3%), macrophages (22%),
and B cells (2%) (Figure 4C, right).
High-dimensional HSNE single-cell frequency clus-

tering analysis and t-SNE analysis (BAP1− cases) were
performed among CD45+ cells for pUM cases in order
to detect major clusters among the different cell subtypes
(Figure 4D,E and supplementary material, Figure S1B–
D). Across the T-lymphocyte compartment, we
observed high expression levels of CD28 receptor on
both CD4+ (cluster A) and CD8+ T cells (clusters B
and C), with low expression of CTLA-4 and LAG-3
checkpoint inhibitors (Figure 4D,E, and supplementary
material, Figure S1D). Two out of four patients have
low CD28 expression in CD8+ T-cell clusters (supple-
mentary material, Figure S1D), but no conclusions can
be made, given the low number of tumours investigated.
However, the frequency of CD28+CD8+ cells is still
lower than CD28+CD4+ T cells in all four cases exam-
ined. CD4+ T cells mostly express CD25 and CD127
markers (cluster A, 5.1%), suggesting that they have a
T-regulatory phenotype [48–52]. In addition, CD8+ T
cells were positive for the proliferation marker Ki67
(clusters B–D), which had low expression among
CD4+ T cells (cluster A) (Figure 4D). The high levels
of Ki67 can be partially explained by the greater fre-
quency of proliferating CD8+ T cells compared to
CD4+ T cells. Cluster C (CD38+HLA-DR+CD8+ T cells)
is the most frequent CD8+ T-cell cluster among BAP1−

tumours (13.5%) and also showed increased expression
of CD74 (Figure 4D,E).
In accordance with this suppressive phenotype, most

CD8+CD28+ T cells (clusters B–D) were HLA-DR+, a
phenotype typical of regulatory CD8+ T cells [28]. Impor-
tantly, CD8+ T-cell clusters express high levels of CD38,
recently reported to drive regulatory functions on CD8+ T
cells [38,53]. Although B cells are not predominant in
pUM, they could be divided into three subclusters:
CD25+CD11b+ (cluster H), CD25lowCD11b+ (cluster I),
and CD25−CD11b−CD74+ B cells (cluster J)
(Figure 4D,E). Interestingly, cluster H showed increased
expression of the LAG-3 immune checkpoint regulator.
In the macrophage and dendritic cell compartment
(MOs and DCs), we found a mixed phenotype of
M2-like CD68+CD163+CD74+ macrophages (cluster E,
7.7%), M1-like CD68+CD163−CD74−CD11c+CD11b+

macrophages (cluster F, 9.7%), and myeloid
CD68−CD11b+CD11c+ dendritic cells (cluster G, 7.8%).
No significant differences were observed in the sub-

clusters analysed in the pUM BAP1+ sample for the dif-
ferent immune cell subtypes compared with the BAP1−

cases, apart from the CD8+ T-cell compartment, which
showed reduced levels of regulatory CD38+HLA-
DRhighCD8+ T-cell cluster (cluster N,19.9%) compared

with BAP1− tumours, and positive levels of the func-
tional clusters CD38−HLA-DRlowKi67+CD8+ T cells
(cluster K 30.8%) and CD38−HLA-DRlowKi67−CD8+ T
cells (cluster M, 4.9%) and exhausted CTLA-4+HLA-
DRlowCD8+ T cells (cluster L, 3.4%) (supplementary
material, Figure S1B,C).

Taken together, we describe the regulatory nature of
TILs in UM with nuclear BAP1 loss, particularly CD4+

and CD8+ T cells, and a mixed macrophage phenotype
where M2-like macrophages express higher levels
of CD74.

Immune profile of mUM in regions of interaction
between macrophages and lymphocytes
A digital spatial profiling assay (DSP, NanoString)
revealed the protein expression profile of 31 immune
markers in different regions of interest where macro-
phages (CD68) and lymphocytes (CD3) localised simul-
taneously in two mUM cases with nuclear BAP1 loss.
Co-localisation of macrophages and lymphocytes
occurred both within and at the edge of the tumours
(Figure 5A). Among the cancer-related markers, we
observed the expression of β2M, STAT3, STING, and
β-catenin (Figure 5B). The expression of β2M suggests
that tumour antigens are presented via HLA-A in these
tumour areas, thus supporting the efficacy of ICI [54].
Total levels of STAT3 were elevated, but not in its acti-
vated phosphorylated form (pY705), which regulates
gene transcription for modulation of immunosuppres-
sive factors [55]. The expression of STING suggests a
macrophage-mediated hepatic inflammation and fibro-
genic process [56].

Importantly, high levels of β-catenin were detected in
both mUM patients, which is related to tumour-induced
immune exclusion mechanisms [57–59], suggesting an
accessorymechanism bywhich tumours modulate infiltra-
tion and proliferation of lymphocytes in themetastatic site.

Among the immune phenotyping markers, we
observed discrete, but positive, levels of CD163; high
levels of CD68, HLA-DR, and CD11c, and all macro-
phage and dendritic cell markers; and intermediate levels
of the immune checkpoint PD-L1 (Figure 5B). The neu-
trophil marker CD66b was not detected in the selected
ROIs, suggesting that neutrophils are not involved at
least in the crosstalk between macrophages and T cells
in these particular BAP1− mUM cases. Lymphoid
markers CD8A and CD4 were also found to be highly
expressed. CD56 levels are relatively low compared
with negative controls, suggesting absence of NK cells
in the selected regions. However, T regulatory cells
seem to be absent as intracellular levels of Foxp3 were
not detected among these patients using this technique.

In addition, low positive levels of granzyme B were
detected, together with high expression of B7-H3, a
checkpoint regulator of lymphocyte functions [60]. We
also observed the expression of IDO-1, TIGIT, and
VISTA (Figure 5B). IDO-1 is known to induce adaptive
resistance to anti-PD1 and anti-CTLA4 immunother-
apies [61,62]. In addition, IDO and TIGIT were recently
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Figure 4.Mass cytometry analysis of infiltrated immune cells in primary UM. (A) Hierarchical stochastic neighbour embedding (HSNE) anal-
ysis showing the density of CD45+ infiltrated immune cells and selected phenotyping markers of concatenated pUM patients (BAP1−, n = 4
and BAP1+, n = 1). (B) Colour HSNE maps representing the phenotype of infiltrated immune cell subclusters. (C) Pie frequency charts of infil-
trated immune cell subtypes detected by HSNE analysis for BAP1− and BAP1+ tumours. (D) Heatmap displaying normalised marker expression
of each immune cell cluster for four concatenated BAP1− pUM samples. Analysis was generated in Cytosplore highlighting the most frequent
clusters of CD45+ infiltrated immune cells, and an expanded analysis among tumour infiltrated monocytes, T lymphocytes, and B cells. (E) Pie
chart showing the frequency of each cluster identified in HSNE analysis across the four merged BAP1− pUM tumours.
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described to be expressed in pUM-M3 with correspond-
ing mUM tissues [63].
Considered altogether, these findings suggest alterna-

tive mechanisms of T-cell exhaustion other than PD-1
and CTLA-4 engagement, as well as the involvement
of mechanisms for immune exclusion that may under-
take an important role to support tumour immune eva-
sion and, consequently, immunotherapy failure.

Discussion

In this multi-parametric immunophenotyping work in
UM, we profiled the immune response of the 80 patients
of the TCGA-UM study, highlighting the involvement
of BAP1 loss in the coordination of gene expression of
several immune markers. Selected biomarkers were fur-
ther investigated in a smaller number of primary and
metastatic BAP1− UMs, at both transcriptome and pro-
tein levels, using cutting-edge techniques. Recently,
our group observed that different patterns of nuclear
BAP1 expression in pUM provide insights into the prog-
nostic significance of this tumour [64]. Among UMs
with an M3 status, the cumulative survival of patients
with UM expressing nuclear BAP1 is significantly

greater than that of UM patients whose tumours are M3
with nuclear BAP1 loss. These findings and previous
reports associating BAP1 loss with a wide spectrum of
cancers [65] underpin the molecular mechanisms behind
the adverse prognostic effects of M3, supporting the
importance of analysing immune gene expression from
the aspect of BAP1loss in UM.

The genetic diversity of UM was recently described,
including copy number variations (CNVs), somatic
mutations, and BAP1 alterations [63]. However, the
diversity of immune gene expression is described by
the tumour stroma (i.e. the features of the reactive cells
in the tumour microenvironment), which shapes accor-
dantly with the tumour phenotype (e.g. BAP1 loss). As
a consequence of BAP1 loss in UM, tumour cells could
therefore unleash metabolic mechanisms to secrete dif-
ferent factors that would induce the regulatory pheno-
type of T cells and macrophages in the tumour
microenvironment (TME) to a more tolerogenic profile.
The positive expression of MIF observed at the tran-
scriptomic level in mUM is in accordance with previous
reports showing that UM cells can secrete MIF as a
mechanism of immune escape [66]. The main receptor
of MIF in different immune cells is CD74 [36,67]. In
addition, MIF was recently reported to induce M2 polar-
isation of TAMs, leading to immune suppression on

Figure 5. Digital spatial profiling analysis of two mUM BAP1-negative FFPE tissues using the NanoString immune oncology protein panel.
(A) Regions of interest (ROI) to evaluate fibrotic areas with high infiltration of both macrophages (CD68) and lymphocytes (CD3).
(B) Heatmap representation of different cancer-related markers, immune phenotyping markers, and immune checkpoint and functional
markers, all at the protein level among individual ROIs using normalised raw NanoString counts.
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several solid cancers [34,36,66,68–72], and to downre-
gulate the CTL responses [34], which may occur via its
interaction with the CD74 receptor expressed on CD8+

T cells in UM, as observed for cluster C. Since CD74
expression was not observed in the CD8+ T-cell clusters
of one BAP1+ pUM, we hypothesise that tumours with
reduced expression of MIF or its receptor CD74 may
contribute to increase the frequency of more effective
CD8+ T cells in the TME of UM.

Therefore, modulation of T lymphocytes and macro-
phages toward an immunosuppressive phenotype could
be explained by the expression of CD74 on these cells,
which can be affected by suppressive factors derived
from tumour cells, including MIF. CD74, which was
highly expressed at the transcriptomic level in pUM,
was also found at the protein level across the regulatory
CD8+ T-cell cluster and CD163+ M2-like macrophage
cluster. CD74 is a chaperone involved in the trafficking
of HLA-DR molecules to the surface of immune cells,
and while it remains expressed on the surface of the
cells, it may bind to MIF secreted by tumour cells in
the TME [46,67,73].

The pharmacological blockade of the MIF/CD74
interaction restores the TME immunogenic profile, as
well as an effective anti-tumour immune response
against metastatic melanoma and gliomas [36,46]. The
CD74 monoclonal blocking antibody milatuzumab is
currently approved by the Food and Drug Administra-
tion (FDA) in the United States for the treatment of mul-
tiple myeloma, non-Hodgkin lymphomas, and other
CD74+ cancers [74,75].

Changes in BAP1 expression have also been associ-
ated with immune transformation in mesothelioma, and
became a predictive tool for immunotherapy of perito-
neal mesothelioma [76,77]. The impaired ability of thy-
mic development and the proliferative responses of T
lymphocytes in the context of BAP1 inhibition are strong
evidence that loss of BAP1 function is associated with
immune suppression and systemic myeloid transforma-
tion [16,78].

In this study, we also observed that increased tran-
scriptome levels of CD38, HLA-DRA, IDO1, and
LAG-3 are significantly correlated with BAP1 loss.
These immune biomarkers are of extreme importance
because they have been associated with different
immune-suppressive pathways, which suggests mecha-
nistic insights for immune suppression and immunother-
apy resistance using ICIs [30,36–38,41]. In the protein
single-cell level, we show the functional state of UM
infiltrating CD8+ T cells, which co-express high levels
of CD38, HLA-DR, and CD28. The co-expression of
HLA-DR/CD28 in CD8+ T cells suggests that these lym-
phocytes are distinct from cytolytic effector T cells [30],
and can be classified as regulatory CD8+ T cells, with
similar functions to classical CD4+Foxp3+ cells [28].
In addition, higher levels of CD38 demarcates regulatory
andmemory status to CD8+ T cells in the context of IFN-
γ-mediated immunosuppression, and was recently
addressed to drive mechanisms of tumour-mediated
immune escape to immunotherapies using PD1/PD-L1

blockade [37,38]. Indeed, IFN-γ is upregulated in the
context of BAP1 loss and is widely associated with sev-
eral immune-suppressive network categories, which is in
accordance with recent reports showing the immune-
suppressive roles of IFN-γ [79].Therefore, targeting
CD38 in UM may be considered a suitable strategy to
improve the efficacy of immunotherapy using ICI in
metastatic UM. A recent study showed that targeting
CD38 using isatuximab can preferentially block immu-
nosuppressive T-regulatory lymphocytes and therefore
restore immune effector function against multiple mye-
loma [53].
The low expression of ICRs LAG-3 and CTLA-4

among the majority of T-cell clusters suggests that these
lymphocytes may not be exhausted but exist in a lower
activation state in pUM [80–83]. Increased transcriptome
levels of LAG-3 in the TCGA-UM study could be linked
with LAG-3 expression among CD25+ B-cell clusters as
evidenced by mass cytometry, suggesting a memory and
natural regulatory phenotype for these cells [84,85].
Moreover, higher expression of IDO1 in both pUM and
mUMsuggests thismolecule as an important adjuvant tar-
get for immunotherapy using ICIs, since IDO1 blockade
has been shown to synergise the therapeutic effector of
both CTLA-4 and PD1/PD-L1 inhibitors [61].
Our findings in this report also provide evidence that

BAP1− pUM could shape an immune response similar
to that in mUM tissues, since BAP1-loss-correlated
immune genes are similarly expressed in mUM, as
observed using the NanoString approach. Furthermore,
the DSP approach revealed that additional ICI-resistant
mechanisms not necessarily related to BAP1 changes
may also be important in mUM-induced exclusion of
immune cells, such as the Wnt/β-catenin axis [58,59]. A
recent study showed that hepatocellular carcinoma
patients displaying an altered Wnt/β-catenin pathway
were refractory to immune-checkpoint blockade [86],
which is aligned with evidence that melanoma-intrinsic
β-catenin signalling prevents anti-tumour immunity [87].
It is important to highlight that a weakness of this study

is the low number of analysed BAP1− UM samples for
CyTOF studies. The reason behind that is the scarcity of
the type of fresh tumour sample, not only because this type
of tumour is very rare but also because the tissues must be
sufficiently large to provide significant amounts of
immune infiltrated cells for further downstream analysis,
and thus reducing the sample size of this study. Despite
this, we could not only reproduce and confirm previous
data published regarding the higher frequency of infiltrated
CD8+ T cells over CD4+ T cells at the transcriptomic and
protein levels [4,15], but also detect the expression of spe-
cific immune markers initially detected in the transcrip-
tome analysis of the larger TCGA-UM cohort (n = 80),
and also observed in mUM tissues, expanding the impact
of our pUM mass cytometry findings.
The present work shows an improved overview of the

immune profile of pUM and mUM at both transcriptome
and protein levels and suggests that immune modulation
in UM may be driven by loss of BAP1 expression.
Immunosuppressive networks found in BAP1− tumours
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may not only influence the quality and quantity of local
anti-tumour immune responses but also affect immuno-
therapy outcomes using ICIs, leading to regulation or
exclusion of T effector lymphocytes, as well as alterna-
tive polarisation of macrophages toward a tolerogenic
phenotype in the TME. The relative importance of these
findings will require further functional validation, and
this study provides the solid ground to initiate these stud-
ies. Detected key immune biomarkers, such as CD38
and CD74, could be immediately investigated for func-
tional validation in the adjuvant settings of ICI immuno-
therapies, since there are currently available FDA-
approved inhibitors against these targets [53,74]. Alto-
gether, this work provides the most critical immune
markers and pathways to consolidate the type of immune
responses in the context of BAP1 loss in UM. This may
help us to understand why this type of cancer is one of
the most refractory to current immunotherapies using
ICIs at present.
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